Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at √(sNN) = 2.76 TeV with the ATLAS detector at the LHC


DOI
10.1103/PhysRevLett.105.252303

Publication date
2010

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Collisions of heavy ions at ultrarelativistic energies are expected to produce an evanescent hot, dense state, with temperatures exceeding $2 \times 10^{12}$ K, in which the relevant degrees of freedom are not hadrons but quarks and gluons. In this medium, high-energy quarks and gluons are expected to transfer energy to the medium by multiple interactions with the ambient plasma. There is a rich theoretical literature on in-medium QCD energy loss extending back to Bjorken, who proposed to look for “jet quenching” in proton-proton collisions [1]. This work also suggested the observation of highly unbalanced dijets when one jet is produced at the periphery of the collision. For comprehensive reviews of recent theoretical work in this area, see Refs. [2,3].

Single particle measurements made by Relativistic Heavy Ion Collider experiments established that high transverse momentum ($p_T$) hadrons are produced at rates a factor of $5$ or more lower than expected by assuming QCD factorization holds in every binary collision of nucleons in the incoming nuclei [4,5]. This observation is characterized by measurements of $R_{AA}$, the ratio of yields in heavy ion collisions to proton-proton collisions, divided by the number of binary collisions. Dihadron measurements also showed a clear absence of back-to-back hadron production in more central heavy ion collisions [5], strongly suggestive of jet suppression. The limited rapidity coverage of the experiment, and jet energies comparable to the underlying event energy, prevented a stronger conclusion being drawn from these data.

The LHC heavy ion program was foreseen to provide an opportunity to study jet quenching at much higher jet energies than achieved at the Relativistic Heavy Ion Collider. This Letter provides the first measurements of jet production in lead-lead collisions at $\sqrt{s_{NN}} = 2.76$ TeV per nucleon-nucleon collision, the highest center of mass energy ever achieved for nuclear collisions. At this energy, next-to-leading-order QCD calculations [6] predict abundant rates of jets above 100 GeV produced in the pseudorapidity region $|\eta| < 4.5$ [7], which can be reconstructed by ATLAS.

The data in this Letter were obtained by ATLAS during the 2010 lead-lead run at the LHC and correspond to an integrated luminosity of approximately $1.7 \mu$b$^{-1}$.

For this study, the focus is on the balance between the highest transverse energy pair of jets in events where those jets have an azimuthal angle separation $\Delta \phi = |\phi_1 - \phi_2| > \pi/2$ to reduce contributions from multijet final states. In this Letter, jets with $\Delta \phi > \pi/2$ are labeled as being in opposite hemispheres. The jet energy imbalance is expressed in terms of the asymmetry $A_J$: 

$$A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}, \quad \Delta \phi > \frac{\pi}{2},$$

where the first jet is required to have a transverse energy $E_{T1} > 100$ GeV, and the second jet is the highest transverse energy jet in the opposite hemisphere with $E_{T2} > 25$ GeV. The average contribution of the underlying event energy is subtracted when deriving the individual jet transverse energies. The event selection is chosen such that the first jet has high reconstruction efficiency and the second jet is above the distribution of background fluctuations and the intrinsic soft jets associated with the collision. Dijet events are expected to have $A_J$ near zero, with deviations expected from gluon radiation falling outside the jet cone.

---

*Full author list given at the end of the article.

Published by The American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
as well as from instrumental effects. Energy loss in the medium could lead to much stronger deviations in the reconstructed energy balance.

The ATLAS detector [8] is well-suited for measuring jets due to its large acceptance, highly segmented electromagnetic and hadronic calorimeters. These allow efficient reconstruction of jets over a wide range in the region $|\eta| < 4.5$. The detector also provides precise charged particle and muon tracking. An event display showing the inner detector and calorimeter systems is shown in Fig. 1.

Liquid argon technology providing excellent energy and position resolution is used in the electromagnetic calorimeter that covers the pseudorapidity range $|\eta| < 3.2$. The hadronic calorimeter in the range $|\eta| < 1.7$ is provided by a sampling calorimeter made of steel and scintillating tiles. In the end caps ($1.5 < |\eta| < 3.2$), liquid argon technology is also used for the hadronic calorimeters, matching the outer $|\eta|$ limits of the electromagnetic calorimeters. To complete the $\eta$ coverage, the liquid argon forward calorimeters provide both electromagnetic and hadronic energy measurements, extending the coverage up to $|\eta| = 4.9$. The calorimeter ($\eta$ and $\phi$) granularities are $0.1 \times 0.1$ for the hadronic calorimeters up to $|\eta| = 2.5$ (except for the third layer of the tile calorimeter, which has a segmentation of $0.2 \times 0.1$ up to $|\eta| = 1.7$) and then $0.2 \times 0.2$ up to $|\eta| = 4.9$. The electromagnetic calorimeters are longitudinally segmented into three compartments and feature a much finer readout granularity varying by layer, with cells as small as $0.025 \times 0.025$ extending to $|\eta| = 2.5$ in the middle layer. In the data-taking period considered, approximately 187 000 calorimeter cells (98% of the total) were usable for event reconstruction.

The bulk of the data reported here were triggered by using coincidence signals from two sets of minimum bias trigger scintillator detectors, positioned at $z = \pm 3.56$ m, covering the full azimuth between $2.09 < |\eta| < 3.84$ and divided into eight $\phi$ sectors and two $\eta$ sectors. Coincidences in the zero degree calorimeter and luminosity measurement using a Cherenkov integrating detector were also used as primary triggers, since these detectors were far less susceptible to LHC beam backgrounds. These triggers have a large overlap and are close to fully efficient for the events studied here.

In the offline analysis, events are required to have a time difference between the two sets of minimum bias trigger scintillator counters of $\Delta t < 3$ ns and a reconstructed vertex to efficiently reject beam-halo backgrounds. The primary vertex is derived from the reconstructed tracks in the inner detector, which covers $|\eta| < 2.5$ by using silicon pixel and strip detectors surrounded by straw tubes. These event selection criteria have been estimated to accept over 98% of the total lead-lead inelastic cross section.

The level of event activity or “centrality” is characterized by using the total transverse energy ($\Sigma E_T$) deposited in the forward calorimeters (FCal), which cover $3.2 < |\eta| < 4.9$, shown in Fig. 2. Bins are defined in centrality according to fractions of the total lead-lead cross section selected by the trigger and are expressed in terms of percentiles (0%–10%, 10%–20%, 20%–40%, and 40%–100%) with 0% representing the upper end of the $\Sigma E_T$ distribution. Previous heavy ion experiments have shown a clear correlation of the $\Sigma E_T$ with the geometry of the overlap region of the colliding nuclei and, correspondingly, the total event multiplicity. This is verified in the bottom panel of Fig. 2, which shows a tight correlation between the energy flow near midrapidity and the forward $\Sigma E_T$. The forward $\Sigma E_T$ is used for this analysis to avoid biasing the centrality measurement with jets.

Jets have been reconstructed by using the infrared-safe anti-$k_t$ jet clustering algorithm [9] with the radius parame-

![Image of calorimeter display](https://example.com/calorimeter_display.png)

**FIG. 1** (color online). Event display of a highly asymmetric dijet event, with one jet with $E_T > 100$ GeV and no evident recoiling jet and with high-energy calorimeter cell deposits distributed over a wide azimuthal region. By selecting tracks with $p_T > 2.6$ GeV and applying cell thresholds in the calorimeters ($E_T > 700$ MeV in the electromagnetic calorimeter, and $E > 1$ GeV in the hadronic calorimeter), the recoil can be seen dispersed widely over the azimuth.
The jets reconstructed by using the anti-kt algorithm contain a mix of genuine jets and jet-sized patches of the underlying event. For each event, we estimate the average transverse energy density in each calorimeter layer in bins of width \( \Delta \eta = 0.1 \) and averaged over the azimuth. In the averaging, we exclude jets with \( D = E_T(\text{max})/(E_T) \), the ratio of the maximum tower energy over the mean tower energy, greater than 5. The value \( D_{\text{cut}} = 5 \) is chosen based upon simulation studies, and the results have been tested to be stable against variations in this parameter. These average energies are subtracted layer by layer from the cells that make up each jet, scaling appropriately for the cell area. The final reported four-momentum for each jet is then recalculated from the remaining energy in the cells.

The efficiency of the jet reconstruction algorithm and other event properties have been studied by using PYTHIA [10] events superimposed on HIJING events [11]. There is no parton-level interference between the PYTHIA and HIJING generated events. A GEANT4 [12] simulation models the detector response [13] to all the final state particles from the two generated events. The HIJING parameters used do not include jet quenching, but variations in flow as a function of centrality are added. It is found that jets with \( E_T > 100 \text{ GeV} \) are reconstructed with nearly 100% efficiency at all centralities.

Simulations have been used to check the overall linearity and resolution of the reconstruction with respect to the primary jet energy, assuming jet shapes similar to those found in proton-proton collisions [14]. However, the efficiency, linearity, and resolution for reconstructing jets may be poorer if the jets are substantially modified by the medium. To check the sensitivity to such effects, the jet shape, characterized here as the ratio of the “core” energy (integrated over \( \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.2 \)) to the total energy, has been studied. This ratio shows only a weak dependence on centrality, providing evidence that the high-energy jets do look approximately like jets measured in proton-proton collisions and that the energy subtraction procedure does not introduce significant biases.

After event selection, the requirement of a leading jet with \( E_T > 100 \text{ GeV} \) and \( |\eta| < 2.8 \) yields a sample of 1693 events. These are called the “jet-selected events.” The lead-lead data are also compared with a sample of 17 nb\(^{-1}\) of proton-proton collision data [14], which yields 6732 events.

A striking feature of this sample is the appearance of events with only one high \( E_T \) jet clearly visible in the calorimeter and no high \( E_T \) jet opposite to it in azimuth. Such an event is shown in Fig. 1. The calorimeter \( E_T \) and charged particle \( \Sigma p_T \) are shown in regions of \( \Delta \eta \times \Delta \phi = 0.1 \times 0.1 \). Inspection of this event shows a highly asymmetric pair of jets with the particles recoiling against the leading jet being widely distributed in the azimuth.

To quantify the transverse energy balance between jets in these events, we calculate the dijet asymmetry \( A_J \) in different centrality bins between the highest \( E_T \) (leading) jet and the highest \( E_T \) jet in the opposite hemisphere (second jet). The second jet is required to have \( E_T > 25 \text{ GeV} \) in order to discriminate against background from the underlying event. This excludes around 5% of the jet-selected events in the most central 40% of the cross section and accepts nearly all of the more peripheral events.

The dijet asymmetry and \( \Delta \phi \) distributions are shown in four centrality bins in Fig. 3, where they are compared with proton-proton data and with fully reconstructed HIJING + PYTHIA simulated events. The simulated events are in-

![Figure 2](color online). (Top) Distribution of uncorrected \( \Sigma E_T \) in the FCal. Bins in event activity or centrality are indicated by the alternating bands (see text for details) and labeled according to increasing fraction of lead-lead total cross section starting from the largest measured \( \Sigma E_T \). (Bottom) Correlation of uncorrected \( \Sigma E_T \) in \( |\eta| < 3.2 \) with that measured in the FCal (3.2 < \( |\eta| < 4.9 \)).
tended to illustrate the effect of the heavy ion background on jet reconstruction, not any underlying physics process. The dijet asymmetry in peripheral lead-lead events is similar to that in both proton-proton and simulated events; however, as the events become more central, the lead-lead data distributions develop different characteristics, indicating an increased rate of highly asymmetric dijet events. The asymmetry distribution broadens; the mean shifts to higher values; the peak at zero asymmetry is no longer visible; and for the most central events a peak is visible at higher values; the peak at zero asymmetry is no longer visible; and for the most central events a peak is visible at higher asymmetry values (asymmetries larger than 0.6 can exist only for leading jets substantially above the kinematic threshold of 100 GeV transverse energy). The $\Delta \phi$ distributions show that the leading and second jets are primarily back-to-back in all centrality bins; however, a systematic increase is observed in the rate of second jets at large angles relative to the recoil direction as the events become more central.

Numerous studies have been performed to verify that the events with large asymmetry are not produced by backgrounds or detector effects. Detector effects primarily include readout errors and local acceptance loss due to dead channels and detector cracks. All of the jet events in this sample were checked, and no events were flagged as problematic. The analysis was repeated first by requiring both jets to be within $|\eta| < 1$ and $|\eta| < 2$, to see if there is any effect related to boundaries between the calorimeter sections, and no change to the distribution was observed. Furthermore, the highly asymmetric dijets were not found to populate any specific region of the calorimeter, indicating that no substantial fraction of produced energy was lost in an inefficient or uncovered region.

To investigate the effect of the underlying event, the jet radius parameter $R$ was varied from 0.4 to 0.2 and 0.6 with the result that the large asymmetry was not reduced. In fact, the asymmetry increased for the smaller radius, which would not be expected if detector effects are dominant. The analysis was independently corroborated by a study of “track jets,” reconstructed with inner detector tracks of $p_T > 4$ GeV using the same jet algorithms. The inner detector has an estimated efficiency for reconstructing charged hadrons above $p_T > 1$ GeV of approximately 80% in the most peripheral events (the same as that found in 7 TeV proton-proton operation) and 70% in the most central events, due to the approximately 10% occupancy reached in the silicon strips. A similar asymmetry effect is also observed with track jets. The jet energy scale and underlying event subtraction were also validated by correlating calorimeter and track-based jet measurements.

The missing $E_T$ distribution was measured for minimum bias heavy ion events as a function of the total $E_T$ deposited in the calorimeters up to about $\sum E_T = 10$ TeV. The resolution as a function of total $E_T$ shows the same behavior as in proton-proton collisions. None of the events in the jet-selected sample was found to have an anomalously large missing $E_T$.

The events containing high-$p_T$ jets were studied for the presence of high-$p_T$ muons that could carry a large fraction of the recoil energy. Fewer than 2% of the events have a muon with $p_T > 10$ GeV, potentially recoiling against the
leading jet, so this can not explain the prevalence of highly asymmetric dijet topologies in more central events.

None of these investigations indicate that the highly asymmetric dijet events arise from backgrounds or detector-related effects.

In summary, first results are presented on jet reconstruction in lead-lead collisions, with the ATLAS detector at the LHC. In a sample of events with a reconstructed jet with transverse energy of 100 GeV or more, an asymmetry is observed between the transverse energies of the leading and second jets that increases with the centrality of the collisions. This has a natural interpretation in terms of QCD energy loss, where the second jet is attenuated, in some cases leading to striking highly asymmetric dijet events. This observation is the first of an enhancement of such large dijet asymmetries, not observed in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

We thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CONICET, C17, and CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MEYS (MSMT), C17, and CRDF, Russia; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; RFBR, NRC KI, Russia; INFN, Italy; INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC Sweden, CC-IN2P3 (France), KIT/GridKA (Germany), TRIUMF (Canada), NDGF (Denmark, Norway, and Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and in the Tier-2 facilities worldwide.

In summary, first results are presented on jet reconstruction in lead-lead collisions, with the ATLAS detector at the LHC. In a sample of events with a reconstructed jet with transverse energy of 100 GeV or more, an asymmetry is observed between the transverse energies of the leading and second jets that increases with the centrality of the collisions. This has a natural interpretation in terms of QCD energy loss, where the second jet is attenuated, in some cases leading to striking highly asymmetric dijet events. This observation is the first of an enhancement of such large dijet asymmetries, not observed in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

We thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC, and CFI, Canada; CONICET, C17, and CONICYT, Chile; CAS, MOST, and NSFC, China; COLCIENCIAS, Colombia; MEYS (MSMT), C17, and CRDF, Russia; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; RFBR, NRC KI, Russia; INFN, Italy; INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC Sweden, CC-IN2P3 (France), KIT/GridKA (Germany), TRIUMF (Canada), NDGF (Denmark, Norway, and Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (United Kingdom), and in the Tier-2 facilities worldwide.

(ArTS Collaboration)
29 CERN, CH-1211 Geneva 23, Switzerland
30 University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, Illinois 60637, USA
31 Pontificia Universidad Católica de Chile, Facultad de Física, Departamento de Física, Avenida Vicuña Mackenna 4860, San Joaquín, Santiago, Chile
32 Universidad Técnica Federico Santa María, Departamento de Física, Avenida España 1680, Casilla 110-V, Valparaíso, Chile
33 Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918, 19 Yuquan Road, Shijing Shan District, CN - Beijing 100049, China
34 University of Science and Technology of China (USTC), Department of Modern Physics, Hefei, CN - Anhui 230026, China
35 University of Science and Technology, Department of Physics, Nanjing, CN - Jiangsu 210093, China
36 Shandong University, High Energy Physics Group, Jinan, CN - Shandong 250100, China
37 Laboratoire de Physique Corpusculaire, Clermont Université, Université Blaise Pascal, CNRS/IN2P3, FR-63177 Aubière Cedex, France
38 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, PL-31342 Krakow, Poland
39 Southern Methodist University, Physics Department, 106 Fondren Science Building, Dallas, Texas 75275-0175, USA
40 University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080-3021, USA
41 DESY, Notkestrasse 85, D-22603 Hamburg and Platanenallee 6, D-15738 Zeuthen, Germany
42 TU Dortmund, Experimentelle Physik IV, DE-44221 Dortmund, Germany
43 Technical University Dresden, Institut für Kern- und Teilchenphysik, Zellescher Weg 19, D-01069 Dresden, Germany
44 Duke University, Department of Physics, Durham, North Carolina 27708, USA
45 University of Edinburgh, School of Physics and Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
46 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3 AT-2700 Wiener Neustadt, Austria
47 INFN Laboratori Nazionali di Frascati, via Enrico Fermi 40, IT-00044 Frascati, Italy
48 Albert-Ludwigs-Universität, Fakultät für Mathematik und Physik, Hermann-Herder Strasse 3, D-79104 Freiburg i.Br., Germany
49 Universität de Genève, Section de Physique, 24 rue Ernest Ansermet, CH-1211 Genève 4, Switzerland
50 INFN Sezione di Genova, via Dodecaneso 33, IT-16146 Genova, Italy
51 Institute of Physics of the Georgian Academy of Sciences, 6 Tamaraashvili Street, GE-380077 Tbilisi, Georgia; Tbilisi State University, HEP Institute, University Street 9, GE-380086 Tbilisi, Georgia
52 Justus-Liebig-Universität Giessen, II Physikalisches Institut, Heinrich-Buff Ring 16, D-35392 Giessen, Germany
53 University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ, United Kingdom
54 Georg-August-Universität, II. Physikalisches Institut, Friedrich-Hund Platz 1, D-37077 Göttingen, Germany
55 LPSC, CNRS/IN2P3 and Université Joseph Fourier Grenoble, 35 avenue des Martyrs, FR-38026 Grenoble Cedex, France
56 Hampton University, Department of Physics, Hampton, Virginia 23668, USA
57 Harvard University, Laboratory for Particle Physics and Cosmology, 18 Hammond Street, Cambridge, Massachusetts 02138, USA
58a Ruprecht-Karls-Universität Heidelberg: Kirchhoff-Institut für Physik, Im Neuenheimer Feld 227, D-69120 Heidelberg, Germany
58b Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
58c ZITI Ruprecht-Karls-Universität Heidelberg, Lehrstuhl für Informatik V, B6, 23-29, DE-68131 Mannheim, Germany
59 Hiroshima University, Faculty of Science, 1-3-1 Kagamiyama, Higashihiroshima-shi, JP - Hiroshima 739-8526, Japan
60 Hiroshima Institute of Technology, Faculty of Applied Information Science, 2-1-1 Miyake Saeki-ku, Hiroshima-shi, JP - Hiroshima 731-5193, Japan
61 Indiana University, Department of Physics, Swain Hall West 117, Bloomington, Indiana 47405-7105, USA
62 Institut für Astro- und Teilchenphysik, Technikerstrasse 25, A-6020 Innsbruck, Austria
63 University of Iowa, 203 Van Allen Hall, Iowa City, Iowa 52242-1479, USA
64 Iowa State University, Department of Physics and Astronomy, Ames High Energy Physics Group, Ames, Iowa 50011-3160, USA
65 Joint Institute for Nuclear Research, JINR Dubna, RU-141980 Moscow Region, Russia
66 KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-080, Japan
67 Kobe University, Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, JP Kobe 657-8501, Japan
68 Kyoto University, Faculty of Science, Oiwake-cho, Kitashirakawa, Sakyou-ku, Kyoto-shi, JP - Kyoto 606-8502, Japan
69 Kyoto University of Education, 1 Fukakusa, Fujimori, fushimi-ku, Kyoto-shi, JP - Kyoto 612-8522, Japan
70 Universidad Nacional de La Plata, FCE, Departamento de Física, IFLP (CONICET-UNLP), C.C. 67, 1900 La Plata, Argentina
71 Lancaster University, Physics Department, Lancaster LA1 4YB, United Kingdom
72a INFN Sezione di Lecce, Via Arnesano, IT-73100 Lecce, Italy
72b Università del Salento, Dipartimento di Fisica, Via Arnesano, IT-73100 Lecce, Italy

252303-15
INFN Gruppo Collegato di Udine, Strada Costiera 11, IT-33100 Udine, Italy
ICTP, Strada Costiera 11, IT-34014, Trieste, Italy
University of Illinois, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, USA
University of Uppsala, Department of Physics and Astronomy, P.O. Box 516, SE-751 20 Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) Centro Mixto UVEG-CSIC, Apartado 22085 ES-46071 Valencia, Departament Fisica Atómica Molecular y Nuclear, Departament Ingneria Electrónica; Universitat de Valencia, and Institut de Microelectrónica de Barcelona (IMB-CNMCSCIC), 08193 Bellaterra, Spain
University of British Columbia, Department of Physics, 6224 Agricultural Road, CA - Vancouver, British Columbia V6T 1Z1, Canada
University of Victoria, Department of Physics and Astronomy, P.O. Box 3055, Victoria British Columbia, V8W 3P6, Canada
Waseda University, WISE, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
The Weizmann Institute of Science, Department of Particle Physics, P.O. Box 26, IL-76100 Rehovot, Israel
University of Wisconsin, Department of Physics, 1150 University Avenue, Madison, Wisconsin 53706, USA
Julius-Maximilians-University of Würzburg, Physikalisches Institute, Am Hubland, 97074 Würzburg, Germany
Bergische Universität, Fachbereich C, Physik, Postfach 100127, Gauss-Strasse 20, D-42097 Wuppertal, Germany
Yale University, Department of Physics, P.O. Box 208121, New Haven, Connecticut 06520-8121, USA
Yerevan Physics Institute, Alikhanian Brothers Street 2, AM-375036 Yerevan, Armenia
Centre de Calcul CNRS/IN2P3, Domaine scientifique de la Doua, 27 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

aDeceased.
bAlso at LIP, Portugal.
cAlso at Faculdade de Ciencias, Universidade de Lisboa, Portugal.
dAlso at CPPM, Marseille, France.
eAlso at Centro de Física Nuclear, Universidade de Lisboa, Portugal.
fAlso at TRIUMF, Vancouver, Canada.
gAlso at FPACS, AGH-UST, Cracow, Poland.
hAlso at Department of Physics, University of Coimbra, Portugal.
iAlso at Università di Napoli Parthenope, Napoli, Italy.
jAlso at Institute of Particle Physics (IPP), Canada.
kAlso at Università di Napoli Parthenope, via A. Acton 38, IT-80133 Napoli, Italy.
lAlso at Louisiana Tech University, 305 Wisteria Street, P.O. Box 3178, Ruston, LA 71272, USA.
mAlso at Universidade de Lisboa, Portugal.
nAlso at California State University, Fresno, CA, USA.
oAlso at TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C. V6T 2A3, Canada.
pAlso at Faculdade de Ciencias, Universidade de Lisboa, Portugal and at Centro de Física Nuclear da Universidade de Lisboa, Portugal.
qAlso at California Institute of Technology, Pasadena, CA, USA.
rAlso at Louisiana Tech University, Ruston, LA, USA.
sAlso at University of Montreal, Montreal, Canada.
tAlso at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
uAlso at Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
vAlso at Manhattan College, New York, NY, USA.
wAlso at School of Physics and Engineering, Sun Yat-sen University, China.
xAlso at Taiwan Tier-1, ASGC, Academia Sinica, Taipei, Taiwan.
yAlso at School of Physics, Shandong University, Jinan, China.
zAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom.
aaAlso at Departamento de Fisica, Universidade de Minho, Portugal.
bbAlso at University of South Carolina, Columbia, SC, USA.
cAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
dAlso at University of South Carolina, Department of Physics and Astronomy, 700 S. Main Street, Columbia, SC 29208, USA.
eAlso at Institute of Physics, Jagiellonian University, Cracow, Poland.
fAlso at Oxford University, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom.
gAlso at CEA.
hhAlso at LPNHE, Paris, France.
iiAlso at Nanjing University, China.