Subset Statistics in the linear IV regression model
Kleibergen, F.R.

Citation for published version (APA):
Subset statistics in the linear IV regression model

Frank Kleibergen

www.fee.uva.nl/ke/UvA-Econometrics

Amsterdam School of Economics
Department of Quantitative Economics
Roetersstraat 11
1018 WB AMSTERDAM
The Netherlands
Subset statistics in the linear IV regression model

Frank Kleibergen*

Preliminary version. Not to be quoted without permission.

Abstract

We show that the limiting distributions of subset generalizations of the weak instrument robust instrumental variable statistics are boundedly similar when the remaining structural parameters are estimated using maximum likelihood. They are bounded from above by the limiting distributions which apply when the remaining structural parameters are well-identified and from below by the limiting distributions which holds when the remaining structural parameters are completely unidentiﬁed. The lower bound distribution does not depend on nuisance parameters and converges in case of Kleibergen’s (2002) Lagrange multiplier statistic to the limiting distribution under the high level assumption when the number of instruments gets large. The power curves of the subset statistics are non-standard since the subset tests converge to identiﬁcation statistics for distant values of the parameter of interest. The power of a test on a well-identiﬁed parameter is therefore low for distant values when one of the remaining structural parameter is weakly identiﬁed and is equal to the power of a test for a distant value of one of the remaining structural parameters. All subset results extend to statistics that conduct tests on the parameters of the included exogenous variables.

1 Introduction

A sizeable literature currently exists that deals with statistics for the linear instrumental variables (IV) regression model whose limiting distributions are robust to instrument quality, see e.g. Anderson and Rubin (1994), Kleibergen (2002), Moreira (2003) and Andrews et. al. (2005). These robust statistics test hypothezes that are speciﬁed on all structural parameters of the linear IV regression model. Many interesting hypothezes are, however, speciﬁed on subsets of the structural parameters and/or on the parameters associated with the included exogenous variables. When we replace the structural parameters that are not speciﬁed by the hypothesis of interest by estimators, the limiting distributions of the robust statistics extend to tests of such hypothezes when a high level identiﬁcation assumption on these remaining structural parameters holds, see e.g. Stock and Wright (2000) and Kleibergen (2004,2005a). This high level assumption

*Department of Economics, Box B, Brown University, Providence, RI 02912, United States and Department of Quantitative Economics, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands, e-mail: Frank_Kleibergen@brown.edu, homepage: http://www.econ.brown.edu/fac/Frank_Kleibergen.
This research is partly funded by the NWO research grant “Empirical Comparison of Economic Models”.

1
is rather arbitrary and its validity is typically unclear. It is needed to ensure that the parameters whose values are not specified under the null hypothesis are replaced by consistent estimators so the limiting distributions of the robust statistics remain unaltered. When the high level assumption is not satisfied, the limiting distributions are unclear. The high level assumption is avoided when we test the hypotheses using a projection argument which results in conservative tests, see Dufour and Taamouti (2005a,2005b).

We show that when the unspecified parameters are estimated using maximum likelihood that the limiting distributions of the subset robust statistics are boundedly similar (pivotal). They are bounded from above by the limiting distribution which applies when the high level assumption holds and from below by the limiting distributions which apply when the unspecified parameters are completely unidentified. The latter lower bound distribution does not depend on nuisance parameters and converges to the limiting distribution under the high level assumption when the number of instruments gets large for Kleibergen’s (2002) Lagrange multiplier (KLM) statistic. The subset robust statistics are thus conservative when we apply the limiting distributions that hold under the high level assumption.

We use the conservative critical values that result under the high level assumption to compute power curves of the subset robust statistics. These power curves show that the weak identification of a particular parameter spills over to tests on any of the other parameters. For large values of the parameter of interest, we show that the subset robust statistics correspond with tests of the identification of any of the structural parameters. Hence, when a particular (combination of the) structural parameter(s) is weakly identified, the power curves of any test on the structural parameters converges to a rejection frequency that is well below one when the parameter of interest becomes large. The quality of identification of the structural parameters whose values are not specified under the null hypothesis are therefore of equal importance for the power of the tests as the identification of the hypothesized parameters itself.

The paper is organized as follows. In the second section, we construct the robust statistics for tests on subsets of the parameters. Because the subset likelihood ratio statistic has no analytical expression, we extend Moreira’s (2003) conditional likelihood ratio statistic to a quasi-likelihood ratio statistic for tests on subsets of the structural parameters. In the third section, we obtain the limiting distributions of the subset robust statistics when the remaining structural parameters are completely non-identified. We show that these distributions provide a lower bound on the limiting distributions of the subset robust statistics while the limiting distributions under the high level identification assumption provide a upperbound. In the fourth section, we analyze the size and power of the subset statistics and show that they converge to a statistic that tests for the identification of any of the structural parameters when the parameter of interest becomes large. The fifth section illustrates some possible shapes of the p-value plots that result from the subset robust statistics. The sixth section extends the subset robust statistics to statistics that conduct tests of hypotheses specified on the parameters of the included exogenous variables. It also analyzes the size and power of such tests. Finally, the seventh section concludes.

We use the following notation throughout the paper: $\text{vec}(A)$ stands for the (column) vectorization of the $T \times n$ matrix A, $\text{vec}(A) = (a_1^\prime \ldots a_n^\prime)^\prime$, when $A = (a_1 \ldots a_n)$. $P_A = A(A^\prime A)^{-1}A^\prime$ is a projection on the columns of the full rank matrix A and $M_A = I_T - P_A$ is a projection on the space orthogonal to A. Convergence in probability is denoted by “\rightarrow_p” and convergence in distribution by “\rightarrow_d”.
2 Subset statistics in the Linear IV Regression Model

We consider the linear IV regression model

\[\begin{align*}
y &= X\beta + W\gamma + \varepsilon \\
X &= Z\Pi_X + V_X \\
W &= Z\Pi_W + V_W,
\end{align*}\]

where \(y\), \(X\) and \(W\) are \(T \times 1\), \(T \times m_x\) and \(T \times m_w\) dimensional matrices that contain the endogenous variables, \(Z\) is a \(T \times k\) dimensional matrix of instruments and \(m = m_x + m_w\). The \(T \times 1\), \(T \times m_x\) and \(T \times m_w\) dimensional matrices \(\varepsilon, V_X\) and \(V_W\) contain the disturbances. The \(m_x \times 1\), \(m_w \times 1\), \(k \times m_x\) and \(k \times m_w\) dimensional matrices \(\beta, \gamma, \Pi_X\) and \(\Pi_W\) consist of unknown parameters. We can add a set of exogenous variables to all equations in (1) and the results that we obtain next remain unaltered when we replace all variables by the residuals that result from a regression on these additional exogenous variables.

Assumption 1: When the sample size \(T\) converges to infinity, the following convergence results hold jointly:

a. \(\frac{1}{T}(\varepsilon : V_X : V_W)'(\varepsilon : V_X : V_W) \xrightarrow{p} \Sigma\), with \(\Sigma\) a positive definite \((m+1) \times (m+1)\) matrix and \(\Sigma = \begin{pmatrix} \sigma_{\varepsilon\varepsilon} & \sigma_{\varepsilon X} & \sigma_{\varepsilon W} \\ \sigma_{X\varepsilon} & \Sigma_{XX} & \Sigma_{XW} \\ \sigma_{W\varepsilon} & \Sigma_{WX} & \Sigma_{WW} \end{pmatrix}\), \(\sigma_{\varepsilon\varepsilon} : 1 \times 1\), \(\sigma_{X\varepsilon} = \sigma'_{X\varepsilon} : 1 \times m_x\), \(\sigma_{\varepsilon W} = \sigma'_{W\varepsilon} : 1 \times m_w\), \(\Sigma_{XX} : m_x \times m_x\), \(\Sigma_{XW} = \Sigma'_{WX} : m_x \times m_w\), \(\Sigma_{WW} : m_w \times m_w\).

b. \(\frac{1}{T}Z'Z \xrightarrow{p} Q\), with \(Q\) a positive definite \(k \times k\) matrix.

c. \(\frac{1}{\sqrt{T}}Z'(\varepsilon : V_X : V_W) \xrightarrow{d} (\psi_{Z\varepsilon} : \psi_{ZX} : \psi_{ZW})\), with \(\psi_{Z\varepsilon} : k \times 1\), \(\psi_{ZX} : k \times m_X\), \(\psi_{ZW} : k \times m_w\) and \(\text{vec}(\psi_{Z\varepsilon} : \psi_{ZX} : \psi_{ZW}) \sim N(0, \Sigma \otimes Q)\).

Statistics to test joint hypotheses on \(\beta\) and \(\gamma\), like, for example, \(H^* : \beta = \beta_0\) and \(\gamma = \gamma_0\), have been developed whose (conditional) limiting distributions under \(H^*\) and Assumption 1 (1) do not depend on the value of \(\Pi_X\) and \(\Pi_W\), see e.g. Anderson and Rubin (1949), Kleibergen (2002) and Moreira (2003). These statistics can be adapted to test for hypotheses that are specified on a subset of the parameters, for example, \(H_0 : \beta = \beta_0\). We construct such statistics by using the maximum likelihood estimator (MLE) for the unknown value of \(\gamma, \hat{\gamma}\), which results from the first order condition (FOC) for a maximum of the likelihood. The Anderson-Rubin (AR) statistic is proportional to the concentrated likelihood so we can obtain the FOC from \((k \times k)\) times the AR statistic:

\[
\begin{align*}
\frac{\partial}{\partial \gamma} \text{AR}(\beta_0, \gamma) |_{\gamma = \hat{\gamma}} &= 0 \iff \\
\frac{\partial}{\partial \gamma} \left[\frac{(y - X\beta_0 - W\hat{\gamma})'P_Z(y - X\beta_0 - W\hat{\gamma})}{\hat{\sigma}_{\varepsilon\varepsilon}(\beta_0)} \right] |_{\gamma = \hat{\gamma}} &= 0 \iff \\
\frac{2}{\hat{\sigma}_{\varepsilon\varepsilon}(\beta_0)} \tilde{\Pi}_W(\beta_0)'Z'(y - X\beta_0 - W\hat{\gamma}) &= 0,
\end{align*}
\]

where \(\tilde{\Pi}_W(\beta_0) = (Z'Z)^{-1}Z' \left[W - (y - X\beta_0 - W\hat{\gamma})\frac{\hat{\sigma}_{\varepsilon W}(\beta_0)}{\hat{\sigma}_{\varepsilon\varepsilon}(\beta_0)} \right] M_Z(y - X\beta_0 - W\hat{\gamma})\), \(\hat{\sigma}_{\varepsilon W}(\beta_0) = \frac{1}{T-k} (y - X\beta_0 - W\hat{\gamma})'M_ZW\).
Definition 1: 1. The AR statistic (times \(k \)) to test \(H_0 : \beta = \beta_0 \) reads
\[
AR(\beta_0) = \frac{1}{\sigma_{\varepsilon(\beta_0)}} (y - X\beta_0 - W\hat{\gamma})' P_{\varepsilon(\hat{\beta}_0)} z (y - X\beta_0 - W\hat{\gamma}).
\] (3)

2. Kleibergen’s (2002) Lagrange multiplier (KLM) statistic to test \(H_0 \) reads, see Kleibergen (2004),
\[
KLM(\beta_0) = \frac{1}{\sigma_{\varepsilon(\beta_0)}} (y - X\beta_0 - W\hat{\gamma})' P_{\varepsilon(\hat{\beta}_0)} z (y - X\beta_0 - W\hat{\gamma}).
\] (4)

with \(\tilde{\Pi}_X(\beta_0) = (Z'Z)^{-1}Z' \) \([X - (y - X\beta_0 - W\hat{\gamma})\frac{\hat{\sigma}_{\varepsilon(\beta_0)}}{\sigma_{\varepsilon(\beta_0)}}] \) and \(\hat{\sigma}_{\varepsilon(\beta_0)} = \frac{1}{T-k} (y - X\beta_0 - W\hat{\gamma})' M_Z X \).

3. A J-statistic that tests misspecification under \(H_0 \) reads, see Kleibergen (2004),
\[
JKLM(\beta_0) = AR(\beta_0) - KLM(\beta_0).
\] (5)

4. The likelihood ratio (LR) statistic to test \(H_0 \) reads,
\[
LR(\beta_0) = AR(\beta_0) - \lambda_{\text{min}},
\] (6)

where \(\lambda_{\text{min}} \) is the smallest root of the characteristic polynomial:
\[
\begin{align*}
\left| \lambda_{m+1} - \left[(Z'Z)^{-1/2} Z' \left(\frac{y - X\beta_0 - W\hat{\gamma}}{\sqrt{\sigma_{\varepsilon(\beta_0)}}} \right) : \left[(X : W) - (y - X\beta_0 - Z\hat{\gamma}) \frac{\hat{\sigma}_{\varepsilon(\beta_0)}}{\sigma_{\varepsilon(\beta_0)}} \right] \right] \right| &= 0,
\end{align*}
\]

with \(\hat{\sigma}_{\varepsilon(\beta_0)} = \frac{1}{T-k} (y - X\beta_0 - W\hat{\gamma})' M_Z (X : W), \) \(\hat{\Sigma}_{(X : W) (X : W)} = \frac{1}{T-k} (X : W)' M_Z (X : W), \) \(\hat{\Sigma}_{(X : W) (X : W)_\varepsilon} = \hat{\Sigma}_{(X : W) (X : W)} - \frac{\hat{\sigma}_{\varepsilon(\beta_0)}}{\sigma_{\varepsilon(\beta_0)}}. \)

The subset LR statistic (6) has no analytical expression. By decomposing the characteristic polynomial, we obtain an approximation of the subset LR statistic with an analytical expression.

Theorem 1. A upperbound on the subset LR statistic (6) reads
\[
MQLR(\beta_0) = \frac{1}{2} \left[AR(\beta_0) - rk(\beta_0) + \sqrt{(AR(\beta_0) + rk(\beta_0))^2 - 4 (AR(\beta_0) - KLM(\beta_0)) rk(\beta_0)} \right],
\] (7)

where \(rk(\beta_0) \) is the smallest characteristic root of
\[
\hat{\Sigma}_{MQLR}(\beta_0) = \hat{\Sigma}_{(X : W)(X : W)_\varepsilon} \left[(X : W) - (y - X\beta_0 - Z\hat{\gamma}) \frac{\hat{\sigma}_{\varepsilon(\beta_0)}}{\sigma_{\varepsilon(\beta_0)}} \right] '
\]
\[
P_Z \left[(X : W) - (y - X\beta_0 - Z\hat{\gamma}) \frac{\hat{\sigma}_{\varepsilon(\beta_0)}}{\sigma_{\varepsilon(\beta_0)}} \right] \hat{\Sigma}_{(X : W)(X : W)_\varepsilon}^{-1/2},
\]
and this upperbound is equal to the LR statistic when the FOC holds for \(\beta_0 \).

Proof. see the Appendix.

1 We refer to the proof of Theorem 1 for the construction of the LR statistic.
Except for the usage of the characteristic root \(\text{rk}(\beta_0) \), the expression of the quasi-likelihood ratio statistic in (7) is identical to that of Moreira’s (2003) conditional likelihood ratio statistic. We therefore refer to it as MQLR(\(\beta_0 \)). It preserves the main properties of the LR statistic and results from equating all characteristic roots to the smallest one which explains why it provides an upper bound on the LR statistic, see Kleibergen (2005b). The equality of MQLR(\(\beta_0 \)) and LR(\(\beta_0 \)) for values of \(\beta_0 \) that satisfy the FOC illustrates the quality of the approximation of LR(\(\beta_0 \)) by MQLR(\(\beta_0 \)).

The (conditional) limiting distributions of AR(\(\beta_0 \)), KLM(\(\beta_0 \)), JKLM(\(\beta_0 \)) and MQLR(\(\beta_0 \)) result from the independence of \(Z'(y - X\beta_0 - Z\tilde{\gamma}) \) and \(\tilde{\Pi}_X(\beta_0), \tilde{\Pi}_W(\beta_0) \) in large samples and from a high level assumption with respect to the rank of \(\tilde{\Pi}_W \), see Kleibergen (2004).

Assumption 2: The value of the \(k \times m_w \) dimensional matrix \(\Pi_W \) is fixed and of full rank.

Theorem 2. Under \(H_0 \) and when Assumptions 1 and 2 hold, the (conditional) limiting distributions of AR(\(\beta_0 \)), KLM(\(\beta_0 \)), JKLM(\(\beta_0 \)) and MQLR(\(\beta_0 \)) given \(\text{rk}(\beta_0) \) are characterized by

1. \(\text{AR}(\beta_0) \xrightarrow{d} \psi_{m_x} + \psi_{k-m} \),
2. \(\text{KLM}(\beta_0) \xrightarrow{d} \psi_{m_x} \),
3. \(\text{JKLM}(\beta_0) \xrightarrow{d} \psi_{k-m} \),
4. \(\text{MQLR}(\beta_0) | \text{rk}(\beta_0) \xrightarrow{d} \frac{1}{2} \left[\psi_{m_x} + \psi_{k-m} - \text{rk}(\beta_0) + \sqrt{\left(\psi_{m_x} + \psi_{k-m} + \text{rk}(\beta_0)\right)^2 - 4\psi_{k-m}\text{rk}(\beta_0)}} \right], \) where \(\psi_{m_x} \) and \(\psi_{k-m} \) are independent \(\chi^2(m_x) \) and \(\chi^2(k - m) \) distributed random variables.

Proof. see Kleibergen (2004). ■

Assumption 2 is a high level assumption that is difficult to verify in practice. We therefore establish the limiting distributions of the different statistics when Assumption 2 fails to hold, i.e. when \(\Pi_W \) equals zero instead of a full rank value. We show that the limiting distributions of the statistics in this extreme setting provide a lower bound for all other cases while the distributions from Theorem 2 provide a upper bound.

3 Limiting distributions of subset statistics in non-identified cases

We construct the (conditional) limiting distributions of the AR, KLM, JKLM and MQLR statistics when \(\Pi_W \) equals zero.

Lemma 1. When \(\Pi_W = 0 \) and Assumption 1 and \(H_0 \) hold, the FOC (2) corresponds in large samples with

\[
\left[\xi_w - (\xi_{i.w} - \xi_w \tilde{\gamma}) \frac{\gamma'}{\tilde{\gamma}} \right] ' [\xi_{i.w} - \xi_w \tilde{\gamma}] = 0, \tag{9}
\]

where \(\xi_w \) and \(\xi_{i.w} \) are \(k \times 1 \) and \(k \times m_w \) dimensional independently standard normal distributed matrices and \(\tilde{\gamma} = \Sigma_{WW}^{-1} (\tilde{\gamma} - \gamma_0 - \Sigma_{WW}^{-1} \Sigma_{i.w} \sigma_{i.w}) \sigma_{i,w}, \sigma_{i.w} = \sigma_{i.w} - \sigma_{i.w} \Sigma_{i.w}^{-1} \sigma_{i.e}. \)
Theorem 3. Under Assumption 1 and when Π_W equals zero:

1. The limiting behavior of the AR statistic to test $H_0: \beta = \beta_0$ is characterized by:
 \[
 \text{AR}(\beta_0) \overset{d}{\to} \frac{1}{1+\gamma^2} \left[\xi_{\varepsilon,w} - \xi_w \bar{\gamma} \right]' \left[\xi_{\varepsilon,w} - \xi_w \bar{\gamma} \right].
 \]

2. The limiting behavior of the KLM statistic to test $H_0: \beta = \beta_0$ is characterized by:
 \[
 \text{KLM}(\beta_0) \overset{d}{\to} \frac{1}{1+\gamma^2} (\xi_{\varepsilon,w} - \xi_w \bar{\gamma})' P_{M_{W_0}} \left[(\xi_{\varepsilon,w} - \xi_w \bar{\gamma})_{2} \right] A (\xi_{\varepsilon,w} - \xi_w \bar{\gamma}),
 \]
 where A is a fixed $k \times m_x$ dimensional matrix.

3. The limiting behavior of the JKLM statistic is under H_0 characterized by:
 \[
 \text{JKLM}(\beta_0) \overset{d}{\to} \frac{1}{1+\gamma^2} (\xi_{\varepsilon,w} - \xi_w \bar{\gamma})' M_{\left[A: \xi_w - (\xi_{\varepsilon,w} - \xi_w \bar{\gamma}) \right]} (\xi_{\varepsilon,w} - \xi_w \bar{\gamma}).
 \]

4. The conditional limiting behavior of the MQLR statistic given $rk(\beta_0)$ to test $H_0: \beta = \beta_0$ reads
 \[
 \text{MQLR}(\beta_0) | rk(\beta_0) \overset{d}{\to} \frac{1}{2} \left\{ \frac{1}{1+\gamma^2} \left[\xi_{\varepsilon,w} - \xi_w \bar{\gamma} \right]' \left[\xi_{\varepsilon,w} - \xi_w \bar{\gamma} \right] - rk(\beta_0) + \right. \\
 \left. \left(\frac{1}{1+\gamma^2} \left[\xi_{\varepsilon,w} - \xi_w \bar{\gamma} \right]' \left[\xi_{\varepsilon,w} - \xi_w \bar{\gamma} \right] + rk(\beta_0) \right)^2 - \\
 4 \left(\frac{1}{1+\gamma^2} \left[\xi_{\varepsilon,w} - \xi_w \bar{\gamma} \right]' M_{\left[A: \xi_w - (\xi_{\varepsilon,w} - \xi_w \bar{\gamma}) \right]} \left[\xi_{\varepsilon,w} - \xi_w \bar{\gamma} \right] \right) \right\}^{\frac{1}{2}}.
 \]

Proof. see the Appendix.

Theorem 3 shows that the limit behaviors of AR(β_0), KLM(β_0), JKLM(β_0) and MQLR(β_0) when $\Pi_W = 0$ do not depend on nuisance parameters. The distribution functions associated with the limit behaviors from Theorem 3 are bounded from above by the distribution functions in case of a full rank value of Π_W which result from Theorem 2. This is shown in Figure 1 for the KLM statistic and in Figure 2 for the AR statistic.

Figure 1 shows the $\chi^2(1)$ distribution function and the limiting distribution function of KLM(β_0) for different numbers of instruments when $\Pi_W = 0$ and $m_w = m_x = 1$. Figure 1 shows that the $\chi^2(1)$ distribution provides a upperbound for the limiting distribution function of KLM(β_0) when $\Pi_W = 0$. It also shows that the limiting distribution of KLM(β_0) when $\Pi_W = 0$ converges to a $\chi^2(1)$ when the number of instruments increases.
Theorem 4. Under H_0 and when the sample size T and the number of instruments jointly converge to infinity such that $k/T \to 0$, the limiting behavior of $KLM(\beta_0)$ when $\Pi_W = 0$ is characterized by

$$KLM(\beta_0) \xrightarrow{d} \chi^2(m_x).$$

(14)

Proof. see the Appendix.

Theorem 4 implies that the χ^2 distribution becomes a better approximation of the limiting distribution of $KLM(\beta_0)$ when the number of instruments gets large. The number of instruments should, however, not be too large compared to the sample size because a different limiting distribution of $KLM(\beta_0)$ results when it is proportional to the sample size, see Bekker and Kleibergen (2003).

Figure 2 shows the $\chi^2(k - m_w)/(k - m_w)$ distribution function and the limiting distribution function of $AR(\beta_0)/(k - m_w)$ for different number of instruments when $\Pi_W = 0$ and $m_w = 1$. Figure 2 shows that the limiting distribution of $AR(\beta_0)$ is bounded by the $\chi^2(k - m_w)$ distribution when $\Pi_W = 0$. Figure 2 shows that the $\chi^2(k - m_w)$ distribution is a much more distant upperbound for the limiting distribution of $AR(\beta_0)$ than the upperbound for $KLM(\beta_0)$ in Figure 1. The χ^2 approximation of the limiting distribution of $AR(\beta_0)$ when $\Pi_W = 0$ is thus a much more conservative one than for $KLM(\beta_0)$. Another important difference with $KLM(\beta_0)$ is that there is no convergence of the limiting distribution of $AR(\beta_0)$ towards a χ^2 distribution when the number of instruments gets large.

The conditional limiting distribution of $MQLR(\beta_0)$ given $rk(\beta_0)$ when $\Pi_W = 0$ behaves similar to that of $AR(\beta_0)$ and $KLM(\beta_0)$ since it is just a function of these statistics given the value of $rk(\beta_0)$. We therefore, and because of its dependence on $rk(\beta_0)$, refrain from showing this distribution function. Since $JKLM(\beta_0)$ is a function of $AR(\beta_0)$ and $KLM(\beta_0)$ as well, we also
Figure 2: (Limiting) Distribution functions of $\chi^2(k-1)/(k-1)$ and $\text{AR}(\beta_0)/(k-1)$ when $\Pi_w = 0$, $m_w = m_x = 1$ and $k = 2$ (dotted and dashed-dotted), 20 (solid and dashed) and 100 (solid with triangles and solid with plusses).

refrain from showing the distribution function of $\text{JKLM}(\beta_0)$.

Figures 1 and 2 show that the limiting distribution functions of $\text{KLM}(\beta_0)$ and $\text{AR}(\beta_0)$ when $\Pi_W = 0$ are bounded by the limiting distributions of these statistics under a full rank value of Π_W. Theorem 5 states that the limiting distributions of $\text{KLM}(\beta_0)$, $\text{JKLM}(\beta_0)$, $\text{MQLR}(\beta_0)$ and $\text{AR}(\beta_0)$ are in general bounded by the limiting distributions under a full rank value of Π_W and that the limiting distributions under $\Pi_W = 0$ provide a lowerbound on these distributions.

Theorem 5. The (conditional) limiting distributions of $\text{AR}(\beta_0)$, $\text{KLM}(\beta_0)$, $\text{JKLM}(\beta_0)$ and $\text{MQLR}(\beta_0)$ under a full rank value of Π_W provide an upperbound on the (conditional) limiting distributions for general values of Π_W while the (conditional) limiting distributions under a zero value of Π_W provide a lowerbound.

Proof. see the Appendix. ■

Theorem 5 shows that the (conditional) limiting distributions of $\text{AR}(\beta_0)$, $\text{KLM}(\beta_0)$, $\text{JKLM}(\beta_0)$ and $\text{MQLR}(\beta_0)$ are boundedly similar. The critical values of $\text{AR}(\beta_0)$, $\text{KLM}(\beta_0)$, $\text{JKLM}(\beta_0)$ and $\text{MQLR}(\beta_0)$ that result from the (conditional) limiting distributions of $\text{AR}(\beta_0)$, $\text{KLM}(\beta_0)$, $\text{JKLM}(\beta_0)$ and $\text{MQLR}(\beta_0)$ in Theorem 2 can therefore be applied in general, so even for (almost) lower rank values of Π_W, since the size of these tests is at most equal to the size under a full rank value of Π_W. Usage of the critical values from Theorem 2 thus results in tests that are conservative.
Table 1: Observed size (in percentages) of the different statistics that test H_0 when $\Pi_w = 0$ using the 95% asymptotic significance level.

<table>
<thead>
<tr>
<th>#instr. \ stat.</th>
<th>KLM(β_0)</th>
<th>MQLR(β_0)</th>
<th>AR(β_0)</th>
<th>JKLM(β_0)</th>
<th>2SLS(β_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>-</td>
<td>0.24</td>
</tr>
<tr>
<td>5</td>
<td>0.88</td>
<td>0.44</td>
<td>0.28</td>
<td>0.36</td>
<td>1.3</td>
</tr>
<tr>
<td>20</td>
<td>2.3</td>
<td>0.56</td>
<td>0.12</td>
<td>0.08</td>
<td>3.0</td>
</tr>
<tr>
<td>50</td>
<td>3.2</td>
<td>0.56</td>
<td>0.04</td>
<td>0.04</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Table 1: Observed size (in percentages) of the different statistics that test H_0 when $\Pi_w = 0$ using the 95% asymptotic significance level.

4 Size and Power

We conduct a size and power comparison of the different statistics to analyze the influence of the quality of the identification of γ for tests on β. We therefore conduct a simulation experiment using (1) with $m_x = m_w = 1$, $\gamma = 1$, $T = 500$ and $\text{vec}(\varepsilon : V_X : V_W) \sim N(0, \Sigma \otimes I_T)$. The instruments Z are generated from a $N(0, I_k \otimes I_T)$ distribution. We compute the rejection frequency of testing the hypothesis $H_0: \beta = 0$ using the AR-statistic (3), KLM-statistic (4), JKLM-statistic (5), MQLR-statistic (7), a combination of the KLM and JKLM statistics and the two stage least squares (2SLS) t-statistic, to which we refer as 2SLS(β_0). The number of simulations that we conduct equals 2500.

We control for the identification of β and γ by specifying Π_X and Π_W in accordance with a prespecified value of the matrix generalisation of the concentration parameter, see e.g. Phillips (1983) and Rothenberg (1984). We therefore analyze the size and power of tests on β for different values of $\Theta = (Z'Z)^{-\frac{1}{2}}(\Pi_X : \Pi_W)\Omega_{XW}^{-\frac{1}{2}}$, with $\Omega_{XW} = \left(\begin{array}{cc} \Sigma_{XX} & \Sigma_{XW} \\ \Sigma_{WX} & \Sigma_{WW} \end{array} \right)$, whose quadratic form constitutes the matrix concentration parameter. We specify Θ such that only its first two rows have non-zero elements.

Observed size when γ is not identified. We first analyze the size of the different statistics for conducting tests on β when γ is completely unidentified so $\Pi_W = 0$. We therefore specify Σ and Θ such that Σ equals the identity matrix and $\Theta_{11} = 5$, $\Theta_{12} = \Theta_{21} = \Theta_{22} = 0$. Table 1 contains the observed size of the different statistics when we test H_0 at the 95% asymptotic (conditional) significance level that results from Theorem 2.

Table 1 confirms Figures 1, 2 and Theorem 4. It shows that KLM(β_0), JKLM(β_0), MQLR(β_0) and AR(β_0) are conservative tests when we use the critical values that result from applying the (conditional) limiting distributions from Theorem 2. Table 1 also confirms the convergence of the asymptotic distribution of KLM(β_0) when $\Pi_W = 0$ towards a χ^2 distribution when the number of instruments gets large as stated in Theorem 4 and shown in Figure 1. Since KLM(β_0) = MQLR(β_0) = AR(β_0) when $k = 2$, the size of these statistics coincides when $k = m = 2$ and the model is exactly identified such that JKLM(β_0) is not defined.

The size of the 2SLS t-statistic in Table 1 shows that the limiting distribution of the 2SLS t-statistic is conservative when $\Pi_W = 0$ and Σ equals the identity matrix. This result is specific for the identity covariance matrix case and, as we show later, does not apply to general specifications.
of the covariance matrix.

Panel 1: Power curves of AR(β_0) (dash-dotted), KLM(β_0) (dashed), JKLM(β_0) (points), MQLR(β_0) (solid), CJKLM(solid-plusses) and 2SLS(β_0) (dotted) for testing $H_0: \beta = 0$.

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{fig1a.png}
\includegraphics[width=0.45\textwidth]{fig1b.png}
\caption{Strongly identified β and γ: $\Theta_{11} = \Theta_{22} = 10$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{fig1c.png}
\includegraphics[width=0.45\textwidth]{fig1d.png}
\caption{Strongly identified β and weakly identified γ: $\Theta_{11} = 10$, $\Theta_{22} = 3$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{fig1e.png}
\includegraphics[width=0.45\textwidth]{fig1f.png}
\caption{Weakly identified β and strongly identified γ: $\Theta_{11} = 3$, $\Theta_{22} = 10$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.45\textwidth]{fig1g.png}
\includegraphics[width=0.45\textwidth]{fig1h.png}
\caption{Weakly identified β and γ: $\Theta_{11} = \Theta_{22} = 3$.}
\end{figure}

Power and size for varying levels of identification. We conduct a power comparison of the different statistics to analyze the influence of the identification of γ on tests for the value of β. Except for the specification of the covariance matrix Σ, we use the above specification of the model parameters. The covariance matrix Σ is specified such that $\sigma_{\varepsilon \varepsilon} = \sigma_{X \varepsilon} = \sigma_{W \varepsilon} = 1$, $\sigma_{X \varepsilon} = \sigma_{\varepsilon X} = 0.9$, $\sigma_{W \varepsilon} = \sigma_{\varepsilon W} = 0.8$ and $\sigma_{X W} = \sigma_{W X} = 0.6$ and the number of instruments equals 20, $k = 20$.

Since the KLM-statistic is proportional to a quadratic form of the derivative of the AR-statistic, it is equal to zero at (local) minima, maxima and saddle points of the AR statistic, i.e. where the FOC holds. This affects the power of the KLM statistic, see e.g. Kleibergen (2005). We therefore also compute the power of testing H_0 using a combination of the KLM and JKLM
Table 2: Size of the different statistics in percentages that test H_0 at the 95% significance level.

<table>
<thead>
<tr>
<th></th>
<th>KLM(β_0)</th>
<th>MQLR(β_0)</th>
<th>JKLM(β_0)</th>
<th>CJKLM(β_0)</th>
<th>AR(β_0)</th>
<th>2SLS(β_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>5.4</td>
<td>5.4</td>
<td>5.8</td>
<td>5.2</td>
<td>5.8</td>
<td>28</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>6.4</td>
<td>6.3</td>
<td>5.0</td>
<td>6.2</td>
<td>5.7</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>5.6</td>
<td>5.7</td>
<td>5.0</td>
<td>5.4</td>
<td>5.6</td>
<td>98</td>
</tr>
<tr>
<td>Fig. 1.4</td>
<td>6.7</td>
<td>4.4</td>
<td>1.8</td>
<td>5.8</td>
<td>2.3</td>
<td>97</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>5.1</td>
<td>4.8</td>
<td>2.0</td>
<td>2.8</td>
<td>5.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>3.1</td>
<td>1.9</td>
<td>4.7</td>
<td>4.5</td>
<td>1.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>4.0</td>
<td>3.5</td>
<td>4.2</td>
<td>3.3</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>Fig. 2.4</td>
<td>4.8</td>
<td>4.7</td>
<td>4.7</td>
<td>3.9</td>
<td>5.0</td>
<td>3.7</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>4.2</td>
<td>4.0</td>
<td>4.4</td>
<td>3.5</td>
<td>4.8</td>
<td>4.4</td>
</tr>
<tr>
<td>Fig. 2.6</td>
<td>4.4</td>
<td>5.0</td>
<td>4.9</td>
<td>4.0</td>
<td>5.0</td>
<td>4.3</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>6.2</td>
<td>6.2</td>
<td>5.3</td>
<td>6.2</td>
<td>5.8</td>
<td>88</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>5.7</td>
<td>5.6</td>
<td>5.1</td>
<td>6.7</td>
<td>5.8</td>
<td>99</td>
</tr>
</tbody>
</table>

statistics where we apply a 96% significance level for the KLM statistic and a 99% significance level for the JKLM statistic so the size of the combined test procedure equals 5% since the KLM and JKLM statistics converge to independent random variables under H_0. The combined KLM, JKLM test procedure is indicated by CJKLM.

Panel 1 shows the power curves for different values of the matrix concentration parameter Θ with $\Theta_{12} = \Theta_{21} = 0$ and Table 2 shows the observed sizes when we test at the 95% significance level. The value of Θ in Figure 1.1 is such that both β and γ are well identified. Hence all statistics have nice shaped power curves and the AR statistic is the least powerful statistic because of the larger degrees of freedom parameter of its limiting distribution. The power of JKLM(β_0) is rather low since it tests the hypothesis of overidentification which is satisfied for all the different values of β. Table 2 shows that the 2SLS-statistic already has considerable size distortion in this well identified setting.

The value of Θ in Figure 1.2 is such that γ is weakly identified and β is well identified. Figure 1.2 shows that the weak identification of γ has large consequences for especially the power of tests on β. The MQLR statistic is the most powerful statistic in Figure 1.2. As shown in Table 2, except for the 2SLS t-statistic, the size of the tests remains almost unaltered by the weak identification of γ but the power is strongly affected.

Figure 1.3 has a value of Θ that makes β weakly identified and γ strongly identified. Again the MQLR statistic is the most powerful statistic but the power of the KLM statistic is comparable. Table 3 shows that the size distortions of all statistics, except the 2SLS t-statistic, is rather small. The size of the 2SLS t-statistic is completely spurious.

The specification of Θ is such that all parameters are weakly identified in Figure 1.4. The power of all statistics is therefore rather low and none of the statistics clearly dominates the others. Because of the low degree of identification, Table 2 shows that the AR statistic is rather undersized which corresponds with Table 1. The size of the 2SLS t-statistic in Table 2 is again completely spurious.

The specification of the covariance matrix Σ in Panel 1 is such that there are spill-overs between the identification of β and γ that results from Θ. It is therefore difficult to determine
the influence of the weak identification of γ on the size and power of tests on β. To analyze the
Panel 2: Power curves of AR(β_0) (dashed-dotted), KLM(β_0) (dashed), MQLR(β_0) (solid),
JKLM(β_0) (points), CJKLM(solid with plusses) and 2SLS(β_0) (dotted) for testing $H_0: \beta = 0$.

Figure 2.1: $\Theta_{11} = 10, \Theta_{22} = 3$.

Figure 2.2: $\Theta_{11} = 3, \Theta_{22} = 10$.

Figure 2.3: $\Theta_{11} = 10, \Theta_{22} = 5$.

Figure 2.4: $\Theta_{11} = 5, \Theta_{22} = 10$.

Figure 2.5: $\Theta_{11} = 10, \Theta_{22} = 7$.

Figure 2.6: $\Theta_{11} = 7, \Theta_{22} = 10$. 12
influence of the weak identification of γ on the power of tests on β in an isolated manner, we equate the covariance matrix Σ to the identity matrix. Table 2 and Panel 2 show the resulting size and power for tests on β.

Table 2 shows that $\text{KLM}(\beta_0)$, $\text{JKLM}(\beta_0)$, $C\text{JKLM}(\beta_0)$, $\text{MQLR}(\beta_0)$ and $\text{AR}(\beta_0)$ are undersized when γ is weakly identified which is in accordance with Table 1 and Theorem 5. The values of Θ in Figure 1.2 and 2.2 are identical but $\text{KLM}(\beta_0)$, $\text{JKLM}(\beta_0)$, $C\text{JKLM}(\beta_0)$, $\text{MQLR}(\beta_0)$ and $\text{AR}(\beta_0)$ are only undersized in Figure 2.2 and not in Figure 1.2. This results because of the different values of Σ that are used for Figures 1.2 and 2.2 such that Π_W is small in Figure 2.2 but sizeable in Figure 1.2.

The power curves in Panel 2 show that $2\text{SLS}(\beta_0)$ is the most powerful statistic for testing H_0. Because of the absence of correlation between the different endogenous variables, $2\text{SLS}(\beta_0)$ is size correct. The previous Figures, however, show that $2\text{SLS}(\beta_0)$ is often severely size-distorted in cases when any correlation is present which makes its results difficult to trust. Among the statistics that remain size-correct when identification is weak, $\text{MQLR}(\beta_0)$ is the most powerful statistic for testing H_0. The power of $\text{MQLR}(\beta_0)$ exceeds that of $\text{AR}(\beta_0)$ for values of β that are relatively close to zero but is remarkably similar to that of $\text{AR}(\beta_0)$ for more distant values of β. This argument holds in a reversed manner with respect to $\text{KLM}(\beta_0)$. The behavior of the power curve of $\text{MQLR}(\beta_0)$ thus resembles that of $\text{KLM}(\beta_0)$ close to zero and that of $\text{AR}(\beta_0)$ for more distant values of β.

The level of identification of β and γ is reversed in the two columns of Panel 2. In the left-handside column, the identification of γ is worse than of β and vice versa in the right-handside column. Table 2 therefore shows that the statistics are somewhat undersized in the left-handside column while they are size correct in the right-handside column. Besides the size issue, the power curves in the left and right-handside columns of Panel 2 are remarkably similar for distant values of β. They only differ closely around the hypothesis of interest. This indicates a systematic behavior of the statistics for distant values of β which is stated in Theorem 6.

Theorem 6. When $m_X = 1$, Assumption 1 holds and for tests of $H_0 : \beta = \beta_0$ with a value of β_0 that differs substantially from the true value:

1. The AR-statistic $\text{AR}(\beta_0)$ is equal to the smallest eigenvalue of $\hat{\Omega}_{XW}^{1/2}(X : W)^\prime P_{Z}(X : W)\hat{\Omega}_{XW}^{-1/2}$ which is a statistic that tests for a reduced rank value of $(\Pi_X : \Pi_W)$, $\Omega_{XW} = \frac{1}{T-k}(X : W)^\prime P_{Z}(X : W)$.

2. The eigenvalues of $\hat{\Sigma}_{\text{MQLR}}(\beta_0)$ that are used to obtain $\text{rk}(\beta_0)$ correspond for large numbers of observations with the eigenvalues of

$$\left[\begin{array}{c}
\psi_{\varepsilon,(X : w)} : (\Theta_{X : w} + \Psi_{X : w}) V_1
\end{array}\right]^{\prime} \left[\begin{array}{c}
\psi_{\varepsilon,(X : w)} : (\Theta_{X : w} + \Psi_{X : w}) V_1
\end{array}\right],$$

where $(Z'Z)^{-1/2}Z' \left[\begin{array}{c}
\varepsilon - (X : W)\Omega_{XW}^{-1/2} \left(\frac{\sigma_{Ye}}{\sigma_{W\varepsilon}}\right) \sigma_{Ye,(X : w)}^{-1/2} + \psi_{\varepsilon,(X : w)} = Q^{-1/2}[\psi_{Z\varepsilon} - \psi_{(X \cdot Z)W}] \Omega_{XW}^{-1/2} \left(\frac{\sigma_{Xe}}{\sigma_{W\varepsilon}}\right) \sigma_{Ye,(X : w)}^{-1/2} (Z'Z)^{-1/2} (\Pi_X : \Pi_W) \Omega_{XW}^{1/2} \rightarrow \Theta_{X : w} \text{ and } (Z'Z)^{-1/2}Z'(V_X : V_W)\Omega_{XW}^{1/2} \rightarrow p$.

13
\[\Psi(X : W) = Q^{-\frac{1}{2}}\varphi(ZX : Zw)\Omega_{XW}^{-\frac{1}{2}}, \] and \(V_1 \) is a \(m \times m_w \) matrix that contains the eigenvectors of the largest \(m_w \) eigenvalues of \(\Omega_{XW}^{-\frac{1}{2}}P_Z(X : W)\Omega_{XW}^{-\frac{1}{2}} \).

3. For large numbers of observations, the \(\chi^2(k - m_w) \) distribution provides an upperbound on the distribution of \(\text{rk}(\beta_0) \).

Proof. see the Appendix. ■

Theorem 6 shows that the power of the AR statistic equals the rejection frequency of a rank test when the value of \(\beta \) gets large. The rank test to which the AR statistic converges is identical for all structural parameters. Hence, the power of the AR statistic for discriminating distant values of any structural parameter is identical. This explains the equality of the rejection frequencies of the AR statistic for distant values of \(\beta \) in the left and right-handside figures of Panel 3.

The MQLR statistic consists of AR(\(\beta_0 \)), KLM(\(\beta_0 \)) and \(\text{rk}(\beta_0) \). Theorem 6 shows that \(\text{rk}(\beta_0) \) is bounded by a \(\chi^2(k - m_w) \) distributed random variable for values of \(\beta_0 \) that are distant from the true value. This implies a relatively small value of \(\text{rk}(\beta_0) \) so MQLR(\(\beta_0 \)) behaves similar to AR(\(\beta_0 \)) for distant values of \(\beta_0 \). Since both the value where \(\text{rk}(\beta_0) \) and AR(\(\beta_0 \)) converge to are the same for all structural parameters, the power of MQLR(\(\beta_0 \)) is the same for all structural parameters at distant values and similar to that of AR(\(\beta_0 \)). This corresponds with the Figures in Panel 2.

Panel 3: Power curves of AR(\(\beta_0 \)) (dashed-dotted), KLM(\(\beta_0 \)) (dashed), MQLR(\(\beta_0 \)) (solid), JKL(\(\beta_0 \)) (points), CJKL(\(\beta_0 \)) (solid with plusses) and 2SLS(\(\beta_0 \)) (dotted) for testing \(H_0: \beta = 0 \).

Figure 2.1: Strongly identified \(\beta \) and weakly identified \(\gamma: \Theta_{11} = 10, \Theta_{22} = 5, \Theta_{12} = 5, \Theta_{21} = 5, \) Eigenvalues \(\Theta'\Theta: 3.65, 171. \)

Figure 2.2: Weakly identified \(\beta \) and strongly identified \(\gamma: \Theta_{11} = 5, \Theta_{22} = 10, \Theta_{12} = 5, \Theta_{21} = 5, \) Eigenvalues \(\Theta'\Theta: 3.65, 171. \)
Panel 4: One minus p-value plots of AR (dash-dotted), KLM (dashed), MQLR (solid) JKLM (points) and 2SLS (dotted) for testing β and γ, $k = 20$, $\Theta_{21} = \Theta_{12} = 0$.

Figure 4.1: $\Theta_{11} = 1$, $\Theta_{22} = 10$.

Figure 4.2: $\Theta_{11} = 1$, $\Theta_{22} = 10$.

Figure 4.3: $\Theta_{11} = 3$, $\Theta_{22} = 10$.

Figure 4.4: $\Theta_{11} = 3$, $\Theta_{22} = 10$.

Figure 4.5: $\Theta_{11} = 5$, $\Theta_{22} = 10$.

Figure 4.6: $\Theta_{11} = 5$, $\Theta_{22} = 10$.

15
The identification of \(\beta \) and \(\gamma \) is governed by the matrix concentration parameter \(\Theta \). Besides having values that especially identify \(\beta \) and/or \(\gamma \), the matrix concentration parameter can also be such that linear combinations of \(\beta \) and \(\gamma \) are strong or weakly identified. To analyze the influence of the strong/weak identification of combinations of \(\beta \) and \(\gamma \) on tests for \(\beta \), we specified the value of \(\Theta \) such that it is close to a reduced rank one. We used the previous non-diagonal specification of \(\Sigma \) to further disperse the identification of combinations of \(\beta \) and \(\gamma \).

Table 2 and Panel 3 shows the size and power of tests for \(\beta \) when the value of \(\Theta \) is close to a reduced rank one which is revealed by the eigenvalues of \(\Theta' \Theta \). Except for the 2SLS \(t \)-statistic, the size of the statistics is close to 5%. The weak identification of a linear combination of \(\gamma \) and \(\beta \) is such that the power of all statistics is rather low. Figures 3.1 and 3.2 show that the MQLR(\(\beta_0 \)) is the most powerful statistic.

5 Confidence Sets

Theorem 6 shows that tests on different parameters become identical when the parameters of interest become large. Its influence on the power curves in Panels 1-3 is clearly visible and it has similar consequences for the confidence sets of the structural parameters. We therefore use the previously discussed data generating process to compute some (one minus the) \(p \)-value plots which allow us to obtain the confidence set of a specific parameter. The \(p \)-value plots are constructed by inverting the value of the statistic that tests \(H_0 : \beta = \beta_0 \) for a range of values of \(\beta_0 \) using the (conditional) limiting distribution that results from Theorem 2.

Panel 4 contains the one minus \(p \)-value plots for a data generating process that is identical to that of Panel 2. The Figures in Panel 4 are such that the Figures on the left-handside contain the \(p \)-value plot of tests on \(\gamma \) while the Figures on the right-handside contain \(p \)-value plots of tests on \(\beta \). The data set used to compute the \(p \)-value plot of \(\beta \) and \(\gamma \) is the same and only differs over the rows of Panel 2.

Panel 4 shows that the behavior of the tests on \(\beta \) and \(\gamma \) differs around the true value of \(\beta \) (0) and \(\gamma \) (1) but becomes identical for distant values. This is exactly in line with Theorem 6. It shows that even when \(\beta \) is well identified, confidence sets of \(\beta \) are unbounded when \(\gamma \) is weakly identified.

The odd behavior of the \(p \)-value plot of KLM(\(\beta_0 \)) results since it is equal to zero when the FOC holds. Figures 4.2, 4.4 and 4.6 therefore show that KLM(\(\beta_0 \)) is equal to zero when AR(\(\beta_0 \)) is maximal. We note that the \(p \)-value plots of KLM(\(\beta_0 \)), MQLR(\(\beta_0 \)) and 2SLS(\(\beta_0 \)) are equal to zero at resp. the MLE and the 2SLS estimator but this is not visible in all of the Figures in Panel 4 because of the grid with values of \(\beta_0 \).

The data generating process that is used to construct Panel 5 is identical to that of Panel 1. Because of the presence of correlation, a linear combination of \(\beta \) and \(\gamma \) is weakly identified in the Figures in the top two rows of Panel 5 such that the \(p \)-value plots do not converge to one. The resulting 95% confidence sets of \(\beta \) are therefore unbounded for these Figures. For distant values of \(\beta \) and \(\gamma \), Panel 5 shows again that the statistics that conduct tests on \(\beta \) or \(\gamma \) become identical.

Panels 4 and 5 show that the distinguishing features of the subsets statistics shown for the power curves, \(i.e. \) that they do not converge to one when the parameters of interest gets large and statistics that test hypotheses on different parameter become identical for distant values of
the parameter of interest, appropriately extend to confidence sets.

Panel 5: One minus p-value plots of AR (dash-dotted), KLM (dashed), MQLR (solid) JKLM (points) and 2SLS (dotted) for testing β and γ, $k = 20$, $\Theta_{21} = \Theta_{12} = 0$.

Figure 5.1: $\Theta_{11} = 1$, $\Theta_{22} = 10$.

Figure 5.2: $\Theta_{11} = 1$, $\Theta_{22} = 10$.

Figure 5.3: $\Theta_{11} = 3$, $\Theta_{22} = 10$.

Figure 5.3: $\Theta_{11} = 3$, $\Theta_{22} = 10$.

Figure 5.5: $\Theta_{11} = 5$, $\Theta_{22} = 10$.

Figure 5.6: $\Theta_{11} = 5$, $\Theta_{22} = 10$.

Figure 5.5: $\Theta_{11} = 5$, $\Theta_{22} = 10$.

Figure 5.6: $\Theta_{11} = 5$, $\Theta_{22} = 10$.

17
6 Tests on the parameters of exogenous variables

The subset statistics extend to tests on the parameters of the exogenous variables that are included in the structural equation. The expressions of $KLM(\beta_0)$, $JKLM(\beta_0)$, $AR(\beta_0)$ and $MCLR(\beta_0)$ remain almost unaltered when X is exogenous and is spanned by the matrix of instruments. The linear IV regression model then reads

\[
y = X\beta + W\gamma + \varepsilon
\]

\[
W = \Pi_{WX} + \Pi_{WZ} + V_W,
\]

where $(X : Z)$ is the $T \times (k + m_x)$ dimensional matrix of instruments and Π_{WX} and Π_{WZ} are $m_x \times m_w$ and $k \times m_w$ matrices of parameters. All other parameters are identical to those defined for (1). We are interested in testing $H_0 : \beta = \beta_0$ and we adapt the expressions of the statistics from Definition 1 to accommodate tests of this hypothesis.

Definition 2: 1. The AR statistic (times k) to test $H_0 : \beta = \beta_0$ reads

\[
AR(\beta_0) = \frac{1}{\hat{\sigma}_{ee}(\beta_0)}(y - X\beta_0 - W\hat{\gamma})'P_{M2\hat{h}W(\beta_0)}(y - X\beta_0 - W\hat{\gamma}).
\]

with $\hat{Z} = (X : Z)$, $\hat{\Pi}_{W}(\beta_0) = (\hat{Z}'\hat{Z})^{-1}\hat{Z}'[W - (y - X\beta_0 - W\hat{\gamma})\hat{\sigma}_{ex}(\beta_0)]$ and $\hat{\sigma}_{ee}(\beta_0) = \frac{1}{T-k}(y - X\beta_0 - W\hat{\gamma})'M_2W$ and $\hat{\gamma}$ the MLE of γ given that $\beta = \beta_0$.

2. The KLM statistic to test H_0 reads,

\[
KLM(\beta_0) = \frac{1}{\hat{\sigma}_{ee}(\beta_0)}(y - X\beta_0 - W\hat{\gamma})'P_{M2\hat{h}W(\beta_0)}X(y - X\beta_0 - W\hat{\gamma}),
\]

since $\hat{\Pi}_X(\beta_0) = (\hat{Z}'\hat{Z})^{-1}\hat{Z}'[X - (y - X\beta_0 - W\hat{\gamma})\hat{\sigma}_{ex}(\beta_0)] = (\hat{Z}'\hat{Z})^{-1}\hat{Z}'X = (I_{m_x})_0$ as $\hat{\sigma}_{ex}(\beta_0) = \frac{1}{T-k}(y - X\beta_0 - W\hat{\gamma})'M_2X = 0$.

3. A J-statistic that tests misspecification under H_0 reads,

\[
JKL(\beta_0) = AR(\beta_0) - KLM(\beta_0).
\]

4. A quasi likelihood ratio statistic based on Moreira’s (2003) likelihood ratio statistic to test H_0 reads,

\[
MQLR(\beta_0) = \frac{1}{2} \left[AR(\beta_0) - \text{rk}(\beta_0) + \sqrt{(AR(\beta_0) + \text{rk}(\beta_0))^2 - 4(AR(\beta_0) - KLM(\beta_0))\text{rk}(\beta_0)} \right],
\]

where $\text{rk}(\beta_0)$ is the smallest eigenvalue of

\[
\hat{\Sigma}_{MQLR} = \hat{\Sigma}_{Wz}^{-\frac{1}{2}}W - (y - X\beta_0 - Z\hat{\gamma})\hat{\sigma}_{Wz}(\beta_0)\hat{\Sigma}_{Wz}^{-\frac{1}{2}}P_{Mz}\left[W - (y - X\beta_0 - Z\hat{\gamma})\hat{\sigma}_{Wz}(\beta_0) \right]^{\frac{1}{2}}\hat{\Sigma}_{Wz}^{-\frac{1}{2}},
\]

with $\hat{\sigma}_{Wz}(\beta_0) = \frac{1}{T-k}(y - X\beta_0 - W\hat{\gamma})'M_2W$, $\hat{\Sigma}_{Wz} = \frac{1}{T-k}W'M_2W$, $\hat{\Sigma}_{Wz} = \hat{\Sigma}_{Wz} - \frac{\hat{\sigma}_{Wz}(\beta_0)'\hat{\sigma}_{Wz}(\beta_0)}{\hat{\sigma}_{Wz}(\beta_0)}$.

18
Except for MQLR(β_0), all statistics in Definition 2 are direct extensions of those in Definition 1 when we note that $\Pi_X(\beta_0) = (I_{m_x})$, when X belongs to the set of instruments. The alteration of the expression of $\hat{\Sigma_{\text{MQLR}}}$ for MLR(β_0) partly results from $M\tilde{Z}X = 0$ and since only the instruments Z identify γ.

Under a full rank value of Π_{WZ}, the (conditional) limiting distributions of the exogenous variable statistics in Definition 2 are identical to those in Theorem 2 when “k” is equal to “$k + m_x$”. Alongside Theorem 2, Theorems 3-5 apply to the statistics from Theorem 2 as well.

Theorem 7. The (conditional) limiting distributions of $AR(\beta_0), KLM(\beta_0), JKL(\beta_0)$ and $MQLR(\beta_0)$ in Definition 2 are bounded from above by the limiting distribution under a full rank value of Π_{WZ} and from below by the limiting distribution under a zero value of Π_{WZ}.

Proof. results from Theorem 5. ■

Panel 6: Power curves of $AR(\beta_0)$ (dashed-dotted), $KLM(\beta_0)$ (dashed), $MQLR(\beta_0)$ (solid), $JKLM(\beta_0)$ (points), $CJKLM(\text{solid with plusses})$ and $2SLS(\beta_0)$ (dotted) for testing $H_0 : \beta = 0$.

Figure 6.1: $\Theta_{WZ,11} = 3$

Figure 6.2: $\Theta_{WZ,11} = 5$

Figure 6.3: $\Theta_{WZ,11} = 7$
6.1 Size and power properties

To illustrate the behavior of the exogenous variable statistics from Definition 2, we analyze their size and power properties. We therefore conduct a simulation experiment using (16) with \(T = 500, \ m_w = m_x = 1 \) and \(k = 19 \) so the total number of instruments equals \(k + m_x = 20 \). All instruments are independently generated from \(N(0, I_T) \) distributions and \(\text{vec}(\varepsilon : V_W) \) is generated from a \(N(0, \Sigma \otimes I_T) \) distribution. The number of simulations equals 2500.

The data generating process for the power curves in Panel 6 has \(\Pi_{WX} = 0, \gamma = 1 \) and \(\Sigma = I_{m_w+1} \). The specification of \(\Theta_{WZ} = (Z'M_X Z)^{-\frac{1}{2}} \Pi_{WZ} \Sigma_{W}^{-\frac{1}{2}} \) in Panel 6 is such that its first element \(\Theta_{WZ,11} \) is unequal to zero and all remaining elements of \(\Theta_{WZ} \) are equal to zero. Table 3 shows the observed size of the different statistics when we test at the 95% significance level.

The parameters of the data generating process used for Panel 6 are specified such that \(\beta \) is not partly identified by the parameters in the equation of \(W \) since \(\Pi_{XW} = 0 \) and \(\sigma_{W} = 0 \). Panel 6 is thus comparable to Panel 2 whose data generating process is specified in a similar manner. The resulting power curves and observed sizes therefore closely resemble those in Panel 2 and Table 2. Table 3 shows that the statistics are conservative when the identification is rather low, which is in accordance with Theorem 7.

Panel 6 shows that the rejection frequencies converge to a constant unequal to one for distant values of \(\beta \) when the identification of \(\gamma \) is rather weak. This indicates that Theorem 6 extends to tests on subsets of the parameters.

Theorem 8. When \(m_X = 1 \), Assumption 1 holds, \(X \) is exogenous and for tests of \(H_0 : \beta = \beta_0 \) with a value of \(\beta_0 \) that differs substantially from the true value:

1. The AR-statistic \(AR(\beta_0) \) is equal to the smallest eigenvalue of \(\tilde{\Sigma}_W W' P_{M_X Z} W \tilde{\Sigma}_W^{-\frac{1}{2}} \) which is a statistic that tests for a reduced rank value of \(\Pi_{WZ}, \tilde{\Sigma}_WWW = \frac{1}{T-k} W' P_Z W \).

2. The eigenvalues of \(\tilde{\Sigma}_{MQLR}(\beta_0) \) that are used to obtain \(\text{rk}(\beta_0) \) correspond for large numbers of observations with the eigenvalues of

\[
\begin{bmatrix}
\psi_{\varepsilon,W} : (\Theta_{WZ} + \Psi_{W}) V_1 \\
\psi_{\varepsilon,W} : (\Theta_{WZ} + \Psi_{W}) V_1
\end{bmatrix}^{T} \begin{bmatrix}
\psi_{\varepsilon,W} : (\Theta_{WZ} + \Psi_{W}) V_1 \\
\psi_{\varepsilon,W} : (\Theta_{WZ} + \Psi_{W}) V_1
\end{bmatrix},
\]

where \((Z'M_X Z)^{-\frac{1}{2}} Z'M_X [\xi - W \Sigma_{WW}^{-1} \sigma_{W\varepsilon}] \sigma_{WW}^{-\frac{1}{2}} \to d \psi_{\varepsilon,W}, (Z'M_X Z)^{-\frac{1}{2}} \Pi_{WZ} \Sigma_{WW}^{-\frac{1}{2}} \to \Theta_{ZW} \) and \((Z'M_X Z)^{-\frac{1}{2}} Z'M_X V_{W} \Sigma_{WW}^{-\frac{1}{2}} \to \Psi_{W} \), and \(V_1 \) is a \(m \times m_w \) matrix that contains the eigenvectors of the largest \(m_w \) eigenvalues of \(\Sigma_{WW}^{-\frac{1}{2}} W' P_{M_X Z} W \Sigma_{WW}^{-\frac{1}{2}}, \sigma_{WW} = \sigma_{WW} - \sigma_{W\varepsilon} \Sigma_{WW}^{-\frac{1}{2}} \sigma_{W\varepsilon} \).

3. For large numbers of observations, the \(\chi^2(k - m_w) \) distribution provides a upperbound on the distribution of \(\text{rk}(\beta_0) \).

Proof. follows from the proof of Theorem 6. ■
Table 3: Size of the different statistics in percentages that test H_0 at the 95% significance level.

<table>
<thead>
<tr>
<th></th>
<th>KLM(β_0)</th>
<th>MQLR(β_0)</th>
<th>JKLM(β_0)</th>
<th>CJKLM(β_0)</th>
<th>AR(β_0)</th>
<th>2SLS(β_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 6.1</td>
<td>3.7</td>
<td>2.4</td>
<td>1.5</td>
<td>3.1</td>
<td>1.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Fig. 6.2</td>
<td>4.3</td>
<td>4.0</td>
<td>4.0</td>
<td>4.1</td>
<td>4.1</td>
<td>4.7</td>
</tr>
<tr>
<td>Fig. 6.3</td>
<td>4.2</td>
<td>4.3</td>
<td>5.6</td>
<td>4.4</td>
<td>5.9</td>
<td>4.7</td>
</tr>
<tr>
<td>Fig. 7.1</td>
<td>5.1</td>
<td>4.5</td>
<td>4.6</td>
<td>4.1</td>
<td>4.4</td>
<td>13.0</td>
</tr>
<tr>
<td>Fig. 7.2</td>
<td>4.6</td>
<td>5.1</td>
<td>5.9</td>
<td>4.2</td>
<td>6.3</td>
<td>7.8</td>
</tr>
<tr>
<td>Fig. 7.3</td>
<td>4.3</td>
<td>4.4</td>
<td>6.0</td>
<td>4.5</td>
<td>6.3</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Panel 7: Power curves of $\text{AR}(\beta_0)$ (dashed-dotted), $\text{KLM}(\beta_0)$ (dashed), $\text{MQLR}(\beta_0)$ (solid), $\text{JKLM}(\beta_0)$ (points), $\text{CJKLM}(\beta_0)$ (solid with plusses) and $\text{2SLS}(\beta_0)$ (dotted) for testing $H_0 : \beta = 0$.

Theorem 8 explains the convergence of the rejection frequencies in Panel 6 and implies that the behavior of $\text{MQLR}(\beta_0)$ is similar to that of $\text{AR}(\beta_0)$ for distant values of β. Identical to the
previous Panels, SLS(\(\beta_0\)) is the most powerful statistic in Panel 6 while Table 3 shows that it also has little size distortion. This results because \(\sigma_{\varepsilon W} = 0\). For non-zero values of \(\sigma_{\varepsilon W}\), the size-distortion is often substantial.

The parameter settings for Panel 7 are such that \(\beta\) is partly identified by the parameters in the equation of \(W\) since \(\Pi_{XW} = 1\) and \(\sigma_{\varepsilon W} = 0.8\). All remaining parameters are identical to those in Panel 6. Because of the partly identification, Table 3 shows that the statistics are no longer conservative when \(\Theta_{WZ,11}\) is small. Because of the non-zero value of \(\sigma_{\varepsilon W}\), 2SLS(\(\beta_0\)) is now severely size distorted when \(\Theta_{WZ,11}\) is small.

Although the small value of \(\Theta_{WZ,11}\) does not affect the size of the tests from Definition 2, it still strongly influences the power. Panel 7 shows that the power curves do not converge to one when \(\Theta_{WZ,11}\) is small which is in accordance with Theorem 8.

7 Conclusions

The limiting distributions of subset instrumental variable statistics under a high level identification assumption on the remaining structural parameters provide upperbounds on the limiting distribution of these statistics in general. Lower bounds result from the limiting distributions under complete identification failure of the remaining parameters. For distant values of the parameter of interest, the subset instrumental variable statistics correspond with identification statistics. Even if the parameter of interest is well-identified, the power of tests on it do therefore not necessarily converge to one when the hypothesized value of interest gets large.
Appendix

Proof of Theorem 1. The likelihood ratio statistic to test H_0 reads

$$LR(\beta_0) = AR(\beta_0) - \min_{\beta} AR(\beta).$$

The value of $AR(\beta)$ is obtained by minimizing over γ so $\min_{\beta} AR(\beta)$ can also be specified as

$$\min_{\beta, \gamma} AR(\beta) = \min_{\beta, \gamma} \frac{1}{y - X\beta - W\gamma} \left(y - X\beta - W\gamma \right)' P_Z \left(y - X\beta - W\gamma \right)$$

which results from the characteristic polynomial

$$\left| \lambda \hat{\Omega} - (y : X : W)' P_X (y : X : W) \right| = 0,$$

where $\hat{\Omega} = \frac{1}{T-k} (y : X : W)' M_X (y : X : W)$. The solutions to the characteristic polynomial do not alter when we pre- and post-multiply by a triangular matrix with ones on the diagonal:

$$\left| \left(\begin{array}{ccc} 1 & 0 & 0 \\ -\beta_0 & I_{m_x} & 0 \\ -\gamma & 0 & I_{m_w} \end{array} \right)' \left(\begin{array}{ccc} 1 & 0 & 0 \\ -\beta_0 & I_{m_x} & 0 \\ -\gamma & 0 & I_{m_w} \end{array} \right) \right| = 0 \iff \lambda \hat{\Sigma}(\beta_0) - (y : X : W)' P_X (y : X : W) = 0,$$

where $\hat{\Sigma}(\beta_0) = \left(\begin{array}{ccc} 1 & 0 & 0 \\ -\beta_0 & I_{m_x} & 0 \\ -\gamma & 0 & I_{m_w} \end{array} \right)' \hat{\Omega} \left(\begin{array}{ccc} 1 & 0 & 0 \\ -\beta_0 & I_{m_x} & 0 \\ -\gamma & 0 & I_{m_w} \end{array} \right) = \left(\begin{array}{c} \hat{\sigma}_{\varepsilon\varepsilon}(\beta_0) \\ \hat{\sigma}_{(X:W)e}(\beta_0) \\ \hat{\Sigma}_{(X:W)(X:W)}(\beta_0) \end{array} \right).$

We decompose $\hat{\Sigma}(\beta_0)^{-1}$ as

$$\hat{\Sigma}(\beta_0)^{-1} = \hat{\Sigma}(\beta_0)^{-\frac{1}{2}} \hat{\Sigma}(\beta_0)^{-\frac{1}{2}},$$

$$\hat{\Sigma}(\beta_0)^{-\frac{1}{2}} = \left(\begin{array}{ccc} \hat{\sigma}_{\varepsilon\varepsilon}(\beta_0)^{-\frac{1}{2}} & -\hat{\sigma}_{\varepsilon(X:W)}(\beta_0)^{-1} \hat{\sigma}_{\varepsilon(X:W)}(\beta_0) \hat{\Sigma}_{(X:W)(X:W)}^{-\frac{1}{2}} \\ 0 & \hat{\Sigma}_{(X:W)(X:W)}^{-\frac{1}{2}} \end{array} \right),$$

such that $\hat{\Sigma}(\beta_0)^{-\frac{1}{2}} \hat{\Sigma}(\beta_0)^{-\frac{1}{2}} = I_{k(m+1)}$ and we can specify the characteristic polynomial as

$$\left| \lambda I_{m+1} - \hat{\Sigma}(\beta_0)^{-\frac{1}{2}} (y : X : W)' P_X (y : X : W) \hat{\Sigma}(\beta_0)^{-\frac{1}{2}} \right| = 0 \iff \left[\left(\begin{array}{ccc} (Z'Z)^{-\frac{1}{2}} & 0 \\ 0 & \sqrt{\hat{\sigma}_{\varepsilon\varepsilon}(\beta_0)} \end{array} \right) : \left((X : W) - (y - X\beta_0 - Z\gamma) \hat{\sigma}_{\varepsilon(X:W)}(\beta_0) \hat{\Sigma}_{(X:W)(X:W)}^{-\frac{1}{2}} \right) \right] = 0.$$

When we conduct a singular value decomposition, see e.g. Golub and van Loan (1989),

$$(Z'Z)^{-\frac{1}{2}} \left[(X W) - (y - X\beta_0 - Z\gamma) \hat{\sigma}_{\varepsilon(X:W)}(\beta_0) \hat{\Sigma}_{(X:W)(X:W)}^{-\frac{1}{2}} \right] = USV',$$

23
where $\mathcal{U} : k \times k$, $\mathcal{U}'\mathcal{U} = I_k$, $\mathcal{V} : m \times m$, $\mathcal{V}'\mathcal{V} = I_m$ and S is a diagonal $k \times m$ dimensional matrix with the singular values in decreasing order on the main diagonal, we can specify the characteristic polynomial as, see Kleibergen (2005b),

$$
\begin{align*}
|\lambda_{m+1} - \left(\eta : \mathcal{U}\mathcal{S}\mathcal{V}' \right)' \left(\eta : \mathcal{U}\mathcal{S}\mathcal{V}' \right)| &= 0 \Leftrightarrow \\
|\lambda_{m+1} - \left(\eta' \eta \ | \mathcal{V}' \mathcal{S}' \mathcal{U}' \mathcal{V} \right) | &= 0 \Leftrightarrow \\
|\lambda_{m+1} - \left(\varphi' \varphi \ | \mathcal{S}' \mathcal{S} \right) | &= 0,
\end{align*}
$$

with $\eta = (Z'Z)^{-\frac{1}{2}}Z'(y-X\hat{\beta}_0-Z\hat{\gamma})\sqrt{\sigma_{x\epsilon(\beta_0,\gamma)}}$, $\varphi = \mathcal{U}\eta$. This expression shows that the roots of the characteristic polynomial only depend on the eigenvalues of

$$
\sum_{(X : W)(X : W),\epsilon} \left[(X : W) - (y - X\beta_0 - Z\gamma)\frac{\sigma_{x\epsilon(X : W)(\beta_0,\gamma)}}{\sigma_{x\epsilon(\beta_0,\gamma)}}\right]' P_{Z} \\
\left[(X : W) - (y - X\beta_0 - Z\gamma)\frac{\sigma_{x\epsilon(X : W)(\beta_0,\gamma)}}{\sigma_{x\epsilon(\beta_0,\gamma)}}\right] \sum_{(X : W)(X : W),\epsilon} \frac{1}{\gamma} \left[\varphi' \varphi + s_{mm} - \sqrt{(\varphi' \varphi + s_{mm})^2 - 4\varphi'_2 \varphi_2 s_{mm}}\right],
$$

since $\mathcal{S}'\mathcal{S}$ is a diagonal matrix that only contains the eigenvalues. Although the roots of the characteristic polynomial have no analytical expression when m exceeds one, Kleibergen (2005b) shows that they are always larger than or equal to

$$
\frac{1}{2} \left[\varphi' \varphi + s_{mm} - \sqrt{(\varphi' \varphi + s_{mm})^2 - 4\varphi'_2 \varphi_2 s_{mm}}\right],
$$

where $\varphi = (\varphi'_1, \varphi'_2)'$, $\varphi_1 : m \times 1$, $\varphi_2 : (k - m) \times 1$ and s_{mm} is the smallest eigenvalue, or mm-th element of $\mathcal{S}'\mathcal{S}$. Kleibergen (2005) shows that the approximation that is provided by this lowerbound is accurate and can be used to construct a quasi-LR statistic:

$$
\text{MQLR}(\beta_0) = \frac{1}{2} \left[\varphi' \varphi - s_{mm} + \sqrt{(\varphi' \varphi + s_{mm})^2 - 4\varphi'_2 \varphi_2 s_{mm}}\right] \\
= \frac{1}{2} \left[\text{AR}(\beta_0) - s_{mm} + \sqrt{(\text{AR}(-\beta_0) + s_{mm})^2 - 4(\text{AR}(\beta_0) - \text{KLM}(\beta_0)) s_{mm}}\right],
$$

since $\varphi' \varphi = \text{AR}(\beta_0)$ and $\varphi'_1 \varphi_1 = \text{KLM}(\beta_0)$.

An important property that this approximation preserves is the behavior of the LR statistic around minima, maxima and inflexion points of the AR statistic where the FOC

$$
\frac{1}{\sigma_{x\epsilon(\beta_0,\gamma)}^2} (y - X\beta_0 - Z\gamma)' P_{Z} \left[(X : W) - (y - X\beta_0 - Z\gamma)\frac{\sigma_{x\epsilon(X : W)(\beta_0,\gamma)}}{\sigma_{x\epsilon(\beta_0,\gamma)}}\right] \sum_{(X : W)(X : W),\epsilon} \frac{1}{\gamma} \left[\eta' \mathcal{U} \mathcal{S} \mathcal{V}'\right] = 0 \Leftrightarrow \\
\eta' \mathcal{U} \mathcal{S} \mathcal{V}' = 0
$$

holds. For such values of β_0, the characteristic polynomial reads

$$
|\lambda_{m+1} - \begin{pmatrix} \eta' \eta & 0 \\ 0 & \mathcal{V}' \mathcal{S} \mathcal{V}' \end{pmatrix}| = 0.
$$
The characteristic polynomial shows that the values of \((1 : -\beta' : -\gamma')'\) for which the FOC holds are eigenvectors that belong to one of the roots of the characteristic polynomial \(|\lambda \hat{\Omega} - (y : X : W)'P_Z(y : X : W)| = 0\). The orthogonality condition shows that the other eigenvectors are contained in \(US\). When \((1 : -\beta' : -\gamma')'\) satisfies the FOC, \(\eta'\eta\) and the \(m\) non-zero elements of \(S'S\) are equal to the \(m + 1\) roots of the characteristic polynomial \(|\lambda \hat{\Omega} - (y : X : W)'P_Z(y : X : W)| = 0\). Hence, there are \(m + 1\) different solutions to the FOC. It is interesting to analyze the behavior of the LR statistic for the solutions to the FOC.

The value of the LR statistic for the solutions to the FOC reads:

\[
\text{MQLR} = \frac{1}{2} \left[\varphi_2' \varphi_2 - s_{mm} + \sqrt{(\varphi_2' \varphi_2 - s_{mm})^2} \right]
\]

since \(\varphi_1 = 0\) for the solutions to the FOC. We can now distinguish two different cases:

1. \(\varphi_2' \varphi_2\) is equal to the smallest root of \(|\lambda \hat{\Omega} - (y : X : W)'P_Z(y : X : W)| = 0\) so \(\varphi_2' \varphi_2 < s_{mm}\). Since \(s_{mm}\) is then the second smallest root and

\[
\text{MQLR} = \frac{1}{2} \left[\varphi_2' \varphi_2 - s_{mm} + \sqrt{(\varphi_2' \varphi_2 - s_{mm})^2} \right] = \frac{1}{2} \left[\varphi_2' \varphi_2 - s_{mm} + s_{mm} - \varphi_2' \varphi_2 \right] = 0
\]

since \(\varphi_2' \varphi_2 < s_{mm}\).

2. \(\varphi_2' \varphi_2\) is equal to a root of \(|\lambda \hat{\Omega} - (y : X : W)'P_Z(y : X : W)| = 0\) which is not the smallest one so \(\varphi_2' \varphi_2 > s_{mm}\) since \(s_{mm}\) is now equal to the smallest root and

\[
\text{MQLR} = \frac{1}{2} \left[\varphi_2' \varphi_2 - s_{mm} + \sqrt{(\varphi_2' \varphi_2 - s_{mm})^2} \right] = \frac{1}{2} \left[\varphi_2' \varphi_2 - s_{mm} + \varphi_2' \varphi_2 - s_{mm} \right] = \varphi_2' \varphi_2 - s_{mm}
\]

since \(\varphi_2' \varphi_2 > s_{mm}\).

The value of the MQLR statistic at parameter values that satisfy the FOC is such that it equals the LR statistic which further shows the quality of the approximation.

The MQLR statistic is constructed such that it corresponds with a statistic that conducts a test of a subset of the parameters \(H_0 : \gamma = \gamma_0\) and uses the MLE for the remaining unspecified structural parameters:

\[
\text{MQLR}(\beta_0) = \frac{1}{2} \left[\text{AR}(\beta_0) - s_{mm} + \sqrt{(\text{AR}(\beta_0) + s_{mm})^2 - 4(\text{AR}(\beta_0) - \text{KLM}(\beta_0)) s_{mm}} \right],
\]

with \(s_{mm}\) the smallest eigenvalue of

\[
\Sigma_{(X : W)(X : W)\varepsilon}^{-\frac{1}{2}} \left[(X : W) - (y - X\beta_0 - Z\gamma) \frac{\sigma_{x,y}(\beta_0,\gamma)}{\sigma_{x,y}(\beta_0,\gamma)} \right]'P_Z \left[(X : W) - (y - X\beta_0 - Z\gamma) \frac{\sigma_{x,y}(\beta_0,\gamma)}{\sigma_{x,y}(\beta_0,\gamma)} \right] \Sigma_{(X : W)(X : W)\varepsilon}^{-\frac{1}{2}}.
\]

25
Proof of Lemma 1. The FOC for a maximum of the likelihood with respect to \(\gamma \) is such that:

\[
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'Z'(y - X\beta_0 - W\gamma) = 0 \Leftrightarrow \\
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0 \Leftrightarrow \\
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0 \Leftrightarrow \\
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0,
\]

where \(\epsilon = y - X\beta_0 - W\gamma_0 \). Using the equation for \(\gamma \), we can specify the FOC as

\[
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0.
\]

Under Assumption 1, \(\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0 \)

For large samples, the FOC can then be specified as

\[
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0 \Leftrightarrow \\
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0 \Leftrightarrow \\
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0.
\]

Hence, when \(\Theta_w \) equals zero, the FOC simplifies to

\[
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0 \Leftrightarrow \\
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0 \Leftrightarrow \\
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0.
\]

which is equivalent to

\[
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0.
\]

with \(\tilde{\gamma} = \gamma^* - \rho(\hat{\omega}) = \frac{\gamma^* - \rho(\hat{\omega})}{\gamma^* - \rho(\hat{\omega})} \)

which is in large samples identical to (using the notation from the proof of Lemma 1)

\[
\frac{1}{\tau - \epsilon} \left(y - X\beta_0 - W\gamma \right)'\frac{\prod_{i} Z'(y - X\beta_0 - W\gamma)}{\prod_{i} Z'(y - X\beta_0 - W\gamma)} W'(y - X\beta_0 - W\gamma) = 0.
\]
When Π_W, and thus Θ_W, equals zero, this expression simplifies further

$$\text{AR}(\beta_0) \rightarrow_d \frac{1}{1+\gamma^2} \left[(\xi_{e,w} - \xi_w \tilde{\gamma})' [\xi_{e,w} - \xi_w \tilde{\gamma}] \right].$$

Since $\tilde{\gamma}$ does not depend on nuisance parameters, the distribution of $\text{AR}(\beta_0)$ does not depend on nuisance parameters when Π_W equals zero.

2. KLM-statistic: The expression of the KLM-statistic for testing H_0 reads

$$\text{KLM}(\beta_0) = \frac{1}{\sigma_{e.w}(\beta_0)} (y - X\beta_0 - W\tilde{\gamma})' P M_{z\Pi_W(\beta_0)} z \Pi_X(\beta_0) (y - X\beta_0 - W\tilde{\gamma}).$$

In large samples and when Π_W equals zero:

$$\begin{align*}
(Z'Z)^{-\frac{1}{2}} \Pi_W(\beta_0) &= (Z'Z)^{-\frac{1}{2}} Z' \left[W - (y - X\beta_0 - W\tilde{\gamma}) \frac{\sigma_{e,w}(\beta_0)}{\sigma_{e,w}(\beta_0)} \right] \\
&= \left[\Theta_X + \xi_x - (\xi_{e,w} - \xi_w \tilde{\gamma}) \right] \Sigma_{X_X} + o_p(1)
\end{align*}$$

$$\begin{align*}
(Z'Z)^{-\frac{1}{2}} \Pi_X(\beta_0) &= (Z'Z)^{-\frac{1}{2}} Z' \left[X - (y - X\beta_0 - W\tilde{\gamma}) \frac{\sigma_{e,w}(\beta_0)}{\sigma_{e,w}(\beta_0)} \right] \\
&= \left[\Theta_X + \xi_x - (\xi_{e,w} - \xi_w \tilde{\gamma}) \right] \Sigma_{X_X} + o_p(1)
\end{align*}$$

where $\xi_x = (Z'Z)^{-\frac{1}{2}} Z' V_X \Sigma_{X_X}^{-\frac{1}{2}}$, $\Theta_X = (Z'Z)^{-\frac{1}{2}} \Pi_X \Sigma_{X_X}^{-\frac{1}{2}}$, $\rho_{e.w.X} = \sigma_{e.w}(\sigma_{e.X} - \sigma_{e.W} \Sigma_{W.W} \Sigma_{W.X}) \Sigma_{X_X}^{-\frac{1}{2}}$, $\rho_{W.X} = \Sigma_{W.W} \Sigma_{W.X} \Sigma_{X_X}^{-\frac{1}{2}}$, and we used that

$$\frac{1}{(\xi_{\gamma,-\gamma_0})'} \left(\frac{(\sigma_{\xi \omega})(\omega \omega)}{\Sigma_{X_X}} \right)^{-\frac{1}{2}} = \left[\Theta_X + \xi_x - (\xi_{e.w} - \xi_w \tilde{\gamma}) \right] \Sigma_{X_X} X X.$$

Hence, we can specify the limit behavior of $\text{KLM}(\beta_0)$ as

$$\begin{align*}
\text{KLM}(\beta_0) \rightarrow_d \frac{1}{1+\gamma^2} \left(\xi_{e.w} - \xi_w \tilde{\gamma} \right) P M_{\xi_{e.w} \xi_{e.w} \xi_{e.w}} \left[\Theta_X + \xi_x - (\xi_{e.w} - \xi_w \tilde{\gamma}) \right] \Sigma_{X_X} X X.
\end{align*}$$

Because $\Theta_X + \xi_x - (\xi_{e.w} - \xi_w \tilde{\gamma})$ and $\xi_w - (\xi_{e.w} - \xi_w \tilde{\gamma})$ are uncorrelated with $\left(\xi_{e.w} - \xi_w \tilde{\gamma} \right)$, the limit behavior of $\text{KLM}(\beta_0)$ is identical to

$$\begin{align*}
\text{KLM}(\beta_0) \rightarrow_d \frac{1}{1+\gamma^2} \left(\xi_{e.w} - \xi_w \tilde{\gamma} \right) P M_{\xi_{e.w} \xi_{e.w} \xi_{e.w}} \left(\xi_{e.w} - \xi_w \tilde{\gamma} \right),
\end{align*}$$

where Λ is a fixed $k \times m_x$ dimensional matrix and which shows that the limit behavior of $\text{KLM}(\beta_0)$ given $\Pi_W = 0$ does not depend on nuisance parameters.

3. JKL-statistic: The expression of the JKL statistic reads

$$\text{JKL}(\beta_0) = \frac{1}{d} \left[\text{AR}(\beta_0) - \text{KLM}(\beta_0) \right] + \sqrt{\left(\text{AR}(\beta_0) - \text{KLM}(\beta_0) \right)^2 - 4 \text{AR}(\beta_0) - \text{KLM}(\beta_0)} \left(\xi_{e.w} - \xi_w \tilde{\gamma} \right).$$

4. MQLR-statistic: The expression of the MQLR statistic to test H_0 reads

$$\text{MQLR}(\beta_0) = \frac{1}{2} \left[\text{AR}(\beta_0) - s_{mm} + \sqrt{(\text{AR}(\beta_0) + s_{mm})^2 - 4 (\text{AR}(\beta_0) - \text{KLM}(\beta_0)) s_{mm}} \right].$$
where s_{mm} is the smallest eigenvalue of $\hat{\Sigma}_{(X' \cdot W)(X' \cdot W),\epsilon}$.

\[
(X' \cdot W) - (y - X\beta_0 - Z\hat{\gamma})'(\frac{\hat{\Sigma}_{(X' \cdot W)(\beta_0)}}{\hat{\sigma}_\epsilon(\beta_0)}) \cdot \hat{\Sigma}_{(X' \cdot W)(X' \cdot W),\epsilon}.
\]

The limiting distribution of $\text{MQLR}(\beta_0)$ conditional on s_{mm} is therefore

\[
\text{MQLR}(\beta_0)|s_{mm} \to_d \\
\frac{1}{2} \left[\frac{1}{1+\gamma^2} [\xi_{\epsilon \cdot w} - \xi_{w \gamma}]' [\xi_{\epsilon \cdot w} - \xi_{w \gamma}] - s_{mm} + \left(\frac{1}{1+\gamma^2} [\xi_{\epsilon \cdot w} - \xi_{w \gamma}]' [\xi_{\epsilon \cdot w} - \xi_{w \gamma}] + s_{mm} \right)^2 - 4 \left(\frac{1}{1+\gamma^2} [\xi_{\epsilon \cdot w} - \xi_{w \gamma}]' M [\epsilon_{\cdot w} - (\xi_{\epsilon \cdot w} - \xi_{w \gamma})] [\xi_{\epsilon \cdot w} - \xi_{w \gamma}] s_{mm} \right)^\frac{1}{2} \right].
\]

Proof of Theorem 4. When the behavior of the number of instruments and observations is such that $k/T \to 0$, we can construct the limit behavior of $\text{KLM}(\beta_0)$ when $\Pi_W = 0$ in a sequential manner so first we let the number of observations become infinite and afterwards the number of instruments, see Phillips and Moon (1999) and Bekker and Kleibergen (2003). The limit behavior of $\text{KLM}(\beta_0)$ when $\Pi_W = 0$ and when the number of observations becomes infinite reads

\[
\text{KLM}(\beta_0) \to_d \frac{1}{1+\gamma^2} [\xi_{\epsilon \cdot w} - \xi_{w \gamma}]' P_M [\epsilon_{\cdot w} - (\xi_{\epsilon \cdot w} - \xi_{w \gamma})]^{\frac{1}{1+\gamma^2}} A [\xi_{\epsilon \cdot w} - \xi_{w \gamma}],
\]

with A a fixed $k \times m_x$ matrix and where γ results from the FOC:

\[
[\xi_{\cdot w} - (\xi_{\epsilon \cdot w} - \xi_{w \gamma})^{\frac{1}{1+\gamma^2}}]' [\xi_{\epsilon \cdot w} - \xi_{w \gamma}] = 0.
\]

The FOC shows that the limit behavior of γ results from the limit behaviors of $\xi_{\cdot w}^{\epsilon_{\cdot w}}$, $\xi_{\cdot w}^{\epsilon_{\cdot w}}$, and $\xi_{\epsilon \cdot w}^{\epsilon_{\cdot w}}$. The limit behavior of $\text{KLM}(\beta_0)$ also involves the limit behaviors of $A'\xi_{\cdot w}$ and $A'\xi_{\epsilon \cdot w}$. When the number of instruments becomes large,

\[
\frac{1}{\sqrt{k}} \begin{pmatrix}
\text{vec}(A'\xi_{\cdot w}) \\
A'\xi_{\epsilon \cdot w} \\
\xi_{\epsilon \cdot w}^\epsilon \\
k \left(\frac{1}{k} D_{m_w} (\vec{\xi}_{\epsilon \cdot w} - I_w) \right)
\end{pmatrix} \to_d \begin{pmatrix}
\varphi A_{\epsilon \cdot w} \\
\varphi A_{\epsilon \cdot w}^\epsilon \\
\varphi \xi_{\epsilon \cdot w}^\epsilon \\
\varphi \xi_{\epsilon \cdot w}^\epsilon
\end{pmatrix},
\]

where $D_{m_w} : \frac{1}{2} m_w (m_w + 1) \times m_w$ is a selection matrix that selects the different elements of a $m_w \times m_w$ dimensional symmetric matrix and $\varphi A_{\epsilon \cdot w}$, $\varphi A_{\epsilon \cdot w}^\epsilon$, $\varphi \xi_{\epsilon \cdot w}^\epsilon$, $\varphi \xi_{\epsilon \cdot w}^\epsilon$, and $\varphi \xi_{\epsilon \cdot w}^\epsilon$ are independent normal random variables with mean zero and covariance matrices $I_{m_w} \otimes Q_A$, Q_A, I_{m_w}, 1, $D_{m_w} (I_{m_w} \otimes I_{m_w}) D_{m_w}$, $Q_A = \lim_{k \to \infty} \frac{1}{k} A' A$. Because of the independence of $(\varphi A_{\epsilon \cdot w}, \varphi A_{\epsilon \cdot w}^\epsilon)$ and $(\varphi \xi_{\epsilon \cdot w}^\epsilon, \varphi \xi_{\epsilon \cdot w}^\epsilon, \varphi \xi_{\epsilon \cdot w}^\epsilon, \varphi \xi_{\epsilon \cdot w}^\epsilon)$, the limit behavior of γ is independent of the limit behavior of $A'\xi_{\epsilon \cdot w}$ and $A'\xi_{\cdot w}$ when the number of instruments gets large. Hence,

\[
\frac{1}{\sqrt{k}} A' (\xi_{\epsilon \cdot w} - \xi_{w \gamma}) \frac{1}{\sqrt{1+\gamma^2}} \to_d N(0, Q_A)
\]

and

\[
\text{KLM}(\beta_0) \to \chi^2(m_x).
\]
Proof of Theorem 5. 1. AR(β_0) : AR(β_0) equals the smallest root of the characteristic polynomial

$$\left| \lambda \hat{\Omega}_w - (y - X \beta_0 : W)' P_Z (y - X \beta_0 : W) \right| = 0 \Leftrightarrow$$

$$\lambda \Omega_{m_w+1} - \hat{\Omega}_w^{-\frac{1}{2}} (y - X \beta_0 : W)' P_Z (y - X \beta_0 : W) \hat{\Omega}_w^{-\frac{1}{2}} = 0,$$

where $\hat{\Omega}_w = \frac{1}{p-k} (y - X \beta_0 : W)' M_Z (y - X \beta_0 : W)$. The reduced form model for $(y - X \beta_0 : W)$ reads

$$(y - X \beta_0 : W) = Z \Pi_W (\gamma_0 : I_{m_w}) + (u : V_W),$$

with $u = \varepsilon + V_W \gamma_0$, so $\Omega_w = \left(\begin{array}{c} \sigma_{\varepsilon \varepsilon} + \sigma_{\varepsilon w} \gamma_0 + \gamma_0 \sigma_{w w} \gamma_0 : \sigma_{\varepsilon w} + \gamma_0 \Sigma_{w w} \gamma_0 \\ \sigma_{w w} \end{array} \right)$. Pre-multiplying by $(Z'Z)^{-\frac{1}{2}} Z'$ and post-multiplying by $\Omega_w^{-\frac{1}{2}}$ results in

$$(Z'Z)^{-\frac{1}{2}} Z'(y - X \beta_0 : W) \Omega_w^{-\frac{1}{2}} = (Z'Z)^{-\frac{1}{2}} Z' \left[Z \Pi_W (\gamma_0 : I_{m_w}) + (u : V_W) \right]$$

$$\left(\begin{array}{c} \sigma_{\varepsilon \varepsilon}^{-\frac{1}{2}} \\ -(\Sigma_{w w}^{-\frac{1}{2}} \sigma_{w w} + \gamma_0) \sigma_{\varepsilon w}^{-\frac{1}{2}} \\ \Sigma_{w w}^{-\frac{1}{2}} \end{array} \right)$$

$$= (Z'Z)^{-\frac{1}{2}} \Pi_W \Sigma_{w w}^{-\frac{1}{2}} (\varepsilon - V_W \Sigma_{w w}^{-\frac{1}{2}} \sigma_{w w} \sigma_{\varepsilon \varepsilon}^{-\frac{1}{2}} ; I_{m_w}) + (Z'Z)^{-\frac{1}{2}} Z' ((\varepsilon - V_W \Sigma_{w w}^{-\frac{1}{2}} \sigma_{w w} \sigma_{\varepsilon w}^{-\frac{1}{2}} ; V_W \Sigma_{w w}^{-\frac{1}{2}})$$

$$= \Theta_W (\rho_W : I_{m_w}) + (\xi_{\varepsilon w} : \xi_w) + o_p(1),$$

with $\rho_w = -\Sigma_{w w}^{-\frac{1}{2}} \sigma_{w w} \sigma_{\varepsilon w}^{-\frac{1}{2}}$, $\Theta_W = (Z'Z)^{-\frac{1}{2}} \Pi_W \Sigma_{w w}^{-\frac{1}{2}}$. Since $\hat{\Omega}_w \rightarrow \Omega_w$ and Θ_W and $\xi_{\varepsilon w}$ and ξ_w are independent $k \times 1$ and $k \times m_w$ dimensional standard normal distributed random variables, the characteristic polynomial is for large samples equivalent to

$$\left| \lambda I_{m_w+1} - \left[\Theta_W (\rho_W : I_{m_w}) + (\xi_{\varepsilon w} : \xi_w) \right] \left[\Theta_W (\rho_W : I_{m_w}) + (\xi_{\varepsilon w} : \xi_w) \right] \right| = 0.$$

We conduct a singular value decomposition of Θ_W, $\Theta_W = USV'$, $U : k \times m_w$, $U'U = I_k$, $V : m_w \times m_w$, $V'V = I_{m_w}$ and $S : k \times m_w$ is a diagonal matrix with the singular values in decreasing order on the main diagonal. Using the singular value decomposition, we can specify
the characteristic polynomial as

\[\left| \lambda_{m_w+1} - \left[U S V' (\rho_W : I_{m_w}) + (\xi_{\epsilon,w} : \xi_w) \right] \right|' \left[U S V' (\rho_W : I_{m_w}) + (\xi_{\epsilon,w} : \xi_w) \right] = 0 \Leftrightarrow \]

\[\lambda_{m_w+1} - \left[S(\alpha_W : I_{m_w}) \left(\begin{array}{c} 1 \\ 0 \end{array} \right) + U'(\xi_{\epsilon,w} : \xi_w) \right] = 0 \Leftrightarrow \]

\[\lambda_{m_w+1} - \left(\begin{array}{c} 1 \\ 0 \end{array} \right)' \left[S(\alpha_W : I_{m_w}) + U'(\xi_{\epsilon,w} : \xi_w) \right] \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = 0 \Leftrightarrow \]

\[\lambda_{m_w+1} - \left(\begin{array}{c} 1 \\ 0 \end{array} \right)' \left[S(\alpha_W : I_{m_w}) + U'(\xi_{\epsilon,w} : \xi_w) \right] \left(\begin{array}{c} 1 \\ 0 \end{array} \right) = 0 \Leftrightarrow \]

\[\lambda_{m_w+1} - A' \left[S(\alpha_W : I_{m_w}) + U'(\xi_{\epsilon,w} : \xi_w) \right] \left[S(\alpha_W : I_{m_w}) + U'(\xi_{\epsilon,w} : \xi_w) \right] A = 0, \]

with \(\alpha_W = V' \rho_W, (\xi^*_{\epsilon,w} : \xi^*_w) = U'(\xi_{\epsilon,w} : \xi_w) \) and \(A = (a_1 : A_1), a_1 : (m_w + 1) \times 1, A_1 : (m_w + 1) \times m_w \), \(a_1 = (-\alpha_w) (1 + \alpha_w \alpha_w)^{-\frac{1}{2}}, A_1 = (\alpha_w : I_{m_w}) B^{-1}, B = \left((\alpha_w : I_{m_w}) (\alpha_w : I_{m_w}) \right)^{\frac{1}{2}} \), such that

\[\lambda_{m_w+1} - A' \left[S(\alpha_W : I_{m_w}) + U'(\xi_{\epsilon,w} : \xi_w) \right] \left[S(\alpha_W : I_{m_w}) + U'(\xi_{\epsilon,w} : \xi_w) \right] A = 0 \Leftrightarrow \]

\[\lambda_{m_w+1} - \left(\begin{array}{c} \xi^*_{\epsilon,w} SB + \xi^*_w \\ 0 \end{array} \right)' \left(\begin{array}{c} \xi^*_{\epsilon,w} SB + \xi^*_w \\ 0 \end{array} \right) = 0 \Leftrightarrow \]

\[\lambda_{m_w+1} - \left(\begin{array}{c} \xi^*_{\epsilon,w} SB + \xi^*_w \\ 0 \end{array} \right)' \left(\begin{array}{c} \xi^*_{\epsilon,w} SB + \xi^*_w \\ 0 \end{array} \right) = 0 \Leftrightarrow \]

\[\lambda_{m_w+1} - \left(\begin{array}{c} 1 \\ 0 \end{array} \right)' \left(\begin{array}{c} \xi^*_{\epsilon,w} M_{(SB + \xi^*_w)} SB + \xi^*_w \\ 0 \end{array} \right) I_{m_w} \left(\begin{array}{c} \xi^*_{\epsilon,w} M_{(SB + \xi^*_w)} SB + \xi^*_w \\ 0 \end{array} \right)' = 0 \Leftrightarrow \]

\[\lambda_{m_w+1} - \left(\begin{array}{c} 1 \\ 0 \end{array} \right)' \left(\begin{array}{c} \xi^*_{\epsilon,w} M_{(SB + \xi^*_w)} SB + \xi^*_w \\ 0 \end{array} \right) I_{m_w} \left(\begin{array}{c} \xi^*_{\epsilon,w} M_{(SB + \xi^*_w)} SB + \xi^*_w \\ 0 \end{array} \right)' = 0, \]

The above shows that the roots of the characteristic polynomial equal the eigenvalues of the block-diagonal matrix \(\left(\xi^*_{\epsilon,w} M_{(SB + \xi^*_w)} \xi^*_w : (SB + \xi^*_w)'(SB + \xi^*_w) \right) \). The eigenvalues of this matrix are equal to \(\xi^*_{\epsilon,w} M_{(SB + \xi^*_w)} \xi^*_w \) and the eigenvalues of

\((SB + \xi^*_w)'(SB + \xi^*_w) \).

Since \(\xi^*_{\epsilon,w} \) and \(\xi^*_w \) are independent, \(\xi^*_{\epsilon,w} M_{(SB + \xi^*_w)} \xi^*_w \) is a \(\chi^2(k - m_w) \) distributed random variable that is independent of \((SB + \xi^*_w)'(SB + \xi^*_w) \). Because \(SB + \xi^*_w \sim N(SB, I_k), (SB + \xi^*_w)'(SB + \xi^*_w) \)
is a non-central Wishart distributed matrix with k degrees of freedom, identity covariance matrix and non-centrality parameter $BS'SB$.

We reflect smaller values of $\Pi_W (\Theta_W)$ by smaller values of S. When S decreases by a non-negative diagonal matrix ΔS ($S \geq \Delta S$), $BS'SB$ decreases by $B\Delta S'\Delta S B$ which is a positive semi-definite matrix. This implies that the distribution of the smallest eigenvalue of $(SB + x^*_w)'(SB + x^*_w)$ provides an upperbound on the distribution of the smallest eigenvalue of $((S - \Delta S)B + x^*_w)'((S - \Delta S)B + x^*_w)$. Similarly, the distribution of the smallest root when S is zero provides a lowerbound on the distribution of the smallest root of $(SB + x^*_w)'(SB + x^*_w)$.

The above shows that for large numbers of observations, the AR statistic equals the minimum of an independent $\chi^2(k - m_w)$ distributed random variable and the smallest eigenvalue of $(SB + x^*_w)'(SB + x^*_w)$. Since the distribution of the smallest eigenvalue of $(SB + x^*_w)'(SB + x^*_w)$ is decreasing for decreasing values of S, the distribution of the AR statistic is non-increasing for decreasing values of S (Π_W) since the $\chi^2(k - m_w)$ distributed random variable does not depend on S. The distribution of the smallest eigenvalue when S (Π_W) is large (infinite) provides therefore an upperbound on the distribution of the AR statistic while the distribution when S (Π_W) is zero provides a lowerbound.

2. KLM(β_0) : The specification of $AR(\beta_0)$ is:

$$AR(\beta_0) = \frac{1}{\sqrt{\sigma_{\epsilon\epsilon}(\beta_0)}} (y - X\beta_0 - W\hat{\gamma})' P_{Z} (y - X\beta_0 - W\hat{\gamma})$$

$$= \frac{1}{\sqrt{\sigma_{\epsilon\epsilon}(\beta_0)}} (y - X\beta_0 - W\hat{\gamma})' P_{M_{\Pi_w}(\beta_0)} (y - X\beta_0 - W\hat{\gamma})$$

with

$$\eta(\beta_0) = \frac{(Z'M_{\Pi_w}(\beta_0)Z)^{-\frac{1}{2}} Z'M_{\Pi_w}(\beta_0)(y - X\beta_0 - W\hat{\gamma})}{\sqrt{\frac{1}{\sigma_{\epsilon\epsilon}(\beta_0)}} M_{\Pi_w}(\beta_0)(y - X\beta_0 - W\hat{\gamma})}$$

so it is a quadratic form of $\eta(\beta_0)$. The distribution of this quadratic form does not increase when Π_W decreases and is bounded from below by the distribution in case $\Pi_W = 0$. The AR statistic $AR(\beta_0)$ is a quadratic form of $\eta(\beta_0)$ with respect to the identity matrix. Quadratic forms with respect to other projection matrices which project onto a (random) space that is uncorrelated with $\eta(\beta_0)$ will not increase as well when Π_W decreases. KLM(β_0) is an example of such a statistic since it can be specified as

$$KLM(\beta_0) = \frac{1}{\sigma_{\epsilon\epsilon}(\beta_0)} (y - X\beta_0 - W\hat{\gamma})' P_{M_{\Pi_w}(\beta_0)} (y - X\beta_0 - W\hat{\gamma})$$

with

$$\Psi(\beta_0) = (Z'M_{\Pi_w}(\beta_0)Z)^{-\frac{1}{2}} Z'M_{\Pi_w}(\beta_0) \left(X - (y - X\beta_0 - W\hat{\gamma}) \frac{\hat{\epsilon}_{\epsilon}(\beta_0)}{\sigma_{\epsilon\epsilon}(\beta_0)} \right)$$

$$= (Z'M_{\Pi_w}(\beta_0)Z)^{-\frac{1}{2}} Z'M_{\Pi_w}(\beta_0) X - (y - X\beta_0 - W\hat{\gamma}) \frac{\hat{\epsilon}_{\epsilon}(\beta_0)}{\sigma_{\epsilon\epsilon}(\beta_0)}$$

Since $P_{\Psi(\beta_0)}$ is an idempotent matrix and $\Psi(\beta_0)$ is independent of $\eta(\beta_0)$, the limiting distribution of KLM(β_0) will not increase when Π_W decreases. Using similar arguments, it results that the limiting distribution of KLM(β_0) is bounded from below by its limiting distribution when $\Pi_W = 0$.

3. JKLM(β_0) is just a function of AR(β_0) and KLM(β_0) so the results for these statistics directly extend to JKLM(β_0).
4. MQLR(β_0): Given s_{mm}, MQLR(β_0) is just a function of AR(β_0) and KLM(β_0) such that the results for MQLR(β_0) result from combining the results for AR(β_0) and KLM(β_0).

Proof of Theorem 6. 1. When we test $H_0: \beta = \beta_0$ and the true value of β is such that $\beta - \beta_0$ is large,

$$y - X\beta_0 = \varepsilon + X(\beta - \beta_0) + W\gamma$$

$$= \varepsilon + U + W\gamma,$$

where $\varepsilon = y - X\beta - W\gamma$ and $U = X(\beta - \beta_0)$. When $\hat{\Sigma}(\beta_0) = \left(\hat{\sigma}_{\varepsilon \varepsilon}(\beta_0) \hat{\sigma}_{\varepsilon W}(\beta_0)\right) = \frac{1}{T-k}(y - X\beta_0 : W)'M_Z(y - X\beta_0 : W)$, its different elements converge when the sample size gets large as

$$\hat{\sigma}_{\varepsilon \varepsilon}(\beta_0) \rightarrow_p \sigma_{(\varepsilon + U)(\varepsilon + U)} + 2\sigma_{(\varepsilon + U)W}\gamma + \gamma'\Sigma_{WW}\gamma$$

$$\hat{\sigma}_{\varepsilon W}(\beta_0) \rightarrow_p \sigma_{(\varepsilon + U)W} + \gamma'\Sigma_{WW}\gamma$$

$$\hat{\Sigma}_{WW}(\beta_0) \rightarrow_p \Sigma_{WW},$$

with $\sigma_{(\varepsilon + U)(\varepsilon + U)} = \sigma_{\varepsilon \varepsilon} + 2\sigma_{\varepsilon X}(\beta - \beta_0) + (\beta - \beta_0)^2\sigma_{XX}$, $\sigma_{(\varepsilon + U)W} = \sigma_{\varepsilon W} + (\beta - \beta_0)\sigma_{XW}$. The MLE of γ is obtained from the smallest root of the characteristic polynomial:

$$\left|\mu(y - X\beta_0 : W)'(y - X\beta_0 : W) - (y - X\beta_0 : W)'P_Z(y - X\beta_0 : W)\right| = 0$$

which can as well be obtained from the smallest root of the polynomial

$$\left|\lambda\hat{\Sigma}(\beta_0) - (y - X\beta_0 : W)'P_Z(y - X\beta_0 : W)\right| = 0,$$

with $\lambda = (T - k)\frac{\mu}{1-p}$ and the smallest root of this polynomial, say λ_1, also equals k times the AR statistic to test H_0. The smallest root does not alter when we respesify the characteristic polynomial as

$$\left|\lambda I_{mW+1} - \hat{\Sigma}(\beta_0)^{-\frac{1}{2}}(y - X\beta_0 : W)'P_Z(y - X\beta_0 : W)\hat{\Sigma}(\beta_0)^{-\frac{1}{2}}\right| = 0.$$

When the numbers of observations gets large, $\hat{\Sigma}(\beta_0)^{-\frac{1}{2}}$ can be characterized by

$$\hat{\Sigma}(\beta_0)^{-\frac{1}{2}} \rightarrow_p \left(\begin{array}{cc}
\sigma_{(\varepsilon + U)(\varepsilon + U)}W & 0 \\
-\Sigma_{WW}^{-1}\sigma_{W(\varepsilon + U)}(\varepsilon + U)W & \Sigma_{WW}^{-\frac{1}{2}}
\end{array}\right)$$

$$= \left(\begin{array}{cc}
1 & 0 \\
-\Sigma_{WW}^{-1}\sigma_{W(\varepsilon + U)} & I_{mW}
\end{array}\right) \left(\begin{array}{cc}
\sigma_{(\varepsilon + U)(\varepsilon + U)} W & 0 \\
0 & \Sigma_{WW}^{-\frac{1}{2}}
\end{array}\right)$$

with $\sigma_{W(\varepsilon + U)}W = \sigma_{(\varepsilon + U)(\varepsilon + U)} - \sigma_{(\varepsilon + U)W}\Sigma_{WW}^{-1}\sigma_{W(\varepsilon + U)}$, such that $\hat{\Sigma}(\beta_0)^{-\frac{1}{2}}\hat{\Sigma}(\beta_0)\hat{\Sigma}(\beta_0)^{-\frac{1}{2}} \rightarrow_p I_{mW+1}$. Using this specification, we can specify $\hat{\Sigma}(\beta_0)^{-\frac{1}{2}}(y - X\beta_0 : W)'P_Z(y - X\beta_0 : W)\hat{\Sigma}(\beta_0)^{-\frac{1}{2}}$.
as
\[
\tilde{\Sigma}(\beta_0)^{-\frac{1}{2}}(\varepsilon + U + W\gamma : W)\tilde{P}_Z(\varepsilon + U + W\gamma : W)\tilde{\Sigma}(\beta_0)^{-\frac{1}{2}} =
\left(\begin{array}{cc}
\sigma_{(\varepsilon+U)(\varepsilon+U),W}^{-\frac{1}{2}} & 0 \\
0 & \Sigma_{W,W}^{-\frac{1}{2}}
\end{array}\right)'
(\varepsilon + U - W\Sigma_{W,W}^{-1}\sigma_{W(\varepsilon+U)} : W)'\tilde{P}_Z
\left(\begin{array}{cc}
\sigma_{(\varepsilon+U)(\varepsilon+U),W}^{-\frac{1}{2}} & 0 \\
0 & \Sigma_{W,W}^{-\frac{1}{2}}
\end{array}\right).
\]

For large values of \(\beta - \beta_0\), the above expression simplifies to
\[
\left(\begin{array}{cc}
\sigma_{XX,W}^{-\frac{1}{2}} & 0 \\
0 & \Sigma_{W,W}^{-\frac{1}{2}}
\end{array}\right)'(X - W\Sigma_{W,W}^{-1}\sigma_{WX} : W)'\tilde{P}_Z(X - W\Sigma_{W,W}^{-1}\sigma_{WX} : W)
\left(\begin{array}{cc}
\sigma_{XX,W}^{-\frac{1}{2}} & 0 \\
0 & \Sigma_{W,W}^{-\frac{1}{2}}
\end{array}\right),
\]
which results since \(\varepsilon + U = (\beta - \beta_0)(X + (\beta - \beta_0)^{-1}\varepsilon)\) so \(\varepsilon\) vanishes when \(\beta - \beta_0\) gets large. For large values of \(\beta - \beta_0\), \(\lambda_1\) thus corresponds with the smallest eigenvalue of \(\hat{\Omega}^{-\frac{1}{2}}_{XXW}(X : W)'\tilde{P}_Z(X : W)\hat{\Omega}^{-\frac{1}{2}}_{XXW}\) which is a statistic that tests for a reduced rank value of \((\Pi_X : \Pi_W)\). \(\hat{\Omega}_{XXW} = \frac{1}{n-k}(X : W)'\tilde{M}_Z(X : W).\) Since \(\lambda_1\) equals the AR statistic, the value of the AR statistic thus equals a statistic that tests the rank of \((\Pi_X : \Pi_W)\) using the smallest eigenvalue of \(\hat{\Omega}^{-\frac{1}{2}}_{XXW}(X : W)'\tilde{P}_Z(X : W)\hat{\Omega}^{-\frac{1}{2}}_{XXW}\) when \(\beta - \beta_0\) becomes large.

2. Let \(V = (v_1 : V_1) : m \times m\) contain the eigenvectors of \(\hat{\Omega}^{-\frac{1}{2}}_{XXW}(X : W)'\tilde{P}_Z(X : W)\hat{\Omega}^{-\frac{1}{2}}_{XXW}\) with \(v_1\) the eigenvector of the smallest eigenvalue and \(V_1\) contains the eigenvectors of the larger eigenvalues. The eigenvectors are orthonormal so \(V'V = I_m\). When the number of observations gets large, \(\hat{\Omega}_{XXW} \rightarrow \Omega_{XXW}\). Since \(v_1\) is the eigenvector that belongs to the smallest eigenvalue of \(\hat{\Omega}^{-\frac{1}{2}}_{XXW}(X : W)'\tilde{P}_Z(X : W)\hat{\Omega}^{-\frac{1}{2}}_{XXW}\), \(\hat{\Sigma}(\beta_0)^{-\frac{1}{2}}v_1\) is the eigenvector that belongs to the smallest root of the original characteristic polynomial \(|\lambda\hat{\Sigma}(\beta_0) - (y - X\beta_0 : W)'\tilde{P}_Z(y - X\beta_0 : W)| = 0\).

For large numbers of observations and large values of \(\beta - \beta_0\),
\[
\hat{\Sigma}(\beta_0)^{-\frac{1}{2}}v_1 \rightarrow \left(\begin{array}{cc}(\beta - \beta_0)^{-1} & 0 \\
0 & I_k\end{array}\right)\Omega^{-\frac{1}{2}}_{XXW}v_1 + O((\beta - \beta_0)^{-2}),
\]
where \(O((\beta - \beta_0)^{-2})\) indicates that the highest order of the remaining terms is \((\beta - \beta_0)^{-2}\). The MLE \(\hat{\gamma}\) is obtained from the eigenvector that belongs to the smallest eigenvalue which for large values of \((\beta - \beta_0)\) is therefore such that
\[
\left(\begin{array}{c}
\frac{1}{\hat{\gamma}}
\end{array}\right) = \hat{\Sigma}(\beta_0)^{-\frac{1}{2}}v_1
\rightarrow\left(\begin{array}{cc}(\beta - \beta_0)^{-1} & 0 \\
0 & I_k\end{array}\right)\Omega^{-\frac{1}{2}}_{XXW}v_1 + O((\beta - \beta_0)^{-2})
\]
so
\[y - X\beta_0 - W\tilde{\gamma} = (y - X\beta_0 : W)(\frac{1}{\tilde{\gamma}}) \]
\[= (\varepsilon + X(\beta - \beta_0) + W\gamma : W)(\frac{1}{\tilde{\gamma}}) \]
\[= (\varepsilon + X(\beta - \beta_0) + W\gamma : W)(\left((\beta - \beta_0)^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)) \Omega_{XW}^{-\frac{1}{2}} v_1 \]
\[= (X + \frac{1}{\beta - \beta_0}(\varepsilon + W\gamma) : W)\Omega_{XW}^{-\frac{1}{2}} v_1 \]
\[= (X : W)\Omega_{XW}^{-\frac{1}{2}} v_1 + \frac{1}{\beta - \beta_0}((\varepsilon + W\gamma) : 0)\Omega_{XW}^{-\frac{1}{2}} v_1 \]

where “=” indicates that the equality holds in large samples. We can use the expression of
\[y - X\beta_0 - W\tilde{\gamma} \]
to obtain that
\[\hat{\sigma}_{\varepsilon\varepsilon}(\beta_0) = \frac{1}{T-k}(y - X\beta_0 - W\tilde{\gamma})'M_Z(y - X\beta_0 - W\tilde{\gamma}) \]
\[\rightarrow v_1'\Omega_{XW}^{-\frac{1}{2}}\Omega_{XW}\Omega_{XW}^{-\frac{1}{2}} v_1 + \frac{1}{(\beta - \beta_0)}c(\beta - \beta_0) \]
\[= 1 + \frac{1}{(\beta - \beta_0)}c(\beta - \beta_0) \]
\[\hat{\sigma}_{\varepsilon}(X : W)(\beta_0) = \frac{1}{T-k}(y - X\beta_0 - W\tilde{\gamma})'M_Z(X : W) \]
\[\rightarrow v_1'\Omega_{XW}^{-\frac{1}{2}}\Omega_{XW} + e_1 \left(\frac{1}{(\beta - \beta_0)}(\sigma_{X\varepsilon} + \sigma_{XW\gamma}) \right) \]
\[= v_1'\Omega_{XW}^{-\frac{1}{2}}\Omega_{XW} + \frac{1}{(\beta - \beta_0)}v_1'\Omega_{XW}^{-\frac{1}{2}} \left(\frac{1}{(\beta - \beta_0)}(\sigma_{X\varepsilon} + \sigma_{XW\gamma}) \right) \]

with
\[c(\beta - \beta_0) = v_1'\Omega_{XW}^{-\frac{1}{2}} \left(\frac{1}{(\beta - \beta_0)}(\sigma_{X\varepsilon} + 2\sigma_{X\varepsilon\gamma} + 3\sigma_{XW\gamma}) \right) \]
\[\Omega_{XW}^{-\frac{1}{2}} v_1 \] and \(e_1 \) is the first \(m \)-dimensional unity vector or the first column of \(I_m \).

We want to determine the behavior of the roots of \(\hat{\sigma}_{MQLR}(\beta_0) = \Sigma(\beta_0) - \frac{1}{2}\Pi(\beta_0)'Z'Z\Pi(\beta_0)\Sigma(\beta_0)^{-\frac{1}{2}} \),

with
\[\Pi(\beta_0) = (Z'Z)^{-1}Z' \left((X : W) - (y - X\beta_0 - W\tilde{\gamma})\frac{\hat{\sigma}_{\varepsilon}(X : W)(\beta_0)}{\hat{\sigma}_{\varepsilon\varepsilon}(\beta_0)} \right), \]

for large values of \(\beta - \beta_0 \) which roots are equivalent to the roots of the polynomial
\[\left| \mu_{\hat{\Sigma}(X : W)(X : W),\varepsilon}(\beta_0) - \Pi(\beta_0)'Z'Z\Pi(\beta_0) \right| = 0. \]

The roots do not alter when we pre and post-multiply the matrices in the above polynomial by \(\Omega_{XW}^{-\frac{1}{2}}(v_1 : V_1) \) which leads to a more interpretable expression. To determine the expressions of these matrices, we first post-multiply \((X : W) - (y - X\beta_0 - W\tilde{\gamma})\frac{\hat{\sigma}_{\varepsilon}(X : W)(\beta_0)}{\hat{\sigma}_{\varepsilon\varepsilon}(\beta_0)} \) by \(\Omega_{XW}^{-\frac{1}{2}}(v_1 : \)
\[V_1 : \]
\[
\left[(X : W) - (y - X^\beta_0 - W\gamma) \frac{\partial_x (X : W) (\beta_0)}{\partial_x (\beta_0)} \Omega_{X W}^\frac{1}{2} (v_1 : V_1) \right] = (X : W) \left[\Omega_{X W}^\frac{1}{2} (v_1 : V_1) = \left. \frac{1}{(\beta - \beta_0)} \frac{\partial}{\partial \beta} \right|_{\beta = \beta_0} \Omega_{X W}^\frac{1}{2} v_1' \right] \]
\[
\Omega_{X W}^\frac{1}{2} (v_1 : V_1) + O((\beta - \beta_0)^{-2})
\]
\[
= (X : W) \left[\Omega_{X W}^\frac{1}{2} (v_1 : V_1) - \frac{1}{(\beta - \beta_0)} \Omega_{X W}^\frac{1}{2} v_1 e_1' \right] - \frac{1}{(\beta - \beta_0)^2} \left[(\varepsilon + W\gamma) : 0 \right] \Omega_{X W}^\frac{1}{2} v_1 e_1' + O((\beta - \beta_0)^{-2})
\]
\[
= (X : W) \Omega_{X W}^\frac{1}{2} v_1' \Omega_{X W}^\frac{1}{2} v_1 \left(\frac{(1 - \beta \beta_0)}{(1 - \beta_0)} (\sigma_{x e} + \sigma_{x w \gamma}) \right)^{\frac{1}{2}} \Omega_{X W}^\frac{1}{2} (v_1 : V_1) + O((\beta - \beta_0)^{-2})
\]
\[
= (X : W) \left[I_m - \frac{1}{(\beta - \beta_0)} \Omega_{X W}^\frac{1}{2} v_1' \Omega_{X W}^\frac{1}{2} v_1 \left(\frac{(1 - \beta \beta_0)}{(1 - \beta_0)} (\sigma_{x e} + \sigma_{x w \gamma}) \right)^{\frac{1}{2}} \right] \Omega_{X W}^\frac{1}{2} (V_1 : 0) + O((\beta - \beta_0)^{-2})
\]
\[
+ \frac{1}{(\beta - \beta_0)^2} \left[c(\beta_0) (X : W) - (\varepsilon + W\gamma) : 0 \right] - (X : W) v_1' \Omega_{X W}^\frac{1}{2} e_1' \left(\frac{(1 - \beta \beta_0)}{(1 - \beta_0)} (\sigma_{x e} + \sigma_{x w \gamma}) \right)^{\frac{1}{2}} \Omega_{X W}^\frac{1}{2} v_1
\]
\[
\Omega_{X W}^\frac{1}{2} v_1 e_1' + O((\beta - \beta_0)^{-2})
\]
\[
= (X : W) \left[I_m - \frac{1}{(\beta - \beta_0)} \Omega_{X W}^\frac{1}{2} v_1' \Omega_{X W}^\frac{1}{2} v_1 \left(\frac{(1 - \beta \beta_0)}{(1 - \beta_0)} (\sigma_{x e} + \sigma_{x w \gamma}) \right)^{\frac{1}{2}} \right] \left(0 : \Omega_{X W}^\frac{1}{2} V_1 \right) - \frac{1}{(\beta - \beta_0)^2}
\]
\[
\left[(\varepsilon + W\gamma) : 0 \right] - (X : W) \Omega_{X W}^\frac{1}{2} v_1' \Omega_{X W}^\frac{1}{2} e_1' \left(\frac{(1 - \beta \beta_0)}{(1 - \beta_0)} (\sigma_{x e} + \sigma_{x w \gamma}) \right)^{\frac{1}{2}} \Omega_{X W}^\frac{1}{2} v_1 e_1' + O((\beta - \beta_0)^{-2})
\]
\[
= (X : W) \left[I_m - \frac{1}{(\beta - \beta_0)} \Omega_{X W}^\frac{1}{2} v_1' \Omega_{X W}^\frac{1}{2} v_1 \left(\frac{(1 - \beta \beta_0)}{(1 - \beta_0)} (\sigma_{x e} + \sigma_{x w \gamma}) \right)^{\frac{1}{2}} \right] \left(0 : \Omega_{X W}^\frac{1}{2} V_1 \right)
\]
\[- \frac{1}{(\beta - \beta_0)^2} \left[\varepsilon + W\gamma - (X : W) \Omega_{X W}^\frac{1}{2} v_1' \Omega_{X W}^\frac{1}{2} v_1 \left(\frac{(1 - \beta \beta_0)}{(1 - \beta_0)} (\sigma_{x e} + \sigma_{x w \gamma}) \right)^{\frac{1}{2}} \right] e_1' \Omega_{X W}^\frac{1}{2} v_1 e_1' + O((\beta - \beta_0)^{-2})
\]
with \(a(\beta - \beta_0) = 1 + \frac{1}{(\beta - \beta_0)^2} c(\beta - \beta_0), \)
\[
\sum_{i=1}^{\infty} \left[\frac{1}{(\beta - \beta_0)^2} c(\beta - \beta_0) \right]^{i}.
\]
We further post-multiply this expression by
\[
\begin{bmatrix}
(\beta - \beta_0) (e_1' \Omega_{X W}^\frac{1}{2} v_1)^{-1} & 0 \\
-1 & I_{m w}
\end{bmatrix}
\begin{bmatrix}
\frac{1}{\sigma_{x e} + \sigma_{x w \gamma}} & 0 \\
\Omega_{X W}^\frac{1}{2} & I_{m w}
\end{bmatrix}
\begin{bmatrix}
(\beta - \beta_0) (e_1' \Omega_{X W}^\frac{1}{2} v_1)^{-1} & 0 \\
-1 & I_{m w}
\end{bmatrix}
\begin{bmatrix}
(\beta - \beta_0) (e_1' \Omega_{X W}^\frac{1}{2} v_1)^{-1} & 0 \\
-1 & I_{m w}
\end{bmatrix}
\]
\[
\begin{bmatrix}
(\beta - \beta_0) (e_1' \Omega_{X W}^\frac{1}{2} v_1)^{-1} & 0 \\
-1 & I_{m w}
\end{bmatrix}
\begin{bmatrix}
(\beta - \beta_0) (e_1' \Omega_{X W}^\frac{1}{2} v_1)^{-1} & 0 \\
-1 & I_{m w}
\end{bmatrix}
\]
which does not alter the roots of the polynomial:

\[
\begin{align*}
\left[(X : W) - (y - X\beta_0 - W\gamma)\frac{\sigma_{e\varepsilon(X : W)}(\beta_0)}{\sigma_{e\varepsilon}(\beta_0)} \right] \Omega_{XW}^{-\frac{1}{2}}(v_1 : V_1) \left((\beta - \beta_0)(\varepsilon'_{XW}v_1)\right)^{-1} 0 \\
= (X : W)(0 : \Omega_{XW}^{-\frac{1}{2}}V_1) \\
- [\varepsilon + W\gamma - (X : W)\Omega_{XW}^{-\frac{1}{2}}(v_1v_1' + V_1V_1')\Omega_{XW}^{-\frac{1}{2}} \left(\frac{\sigma_{Xe}}{\sigma_{W_e}} + \Omega_{XW}(0) \right)] e'_1 + O((\beta - \beta_0)^{-1}) \\
= (X : W)(0 : \Omega_{XW}^{-\frac{1}{2}}V_1) \\
- [\varepsilon + W\gamma - (X : W)\Omega_{XW}^{-1} \left[\left(\frac{\sigma_{Xe}}{\sigma_{W_e}} + \Omega_{XW}(0) \right) \right]] e'_1 + O((\beta - \beta_0)^{-1}) \\
= [\varepsilon - (X : W)\Omega_{XW}^{-\frac{1}{2}} \left(\frac{\sigma_{Xe}}{\sigma_{W_e}} \right) : (X : W)\Omega_{XW}^{-\frac{1}{2}}V_1],
\end{align*}
\]

since \(v_1v_1' + V_1V_1' = I_m\). For large numbers of observations and large values of \(\beta - \beta_0\), the roots of the characteristic polynomial are thus identical to the roots that result from a characteristic polynomial \(|\lambda A - B| = 0\) with

\[
A = \frac{1}{T - k} \left[\varepsilon - (X : W)\Omega_{XW}^{-1} \left(\frac{\sigma_{Xe}}{\sigma_{W_e}} \right) : (X : W)\Omega_{XW}^{-\frac{1}{2}}V_1 \right]' M_Z \\
\rightarrow_p \left(\sigma_{e\varepsilon}(X : W) 0 \\
0 \\
I_{m_w} \right)
\]

and

\[
B = \left[\varepsilon - (X : W)\Omega_{XW}^{-1} \left(\frac{\sigma_{Xe}}{\sigma_{W_e}} \right) : (X : W)\Omega_{XW}^{-\frac{1}{2}}V_1 \right]' P_Z \\
\left[\varepsilon - (X : W)\Omega_{XW}^{-1} \left(\frac{\sigma_{Xe}}{\sigma_{W_e}} \right) : (X : W)\Omega_{XW}^{-\frac{1}{2}}V_1 \right]
\]

\[
= \left(\varepsilon - (X : W)\Omega_{XW}^{-1} \left(\frac{\sigma_{Xe}}{\sigma_{W_e}} \right) P_Z \varepsilon - (X : W)\Omega_{XW}^{-1} \left(\frac{\sigma_{Xe}}{\sigma_{W_e}} \right) \right) \left(\varepsilon P_Z(X : W)\Omega_{XW}^{-\frac{1}{2}}V_1 - \left(\frac{\sigma_{Xe}}{\sigma_{W_e}} \right) \Omega_{XW}^{-\frac{1}{2}} \right)^{\Lambda_1}
\]

since \(\frac{1}{T - k} V_1\Omega_{XW}^{-\frac{1}{2}}(X : W)'M_Z(X : W)\Omega_{XW}^{-\frac{1}{2}}V_1 = I_{m_w}, \) \(V_1\Omega_{XW}^{-\frac{1}{2}}(X : W)'P_Z(X : W)\Omega_{XW}^{-\frac{1}{2}}V_1 = \Lambda_1, \)

where \(\Lambda_1\) is a \(m_w \times m_w\) diagonal matrix that contains all eigenvalues of \(\Omega_{XW}^{-\frac{1}{2}}(X : W)'P_Z(X : W)\Omega_{XW}^{-\frac{1}{2}}V_1\) except the smallest one. The roots of this characteristic polynomial are identical to the eigenvalues of \(A^{-\frac{1}{2}}BA^{-\frac{1}{2}}\) whose convergence behavior is characterized by

\[
A^{-\frac{1}{2}}BA^{-\frac{1}{2}} \rightarrow_d \left[\psi_{e\varepsilon}(X : W) : (\Theta(X : W) + \Psi(X : W)) V_1 \right]' \left[\psi_{e\varepsilon}(X : W) : (\Theta(X : W) + \Psi(X : W)) V_1 \right],
\]

with \((Z')^{-\frac{1}{2}}Z'\left[\varepsilon - (X : W)\Omega_{XW}^{-\frac{1}{2}} \left(\frac{\sigma_{Xe}}{\sigma_{W_e}} \right) \sigma_{e\varepsilon}(X : W) \right] A^{-\frac{1}{2}}(X : W) \rightarrow_p \psi_{e\varepsilon}(X : W), \ (Z')^{-\frac{1}{2}}(\Pi_X : \Pi_W)\Omega_{XW}^{-\frac{1}{2}} \rightarrow_p \Theta(X : W) \) and \((Z')^{-\frac{1}{2}}Z'(V_X : V_W)\Omega_{XW}^{-\frac{1}{2}} \rightarrow_p \Psi(X : W), \) where we note that \(\Theta(X : W)\) might not be properly defined since it may be proportional to the sample size.
3. When $\Theta_{(X:w)}V_1$ has a full rank value the rank of the expected value of $[\psi_{\epsilon,(X:w)} : (\Theta_{(X:w)} + \Psi_{(X:w)}) V_1]$ equals m_w since $E(\psi_{\epsilon,(X:w)}) = 0$. When $\Theta_{(X:w)}V_1$ has a full rank value, the smallest root of $A^{-\frac{1}{2}}BA^{-\frac{1}{2}}$ is thus identical to a rank statistic that tests if the rank of a $k \times m$ matrix equals $m - 1$ under the hypothesis that its rank is equal to $m - 1$. This rank statistic has a $\chi^2(k - m + 1)$ limiting distribution. For general possibly lower rank values of $\Theta_{(X:w)}V_1$, this limiting distribution is bounded by a $\chi^2(k - m_w)$ distributed random variable which is proven in Theorem 5.

References

