Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at (sNN) = 2.76 TeV with the ATLAS detector at the LHC

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.105.252303

Citation for published version (APA):
Aad, G., et al., U., Bentvelsen, S., Colijn, A. P., de Jong, P., de Nooij, L., ... Vreeswijk, M. (2010). Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at (sNN) = 2.76 TeV with the ATLAS detector at the LHC. Physical Review Letters, 105(25), [252303]. DOI: 10.1103/PhysRevLett.105.252303

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Collisions of heavy ions at ultrarelativistic energies are expected to produce an evanescent hot, dense state, with temperatures exceeding 2×10^{12} K, in which the relevant degrees of freedom are not hadrons but quarks and gluons. In this medium, high-energy quarks and gluons are expected to transfer energy to the medium by multiple interactions with the ambient plasma. There is a rich theoretical literature on in-medium QCD energy loss extending back to Bjorken, who proposed to look for “jet quenching” in proton-proton collisions [1]. This work also suggested the observation of highly unbalanced dijets when one jet is produced in the periphery of the collision. For comprehensive reviews of recent theoretical work in this area, see Refs. [2,3].

Single particle measurements made by Relativistic Heavy Ion Collider experiments established that high transverse momentum (p_T) hadrons are produced at rates a factor of 5 or more lower than expected by assuming QCD factorization holds in every binary collision of nucleons in the oncoming nuclei [4,5]. This observation is characterized by measurements of R_{AA}, the ratio of yields in heavy ion collisions to proton-proton collisions, divided by the number of binary collisions. Dihadron measurements also showed a clear absence of back-to-back hadron production in more central heavy ion collisions [5], strongly suggestive of jet suppression. The limited rapidity coverage of the experiment, and jet energies comparable to the underlying event energy, prevented a stronger conclusion being drawn from these data.

The LHC heavy ion program was foreseen to provide an opportunity to study jet quenching at much higher jet energies than achieved at the Relativistic Heavy Ion Collider. This Letter provides the first measurements of jet production in lead-lead collisions at $\sqrt{s_{NN}} = 2.76$ TeV per nucleon-nucleon collision, the highest center of mass energy ever achieved for nuclear collisions. At this energy, next-to-leading-order QCD calculations [6] predict abundant rates of jets above 100 GeV produced in the pseudorapidity region $|\eta| < 4.5$ [7], which can be reconstructed by ATLAS.

The data in this Letter were obtained by ATLAS during the 2010 lead-lead run at the LHC and correspond to an integrated luminosity of approximately 1.7 μb$^{-1}$.

For this study, the focus is on the balance between the highest transverse energy pair of jets in events where those jets have an azimuthal angle separation $\Delta \phi = |\phi_1 - \phi_2| > \pi/2$ to reduce contributions from multijet final states. In this Letter, jets with $\Delta \phi > \pi/2$ are labeled as being in opposite hemispheres. The jet energy imbalance is expressed in terms of the asymmetry A_J:

$$A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}, \quad \Delta \phi > \frac{\pi}{2}, \quad (1)$$

where the first jet is required to have a transverse energy $E_{T1} > 100$ GeV, and the second jet is the highest transverse energy jet in the opposite hemisphere with $E_{T2} > 25$ GeV. The average contribution of the underlying event energy is subtracted when deriving the individual jet transverse energies. The event selection is chosen such that the first jet has high reconstruction efficiency and the second jet is above the distribution of background fluctuations and the intrinsic soft jets associated with the collision. Dijet events are expected to have A_J near zero, with deviations expected from gluon radiation falling outside the jet cone,
as well as from instrumental effects. Energy loss in the medium could lead to much stronger deviations in the reconstructed energy balance.

The ATLAS detector [8] is well-suited for measuring jets due to its large acceptance, highly segmented electromagnetic and hadronic calorimeters. These allow efficient reconstruction of jets over a wide range in the region \(|\eta| < 4.5\). The detector also provides precise charged particle and muon tracking. An event display showing the inner detector and calorimeter systems is shown in Fig. 1.

Liquid argon technology providing excellent energy and position resolution is used in the electromagnetic calorimeter that covers the pseudorapidity range \(|\eta| < 3.2\). The hadronic calorimeter in the range \(|\eta| < 1.7\) is provided by a sampling calorimeter made of steel and scintillating tiles. In the end caps (1.5 < |\eta| < 3.2), liquid argon technology is also used for the hadronic calorimeters, matching the outer |\eta| limits of the electromagnetic calorimeters. To complete the \(\eta\) coverage, the liquid argon forward calorimeters provide both electromagnetic and hadronic energy measurements, extending the coverage up to |\eta| = 4.9. The calorimeter (\(\eta\) and \(\phi\)) granularities are 0.1 \(\times\) 0.1 for the hadronic calorimeters up to |\eta| = 2.5 (except for the third layer of the tile calorimeter, which has a segmentation of 0.2 \(\times\) 0.1 up to |\eta| = 1.7) and then 0.2 \(\times\) 0.2 up to |\eta| = 4.9. The electromagnetic calorimeters are longitudinally segmented into three compartments and feature a much finer readout granularity varying by layer, with cells as small as 0.025 \(\times\) 0.025 extending to |\eta| = 2.5 in the middle layer. In the data-taking period considered, approximately 187 000 calorimeter cells (98% of the total) were usable for event reconstruction.

The bulk of the data reported here were triggered by using coincidence signals from two sets of minimum bias trigger scintillator detectors, positioned at \(z = \pm 3.56\) m, covering the full azimuth between 2.09 < |\eta| < 3.84 and divided into eight \(\phi\) sectors and two \(\eta\) sectors. Coincidences in the zero degree calorimeter and luminosity measurement using a Cherenkov integrating detector were also used as primary triggers, since these detectors were far less susceptible to LHC beam backgrounds. These triggers have a large overlap and are close to fully efficient for the events studied here.

In the offline analysis, events are required to have a time difference between the two sets of minimum bias trigger scintillator counters of \(\Delta t < 3\) ns and a reconstructed vertex to efficiently reject beam-halo backgrounds. The primary vertex is derived from the reconstructed tracks in the inner detector, which covers |\eta| < 2.5 by using silicon pixel and strip detectors surrounded by straw tubes. These event selection criteria have been estimated to accept over 98% of the total lead-lead inelastic cross section.

The level of event activity or “centrality” is characterized by using the total transverse energy (\(\Sigma E_T\)) deposited in the forward calorimeters (FCal), which cover 3.2 < |\eta| < 4.9, shown in Fig. 2. Bins are defined in centrality according to fractions of the total lead-lead cross section selected by the trigger and are expressed in terms of percentiles (0%–10%, 10%–20%, 20%–40%, and 40%–100%) with 0% representing the upper end of the \(\Sigma E_T\) distribution. Previous heavy ion experiments have shown a clear correlation of the \(\Sigma E_T\) with the geometry of the overlap region of the colliding nuclei and, correspondingly, the total event multiplicity. This is verified in the bottom panel of Fig. 2, which shows a tight correlation between the energy flow near midrapidity and the forward \(\Sigma E_T\). The forward \(\Sigma E_T\) is used for this analysis to avoid biasing the centrality measurement with jets.

Jets have been reconstructed by using the infrared-safe anti-\(k_T\) jet clustering algorithm [9] with the radius parame-

FIG. 1 (color online). Event display of a highly asymmetric dijet event, with one jet with \(E_T > 100\) GeV and no evident recoiling jet and with high-energy calorimeter cell deposits distributed over a wide azimuthal region. By selecting tracks with \(p_T > 2.6\) GeV and applying cell thresholds in the calorimeters (\(E_T > 700\) MeV in the electromagnetic calorimeter, and \(E > 1\) GeV in the hadronic calorimeter), the recoil can be seen dispersed widely over the azimuth.
for the cell area. The final reported four-momentum for each jet is then recalculated from the remaining energy in the cells.

The efficiency of the jet reconstruction algorithm and other event properties have been studied by using PYTHIA [10] events superimposed on HIJING events [11]. There is no parton-level interference between the PYTHIA and HIJING generated events. A GEANT4 [12] simulation models the detector response [13] to all the final state particles from the two generated events. The HIJING parameters used do not include jet quenching, but variations in flow as a function of centrality are added. It is found that jets with $E_T > 100$ GeV are reconstructed with nearly 100% efficiency at all centralities.

Simulations have been used to check the overall linearity and resolution of the reconstruction with respect to the primary jet energy, assuming jet shapes similar to those found in proton-proton collisions [14]. However, the efficiency, linearity, and resolution for reconstructing jets may be poorer if the jets are substantially modified by the medium. To check the sensitivity to such effects, the jet shape, characterized here as the ratio of the “core” energy (integrated over $\sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.2$) to the total energy, has been studied. This ratio shows only a weak dependence on centrality, providing evidence that the high-energy jets do look approximately like jets measured in proton-proton collisions and that the energy subtraction procedure does not introduce significant biases.

After event selection, the requirement of a leading jet with $E_T > 100$ GeV and $|\eta| < 2.8$ yields a sample of 1693 events. These are called the “jet-selected events.” The lead-lead data are also compared with a sample of 17 nb$^{-1}$ of proton-proton collision data [14], which yields 6732 events.

A striking feature of this sample is the appearance of events with only one high E_T jet clearly visible in the calorimeter and no high E_T jet opposite to it in azimuth. Such an event is shown in Fig. 1. The calorimeter E_T and charged particle p_T are shown in regions of $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$. Inspection of this event shows a highly asymmetric pair of jets with the particles recoiling against the leading jet being widely distributed in the azimuth.

To quantify the transverse energy balance between jets in these events, we calculate the dijet asymmetry A_J in different centrality bins between the highest E_T (leading) jet and the highest E_T jet in the opposite hemisphere (second jet). The second jet is required to have $E_T > 25$ GeV in order to discriminate against background from the underlying event. This excludes around 5% of the jet-selected events in the most central 40% of the cross section and accepts nearly all of the more peripheral events.

The dijet asymmetry and $\Delta \phi$ distributions are shown in four centrality bins in Fig. 3, where they are compared with proton-proton data and with fully reconstructed HIJING + PYTHIA simulated events. The simulated events in
The dijet asymmetry in peripheral lead-lead events is expected to illustrate the effect of the heavy ion background on jet reconstruction, not any underlying physics process. The dijet asymmetry in peripheral lead-lead events is similar to that in both proton-proton and simulated events; however, as the events become more central, the lead-lead data distributions develop different characteristics, indicating an increased rate of highly asymmetric dijet events. The missing

The dijet asymmetry distributions for data (points) and unquenched HIJING with superimposed PYTHIA dijets (solid yellow histograms), as a function of collision centrality. Proton-proton data from $\sqrt{s} = 7$ TeV, analyzed with the same jet selection, are shown as open circles. (Bottom) Distribution of $\Delta \phi$, the azimuthal angle between the two jets, for data and HIJING + PYTHIA, also as a function of centrality.

No substantial fraction of produced energy was lost in an inefficient or uncovered region. To investigate the effect of the underlying event, the jet radius parameter R was varied from 0.4 to 0.2 and 0.6 with the result that the large asymmetry was not reduced. In fact, the asymmetry increased for the smaller radius, which would not be expected if detector effects are dominant. The analysis was independently corroborated by a study of "track jets," reconstructed with inner detector tracks of $p_T > 4$ GeV using the same jet algorithms. The inner detector has an estimated efficiency for reconstructing charged hadrons above $p_T > 1$ GeV of approximately 80% in the most peripheral events (the same as that found in 7 TeV proton-proton operation) and 70% in the most central events, due to the approximately 10% occupancy reached in the silicon strips. A similar asymmetry effect is also observed with track jets. The jet energy scale and underlying event subtraction were also validated by correlating calorimeter and track-based jet measurements.

The missing E_T distribution was measured for minimum bias heavy ion events as a function of the total E_T deposited in the calorimeters up to about $\Sigma E_T = 10$ TeV. The resolution as a function of total E_T shows the same behavior as in proton-proton collisions. None of the events in the jet-selected sample was found to have an anomalously large missing E_T.

The events containing high-p_T jets were studied for the presence of high-p_T muons that could carry a large fraction of the recoil energy. Fewer than 2% of the events have a muon with $p_T > 10$ GeV, potentially recoiling against the
leading jet, so this can not explain the prevalence of highly asymmetric dijet topologies in more central events.

None of these investigations indicate that the highly asymmetric dijet events arise from backgrounds or detector-related effects. We thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

In summary, first results are presented on jet reconstruction in lead-lead collisions, with the ATLAS detector at the LHC. In a sample of events with a reconstructed jet with transverse energy of 100 GeV or more, an asymmetry is observed between the transverse energies of the leading and second jets that increases with the centrality of the collisions. This has a natural interpretation in terms of strong jet energy loss in a hot, dense medium.

None of these investigations indicate that the highly asymmetric dijet topologies in more central events. This observation is the first of an enhancement of QCD energy loss, where the second jet is attenuated, in proton-proton collisions, which may point to an interpretation in terms of strong jet energy loss in a hot, dense medium.

We thank CERN for the efficient commissioning and operation of the LHC during this initial high-energy-data-taking period as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anticlockwise beam direction defines the positive z axis, while the positive x axis is defined as pointing from the collision point to the center of the LHC ring and the positive y axis points upwards. The azimuthal angle ϕ is measured around the beam axis, and the polar angle θ is measured with respect to the z axis. Pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$.

[7] The ATLAS reference system is a Cartesian right-handed coordinate system, with the nominal collision point at the origin. The anticlockwise beam direction defines the positive z axis, while the positive x axis is defined as pointing from the collision point to the center of the LHC ring and the positive y axis points upwards. The azimuthal angle ϕ is measured around the beam axis, and the polar angle θ is measured with respect to the z axis. Pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$.

INFN Gruppo Collegato di Udine, Strada Costiera 11, IT-33100 Udine, Italy
ICTP, Strada Costiera 11, IT-34014, Trieste, Italy
Università di Udine, Dipartimento di Fisica, via delle Scienze 208, IT-33100 Udine, Italy
University of Illinois, Department of Physics, 1110 West Green Street, Urbana, Illinois 61801, USA
University of Uppsala, Department of Physics and Astronomy, P.O. Box 516, SE-751 20 Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) Centro Mixto UVEG-CSIC, Apartado 22085 ES-46071 Valencia, Departament Física Atòmica Molecular y Nuclear, Departament Ingeneria Electrònica; Universitat de Valencia, and Institut de Microelectrònica de Barcelona (IMB-CNMT-CSIC), 08193 Bellaterra, Spain
University of British Columbia, Department of Physics, 6224 Agricultural Road, CA - Vancouver, British Columbia V6T 1Z1, Canada
University of Victoria, Department of Physics and Astronomy, P.O. Box 3055, Victoria British Columbia, V8W 3P6, Canada
Waseda University, WISE, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
The Weizmann Institute of Science, Department of Particle Physics, P.O. Box 26, IL-76100 Rehovot, Israel
University of Wisconsin, Department of Physics, 1150 University Avenue, Madison, Wisconsin 53706, USA
Julius-Maximilians-University of Würzburg, Physikalisches Institute, Am Hubland, 97074 Würzburg, Germany
Bergische Universität, Fachbereich C, Physik, Postfach 100127, Gauss-Strasse 20, D- 42097 Wuppertal, Germany
Yale University, Department of Physics, P.O. Box 208121, New Haven, Connecticut 06520-8121, USA
Yerevan Physics Institute, Alikhanian Brothers Street 2, AM-375036 Yerevan, Armenia
Centre de Calcul CNRS/IN2P3, Domaine scientifique de la Doua, 27 bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France

\(^{a}\)Deceased.
\(^{b}\)Also at LIP, Portugal.
\(^{c}\)Also at Faculdade de Ciencias, Universidade de Lisboa, Portugal.
\(^{d}\)Also at CPPM, Marseille, France.
\(^{e}\)Also at Centro de Fisica Nuclear, Universidade de Lisboa, Portugal.
\(^{f}\)Also at TRIUMF, Vancouver, Canada.
\(^{g}\)Also at FPACS, AGH-UST, Cracow, Poland.
\(^{h}\)Also at Department of Physics, University of Coimbra, Portugal.
\(^{i}\)Also at Università di Napoli Parthenope, Napoli, Italy.
\(^{j}\)Also at Institute of Particle Physics (IPP), Canada.
\(^{k}\)Also at Università di Napoli Parthenope, via A. Acton 38, IT-80133 Napoli, Italy.
\(^{l}\)Also at Louisiana Tech University, 305 Wisteria Street, P.O. Box 3178, Ruston, LA 71272, USA.
\(^{m}\)Also at Universidade de Lisboa, Portugal.
\(^{n}\)Also at California State University, Fresno, CA, USA.
\(^{o}\)Also at TRIUMF, 4004 Wesbrook Mall, Vancouver, B.C. V6T 2A3, Canada.
\(^{p}\)Also at Faculdade de Ciencias, Universidade de Lisboa, Portugal and at Centro de Fisica Nuclear da Universidade de Lisboa, Portugal.
\(^{q}\)Also at California Institute of Technology, Pasadena, CA, USA.
\(^{r}\)Also at Louisiana Tech University, Ruston, LA, USA.
\(^{s}\)Also at University of Montreal, Montreal, Canada.
\(^{t}\)Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.
\(^{u}\)Also at Institut für Experimentalphysik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
\(^{v}\)Also at Manhattan College, New York, NY, USA.
\(^{w}\)Also at School of Physics and Engineering, Sun Yat-sen University, China.
\(^{x}\)Also at Taiwan Tier-1, ASGC, Academia Sinica, Taipei, Taiwan.
\(^{y}\)Also at School of Physics, Shandong University, Jinan, China.
\(^{z}\)Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
\(^{aa}\)Also at Departamento de Fisica, Universidade de Minho, Portugal.
\(^{bb}\)Also at University of South Carolina, Columbia, SC, USA.
\(^{cc}\)Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary.
\(^{dd}\)Also at University of South Carolina, Department of Physics and Astronomy, 700 S. Main Street, Columbia, SC 29208, USA.
\(^{ee}\)Also at Institute of Physics, Jagiellonian University, Cracow, Poland.
\(^{ff}\)Also at Oxford University, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom.
\(^{gg}\)Also at CEA.
\(^{hh}\)Also at LPNHE, Paris, France.
\(^{ii}\)Also at Nanjing University, China.