Charged-particle multiplicities in pp interactions at $\sqrt{s} = 900$ GeV measured with the ATLAS detector at the LHC

DOI
10.1016/j.physletb.2010.03.064

Publication date
2010

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Charged-particle multiplicities in \(pp \) interactions at \(\sqrt{s} = 900 \) GeV measured with the ATLAS detector at the LHC

ATLAS Collaboration

1. Introduction

Inclusive charged-particle distributions have been measured in \(pp \) and \(p\bar{p} \) collisions at a range of different centre-of-mass energies \([1–13]\). Many of these measurements have been used to constrain phenomenological models of soft-hadronic interactions and to predict properties at higher centre-of-mass energies. Most of the previous charged-particle multiplicity measurements were obtained by selecting data with a double-arm coincidence trigger, thus removing large fractions of diffractive events. The data were then further corrected to remove the remaining single-diffractive component. This selection is referred to as non-single-diffractive (NSD). In some cases, designated as inelastic non-diffractive, the residual double-diffractive component was also subtracted. The selection of NSD or inelastic non-diffractive charged-particle spectra involves model-dependent corrections for the diffractive components and for effects of the trigger selection on events with no charged particles within the acceptance of the detector. The measurement presented in this Letter implements a different strategy, which uses a single-arm trigger overlapping with the acceptance of the tracking volume. Results are presented as inclusive-inelastic distributions, with minimal model-dependence, by requiring one charged particle within the acceptance of the measurement.

This Letter reports on a measurement of primary charged particles with a momentum component transverse to the beam direction \(p_T \) directly produced in \(pp \) interactions or from subsequent decays of particles with a shorter lifetime. The distributions of tracks reconstructed in the ATLAS inner detector were corrected to obtain the particle-level distributions:

\[
\frac{1}{N_{ev}} \frac{dN_{ch}}{d\eta}, \quad \frac{1}{N_{ev}} \frac{1}{2\pi} \frac{d^2N_{ch}}{d\eta d\eta'}, \quad \frac{1}{N_{ev}} \frac{dN_{ev}}{dn_{ch}} \quad \text{and} \quad \langle p_T \rangle \text{ vs. } n_{ch},
\]

where \(N_{ev} \) is the number of events with at least one charged particle inside the selected kinematic range, \(N_{ch} \) is the total number of charged particles, \(n_{ch} \) is the number of charged particles in an event and \(\langle p_T \rangle \) is the average \(p_T \) for a given number of charged particles.
Comparisons are made to previous measurements of charged-particle multiplicities in pp and $p\bar{p}$ collisions at $\sqrt{s} = 900$ GeV centre-of-mass energies [1,5] and to Monte Carlo (MC) models.

2. The ATLAS detector

The ATLAS detector [14] at the Large Hadron Collider (LHC) [15] covers almost the whole solid angle around the collision point with layers of tracking detectors, calorimeters and muon chambers. It has been designed to study a wide range of physics topics at LHC energies. For the measurements presented in this Letter, the tracking devices and the trigger system were of particular importance.

The ATLAS inner detector has full coverage in ϕ and covers the pseudorapidity range $|\eta| < 2.5$. It consists of a silicon pixel detector (Pixel), a silicon microstrip detector (SCT) and a transition radiation tracker (TRT). These detectors cover a sensitive radial distance from the interaction point of 50.5–150 mm, 299–560 mm and 563–1066 mm, respectively, and are immersed in a 2 T axial magnetic field. The inner-detector barrel (end-cap) parts consist of 3 (2 × 3) Pixel layers, 4 (2 × 9) double-layers of single-sided silicon microstrips with a 40 mrad stereo angle, and 73 (2 × 160) layers of TRT straws. These detectors have position resolutions of typically 10, 17 and 130 μm for the R–ϕ co-ordinate and, in case of the Pixel and SCT, 115 and 580 μm for the second measured co-ordinate. A track from a particle traversing the barrel detector would typically have 11 silicon hits (3 pixel clusters and 8 strip clusters), and more than 30 straw hits.

The ATLAS detector has a three-level trigger system: Level 1 (L1), Level 2 (L2) and Event Filter (EF). For this measurement, the trigger relies on the L1 signals from the Beam Pickup Timing devices (BPTX) and the Minimum Bias Trigger Scintillators (MBTS). The BPTX are composed of beam pick-ups attached to the beam pipe ±175 m from the centre of the ATLAS detector. The MBTS are mounted at each end of the detector in front of the liquid-argon end-cap calorimeter cryostats at $z = ±3.56$ m and are segmented into eight sectors in azimuth and two rings in pseudorapidity $(2.09 < |\eta| < 2.82$ and $2.82 < |\eta| < 3.84$). Data were collected for this analysis using the MBTS trigger, formed from BPTX and MBTS trigger signals. The MBTS trigger was configured to require one hit above threshold from either side of the detector. The efficiency of this trigger was studied with a separate prescaled L1 BPTX trigger, filtered to obtain inelastic interactions by inner detector requirements at L2 and EF.

3. Monte Carlo simulation

Low-\(p_T\) scattering processes may be described by lowest-order perturbative Quantum Chromodynamics (QCD) two-to-two parton scatterers, where the divergence of the cross section at $p_T = 0$ is regulated by phenomenological models. These models include multiple-parton scattering, partonic-matter distributions, scattering between the unresolved protons and colour reconnection [16]. The PYTHIA [17] MC event generator implements several of these models. The parameters of these models have been tuned to describe charged-hadron production and the underlying event in pp and $p\bar{p}$ data at centre-of-mass energies between 200 GeV and 1.96 TeV.

Samples of ten million MC events were produced for single-diffractive, double-diffractive and non-diffractive processes using the PYTHIA 6.4.21 generator. A specific set of optimised parameters, the ATLAS MC09 PYTHIA tune [18], which employs the MRST LO* parton density functions [19] and the p_T-ordered parton shower, is the reference tune throughout this Letter. These parameters were derived by tuning to underlying event and minimum-bias data from Tevatron at 630 GeV and 1.8 TeV. The MC samples generated with this tune were used to determine detector acceptance and efficiencies and to correct the data.

For the purpose of comparing the present measurement to different phenomenological models describing minimum-bias events, the following additional MC samples were generated: the ATLAS MC09c [18] PYTHIA tune, which is an extension of the ATLAS MC09 tune optimising the strength of the colour reconnection to describe the $\langle p_T \rangle$ distributions as a function of n_{ch}, as measured by CDF in $p\bar{p}$ collisions [3]; the Perugia01 [20] PYTHIA tune, in which the soft-QCD part is tuned using only minimum-bias data from the Tevatron and CERN pp colliders; the DW [21] PYTHIA tune, which uses the virtuality-ordered showers and was derived to describe the CDF Run II underlying event and Drell–Yan data. Finally, the PHOJET generator [22] was used as an alternative model. It describes low-\(p_T\) physics using the two-component Dual Parton Model [23,24], which includes soft hadronic processes described by Pomeron exchange and semi-hard processes described by perturbative parton scattering. PHOJET relies on PYTHIA for the fragmentation of partons. The versions used for this study were shown to agree with previous measurements [3,5,6,9].

The non-diffractive, single-diffractive and double-diffractive contributions in the generated samples were mixed according to the generator cross sections to fully describe the inelastic scattering. All the events were processed through the ATLAS detector simulation program [25], which is based on Geant4 [26]. They were then reconstructed and analysed by the same program chain used for the MC-based efficiency and the PYTHIA default cross section of 52.5 mb were then used to determine the luminosity of the data sample to be approximately 9μb$^{-1}$, while the maximum instantaneous luminosity was approximately 5×10^{26} cm$^{-2}$s$^{-1}$. The probability of additional interactions in the same bunch crossing was estimated to be less than 0.1%.

\footnote{PHOJET 1.12 with PYTHIA 6.4.21.}
During this data-taking period, more than 96% of the Pixel detector, 99% of the SCT and 98% of the TRT were operational. Tracks were reconstructed offline within the full acceptance range $|\eta| < 2.5$ of the inner detector \cite{27,28}. Track candidates were reconstructed by requiring seven or more silicon hits in total in the Pixel and SCT, and then extrapolated to include measurements in the TRT. Typically, 88% of tracks inside the TRT acceptance ($|\eta| < 2$) include a TRT extension, which significantly improves the momentum resolution.

This Letter reports results for charged particles with $p_T > 500$ MeV, which are less prone than lower-p_T particles to large inefficiencies and their associated systematic uncertainties resulting from interactions with material inside the tracking volume. To reduce the contribution from background events and non-primary tracks, as well as to minimise the systematic uncertainties, the following criteria were required:

- the presence of a primary vertex \cite{29} reconstructed using at least three tracks, each with:
 - $p_T > 150$ MeV,
 - a transverse distance of closest approach with respect to the beam-spot position $|d_{0}^{BS}| < 4$ mm;
- at least one track with:
 - $p_T > 500$ MeV,
 - a minimum of one Pixel and six SCT hits,
 - transverse and longitudinal impact parameters calculated with respect to the event primary vertex $|d_{0}| < 1.5$ mm and $|z_0| \cdot \sin \theta < 1.5$ mm, respectively.

These latter tracks were used to produce the corrected distributions and will be referred to as selected tracks. The multiplicity of selected tracks within an event is denoted by n_{Sel}. In total 326,201 events were kept after this offline selection, which contained 1,863,622 selected tracks. The inner detector performance is illustrated in Fig. 1 using selected tracks and their MC simulation. The shapes from overlapping Pixel and SCT modules in the forward region and the inefficiency from a small number of disabled Pixel modules in the central region are well modelled by the simulation. The simulated impact-parameter distributions describe the data to better than 10%, including their tails as shown in the inserts of Fig. 1(c) and (d). The difference between data and MC observed in the central region of the d_0 distribution is due to small residual misalignments not simulated in the MC, which are found to be unimportant for this analysis.

Trigger and vertex-reconstruction efficiencies were parameterized as a function of the number of tracks passing all of the track selection requirements except for the constraints with respect to the primary vertex. Instead, the transverse impact parameter with respect to the beam spot was required to be less than 4 mm, which is the same requirement as that used in the primary vertex reconstruction preselection. The multiplicity of these tracks in an event is denoted by $n_{\text{BS Sel}}$.

![Fig. 1. Comparison between data (dots) and minimum-bias ATLAS MC09 simulation (histograms) for the average number of Pixel hits (a) and SCT hits (b) per track as a function of η, and the transverse (c) and longitudinal (d) impact parameter distributions of the reconstructed tracks. The MC distributions in (c) and (d) are normalised to the number of tracks in the data. The inserts in the lower panels show the distributions in logarithmic scale.](image-url)
5. Background contribution

There are two possible sources of background events that can contaminate the selected sample: cosmic rays and beam-induced background. A limit on the fraction of cosmic-ray events recorded by the L1 MBTS trigger during data taking was determined from cosmic-ray studies, the maximum number of proton bunches, and the central trigger processor clock width of 25 ns, and was found to be smaller than 10^{-6}. Beam-induced background events can be produced by proton collisions with upstream collimators or with residual particles inside the beam pipe. The L1 MBTS trigger was used to select beam-induced background events from un-paired proton bunch-crossings. By applying the analysis selection criteria to these events, an upper limit of 10^{-4} was determined for the fraction of beam-induced background events within the selected sample. The requirement of a reconstructed primary vertex is particularly useful to suppress the beam-induced background.

Primary charged-particle multiplicities are measured from selected-track distributions after correcting for the fraction of secondary particles in the sample. The potential background from fake tracks is found to be less than 0.1% from simulation studies. Non-primary particles in the sample. The potential background from fake tracks is found to be less than 0.1% from simulation studies. The requirement of a reconstructed primary vertex is particularly useful to suppress the beam-induced background.

The data were corrected to obtain inclusive spectra for charged primary particles satisfying the event-level requirement of at least one primary charged particle within $p_T > 500$ MeV and $|\eta| < 2.5$. These corrections include inefficiencies due to trigger selection, vertex and track reconstruction. They also account for effects due to the momentum scale and resolution, and for the residual background from secondary tracks.

Trigger efficiency The trigger efficiency was measured from an independent data sample selected using the control trigger introduced in Section 2. This control trigger required more than 6 Pixel clusters and 6 SCT hits at L2, and one or more reconstructed tracks with $p_T > 200$ MeV at the EF. The vertex requirement for selected tracks was removed for this study, to avoid correlations between the trigger and vertex-reconstruction efficiencies for L1 MBTS triggered events. The trigger efficiency was determined by taking the ratio of events from the control trigger in which the L1 MBTS also accepted the event, over the total number of events in the control sample. The result is shown in Fig. 2(a) as a function of n_{BS}^{Sel}. The trigger efficiency is nearly 100% everywhere and the requirement of this trigger does not affect the p_T and η track distributions of the selected events.

Vertex-reconstruction efficiency The vertex-reconstruction efficiency was determined from the data, by taking the ratio of triggered events with a reconstructed vertex to the total number of triggered events. It is shown in Fig. 2(b) as a function of n_{BS}^{Sel}. This dependence was corrected for. No dependence on p_T and η was observed.

Track-reconstruction efficiency The track-reconstruction efficiency in each bin of the p_T–η acceptance was determined from MC. The comparison of the MC and data distributions shown in Fig. 1 highlights their agreement. The track-reconstruction efficiency was defined as:

\[
\epsilon_{\text{bin}}(p_T, \eta) = \frac{N_{\text{rec}}(p_T, \eta)}{N_{\text{gen}}(p_T, \eta)}
\]

where p_T and η are generated quantities, and $N_{\text{rec}}(p_T, \eta)$ and $N_{\text{gen}}(p_T, \eta)$ are the number of reconstructed tracks in a given bin matched to a generated charged particle and the number of generated charged particles in that bin, respectively. The matching between a generated particle and a reconstructed track was done using a cone-matching algorithm in the η–ϕ plane, associating the particle to the track with the smallest $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ within a cone of radius 0.05. The resulting reconstruction efficiency as a function of p_T integrated over η is shown in Fig. 2(c). The drop to $\approx 70\%$ for $p_T < 600$ MeV is an artefact of the p_T cut at the pattern-recognition level and is discussed in Section 8. The reduced track-reconstruction efficiency in the region $|\eta| > 1$ (Fig. 2(d)) is mainly due to the presence of more material in this region. These inefficiencies include a 5% loss due to the track selection used in this analysis, approximately half of which is due to the silicon-hit requirements and half to the impact-parameter requirements.

7. Correction procedure

The effect of events lost due to the trigger and vertex requirements can be corrected for using an event-by-event weight:

\[
W_{\text{ev}}(n_{BS}^{Sel}) = \frac{1}{\epsilon_{\text{trig}}(n_{BS}^{Sel})} \cdot \frac{1}{\epsilon_{\text{vtx}}(n_{BS}^{Sel})}
\]

where $\epsilon_{\text{trig}}(n_{BS}^{Sel})$ and $\epsilon_{\text{vtx}}(n_{BS}^{Sel})$ are the trigger and vertex reconstruction efficiencies discussed in Section 6. The vertex-reconstruction efficiency for events with $n_{BS}^{Sel} = 1$ includes an η-dependent correction which was derived from the data.
Fig. 2. Trigger (a) and vertex-reconstruction (b) efficiencies as a function of the variable n_{BS}^{Sel} defined in Section 4; track-reconstruction efficiency as a function of p_T (c) and of η (d). The vertical bars represent the statistical uncertainty, while the shaded areas represent the statistical and systematic uncertainties added in quadrature. The two bottom panels were derived from the PYTHIA ATLAS MC09 sample.

The p_T and η distributions of selected tracks were corrected on a track-by-track basis using the weight:

$$w_{trk}(p_T, \eta) = \frac{1}{\epsilon_{bin}(p_T, \eta)} \cdot (1 - f_{sec}(p_T)) \cdot (1 - f_{okr}(p_T, \eta)),$$

where ϵ_{bin} is the track-reconstruction efficiency described in Section 6 and $f_{sec}(p_T)$ is the fraction of secondaries determined as described in Section 5. The fraction of selected tracks for which the corresponding primary particles are outside the kinematic range, $f_{okr}(p_T, \eta)$, originates from resolution effects and has been estimated from MC. Bin migrations were found to be due solely to reconstructed track momentum resolution and were corrected by using the resolution function taken from MC.

In the case of the distributions versus n_{ch}, a track-level correction was applied by using Bayesian unfolding [30] to correct back to the number of charged particles. A matrix $M_{ch, Sel}$, which expresses the probability that a multiplicity of selected tracks n_{Sel} is due to n_{ch} particles, was populated using MC and applied to obtain the n_{ch} distribution from the data. The resulting distribution was then used to re-populate the matrix and the correction was re-applied. This procedure was repeated without a regularisation term and converged after four iterations, when the change in the distribution between iterations was found to be less than 1%. It should be noted that the matrix cannot correct for events which are lost due to track-reconstruction inefficiency. To correct for these missing events, a correction factor $1/(1 - (1 - \epsilon(n_{ch})^{n_{ch}}))$ was applied, where $\epsilon(n_{ch})$ is the average track-reconstruction efficiency.

In the case of the $\langle p_T \rangle$ versus n_{ch}, each event was weighted by $w_{ev}(n_{BS}^{Sel})$. For each n_{Sel} a MC-based correction was applied to convert the reconstructed average p_T to the average p_T of primary charged particles. Then the matrix $M_{ch, Sel}$ was applied as described above.

8. Systematic uncertainties

Numerous detailed studies have been performed to understand possible sources of systematic uncertainties. The main contributions are discussed below.
Trigger

The trigger selection dependence on the p_T and η distributions of reconstructed tracks was found to be flat within the statistical uncertainties of the data recorded with the control trigger. The statistical uncertainty on this result was taken as a systematic uncertainty of 0.1% on the overall trigger efficiency.

Since there is no vertex requirement in the data sample used to measure the trigger efficiency, it is not possible to make the same impact-parameter cuts as are made on the final selected tracks. Therefore the trigger efficiency was measured using impact-parameter constraints with respect to the primary vertex or the beam spot and compared to that obtained without such a requirement. The difference was taken as a systematic uncertainty of 0.1% for $n_{\text{sel}}^K < 3$.

The correlation of the MBTS trigger with the control trigger used to select the data sample for the trigger-efficiency determination was studied using the simulation. The resulting systematic uncertainty was found to affect only the case $n_{\text{sel}}^K = 1$ and amounts to 0.2%.

Vertex reconstruction

The run-to-run variation of the vertex-reconstruction efficiency was found to be within the statistical uncertainty. The contribution of beam-related backgrounds to the sample selected without a vertex requirement was estimated by using non-colliding bunches. It was found to be 0.3% for $n_{\text{sel}}^K = 1$ and smaller than 0.1% for higher multiplicities, and was assigned as a systematic uncertainty. This background contribution is larger than that given in Section 5, since a reconstructed primary vertex was not required for these events.

Track reconstruction and selection

Since the track-reconstruction efficiency is determined from MC, the main systematic uncertainty results from the level of disagreement between data and MC.

Three different techniques to associate generated particles to reconstructed tracks were studied: a cone-matching algorithm, an evaluation of the fraction of simulated hits associated to a reconstructed track and an inclusive technique using a correction for secondary particles. A systematic uncertainty of 0.5% was assigned from the difference between the cone-matching and the hit-association methods.

A detailed comparison of track properties in data and simulation was performed by varying the track-selection criteria. The largest deviations between data and MC were observed by varying the $z_0 - \sin \theta$ selection requirement, and by varying the constraint on the number of SCT hits. These deviations are generally smaller than 1% and rise to 3% at the edges of the η range.

The systematic effects of misalignment were studied by smearing simulation samples by the expected residual misalignment and by comparing the performance of two alignment algorithms on tracks reconstructed from the data. Under these conditions the number of reconstructed tracks was measured and the systematic uncertainty on the track reconstruction efficiency due to the residual misalignment was estimated to be less than 1%.

To test the influence of an imperfect description of the detector material in the simulation, two additional MC samples with approximately 10% and 20% increase in radiation lengths of the material in the Pixel and SCT active volume were used. The impact of excess material in the tracking detectors was studied using the tails of the impact-parameter distribution, the length of tracks, and the change in the reconstructed K_S^0 mass as a function of the decay radius, the direction and the momentum of the K_S^0. The MC with nominal material was found to describe the data best. The data were found to be consistent with a 10% material increase in some regions, whereas the 20% increase was excluded in all cases. The efficiency of matching full tracks to track segments reconstructed in the Pixel detector was also studied. The comparison between data and simulation was found to have good agreement across most of the kinematic range. Some discrepancies found for $|\eta| > 1.6$ were included in the systematic uncertainties. From all these studies a systematic uncertainty on the track reconstruction efficiency of 3.7%, 5.5% and 8% was assigned to the pseudorapidity regions $|\eta| < 1.6$, $1.6 < |\eta| < 2.3$ and $|\eta| > 2.3$, respectively.

The track-reconstruction efficiency shown in Fig. 2(c) rises sharply in the region $500 < p_T < 600$ MeV. The observed turn-on curve is produced by the initial pattern recognition step of track reconstruction and its associated p_T resolution, which is considerably worse than the final p_T resolution. The consequence is that some particles which are simulated with $p_T > 500$ MeV are reconstructed with momenta below the selection requirement. This effect reduces the number of selected tracks. The shape of the threshold was studied in data and simulation and a systematic uncertainty of 5% was assigned to the first p_T bin.

In conclusion, an overall relative systematic uncertainty of 4.0% was assigned to the track reconstruction efficiency for most of the kinematic range of this measurement, while 8.5% and 6.9% were assigned to the highest $|\eta|$ and to the lowest p_T bins, respectively.

Momentum scale and resolution

To obtain corrected distributions of charged particles, the scale and resolution uncertainties in the reconstructed p_T and η of the selected tracks have to be taken into account. Whereas the uncertainties for the η measurement were found to be negligible, those for the p_T measurement are in general more important. The inner detector momentum resolution was taken from MC as a function of p_T and η. It was found to vary between 1.5% and 5% in the range relevant to this analysis. The uncertainty was estimated by comparing with MC samples with a uniform scaling of 10% additional material at low p_T and with large misalignments at higher p_T. Studies of the width of the mass peak for reconstructed K_S^0 candidates in the data show that these assumptions are conservative. The reconstructed momentum scale was checked by comparing the measured value of the K_S^0 mass to the MC. The systematic uncertainties from both the momentum resolution and scale were found to have no significant effect on the final results.

Fraction of secondaries

The fraction of secondaries was determined as discussed in Section 5. The associated systematic uncertainty was estimated by varying the range of the impact parameter distribution that was used to normalise the MC, and by fitting separate distributions for weak decays and material interactions. The systematic uncertainty includes a small contribution due to the η dependence of this correction. The total uncertainty is 0.1%.

Correction procedure

Several independent tests were made to assess the model dependence of the correction matrix $M_{\text{ch}, \text{sel}}$ and the resulting systematic uncertainty. In order to determine the sensitivity to the p_T and η distributions, the matrix was re-populated using the other MC parameterizations described in Section 3 and by varying the track-reconstruction efficiency by ±5%. The correction factor for events lost due to the track-reconstruction inefficiency was varied by the same amount and treated as fully correlated. For the overall normalisation, this leads to an uncertainty of 0.4% due to the model dependence and of 1.1% due to the track-reconstruction efficiency. The size of the systematic uncertainties on n_{ch} increases with the multiplicity.
The correction for the $\langle p_T \rangle$ was also studied using the different PYTHIA tunes and PHOJET. The change was found to be less than 2% over the whole sample.

As the track-reconstruction efficiency depends on the particle type, the uncertainty in the composition of the charged particles in the minimum-bias MC sample was studied. The relative yields of pions, kaons, and protons in the simulation were separately varied by ±10%. These variations, combined with changing the fraction of electrons and muons by a factor of three, resulted in a systematic uncertainty of 0.2%.

The systematic uncertainty on the normalisation and on the number of charged particles were treated separately. In each of these two groups the systematic uncertainties were added in quadrature. These were then combined taking into account their anti-correlation and were propagated to the final distributions. Table 1 summarises the various contributions to the systematic uncertainties on the charged-particle density at $\eta = 0$.

<table>
<thead>
<tr>
<th>Systematic uncertainty on the number of events, N_{ev}</th>
<th>$<0.1%$</th>
<th>$<0.1%$</th>
<th>1.1%</th>
<th>0.4%</th>
<th>1.2%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertex-reconstruction efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track-reconstruction efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Different MC tunes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total uncertainty on N_{ev}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systematic uncertainty on $(1/N_{\text{ev}}) \cdot (dN_{\text{ch}}/d\eta)$ at $\eta = 0$</td>
<td>4.0%</td>
<td>0.1%</td>
<td>-1.2%</td>
<td>2.8%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Systematic uncertainty on $(1/N_{\text{ev}}) \cdot (dN_{\text{ch}}/d\eta)$ at $\eta = 0$</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Track-reconstruction efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trigger and vertex efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary fraction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total uncertainty on N_{ev}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total uncertainty on $(1/N_{\text{ev}}) \cdot (dN_{\text{ch}}/d\eta)$ at $\eta = 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Results

The corrected distributions for primary charged particles for events with $n_{\text{ch}} \geq 1$ in the kinematic range $p_T > 500$ MeV and $|\eta| < 2.5$ are shown in Fig. 3, where they are compared to predictions of models tuned to a wide range of measurements. The data are presented as inclusive-inelastic distributions with minimal model-dependent corrections to facilitate the comparison with models.

The charged-particle pseudorapidity density is shown in Fig. 3(a). It is measured to be approximately flat in the range $|\eta| < 1.5$, with an average value of $1.333 \pm 0.003(\text{stat}) \pm 0.040(\text{syst})$ charged particles per event and unit of pseudorapidity in the range $|\eta| < 0.2$. The particle density is found to drop at higher values of $|\eta|$. All MC tunes discussed in this Letter are lower than the data by 5–15%, corresponding to approximately 1–4 standard deviations. The shapes of the models are approximately consistent with the data with the exception of PYTHIA DW.

The N_{ch} distribution in bins of p_T is shown in Fig. 3(b) and is constructed by weighting each entry by $1/p_T$. The MC models do not reproduce the data for $p_T > 0.7$ GeV. The most significant difference is seen for the PHOJET generator.

The multiplicity distribution as a function of n_{ch} is shown in Fig. 3(c). The PYTHIA models show an excess of events with $n_{\text{ch}} = 1$ with respect to the data, while the fraction of events with $n_{\text{ch}} \geq 10$ is consistently lower than the data. The net effect is that the integral number of charged particles predicted by the models is below that of the data (Fig. 3(a) and (b)). The PHOJET generator successfully models the number of events with $n_{\text{ch}} = 1$, while it deviates from the data distributions at higher values of n_{ch}.

The average p_T as a function of n_{ch} is illustrated in Fig. 3(d). It is found to increase with increasing n_{ch} and a change of slope is observed around $n_{\text{ch}} = 10$. This behaviour was already observed by the CDF experiment in $p\bar{p}$ collisions at 1.96 TeV [3]. The Perugia0 parameterization, which was tuned using CDF minimum-bias data at 1.96 TeV, describes the data well. The other models fail to describe the data below $n_{\text{ch}} \approx 25$, with the exception of the PYTHIA-MC09c tune.

The N_{ch} distribution as a function of p_T in the kinematic range $p_T > 500$ MeV and $|\eta| < 2.5$ is shown in Fig. 4. The CMS [1] results at the same centre-of-mass energy are superimposed. The number of charged particles in the CMS data is consistently lower than the data presented in this Letter. This offset is expected from the CMS measurement definition of NSD events, where events with $n_{\text{ch}} = 0$ enter the normalisation and the number of lower transverse momentum particles are reduced by the subtraction of the PYTHIA single diffractive component. The UA1 [5] results, normalised by their associated cross section measurement, are also overlaid. They are approximately 20% higher than the present data. A shift in this direction is expected from the double-arm scintillator trigger requirement used to collect the UA1 data, which rejected events with low-charged-particle multiplicities.

To compare more directly the present data with results from CMS, the mean charged-particle density was calculated in the range $|\eta| < 2.4$ and a model dependent correction was applied to form an NSD particle density. For the calculation of the NSD value the PYTHIA DW tune was selected due to its similarity with the tune used in the CMS analysis. This generator set-up was used to produce a correction for the removal of the fraction of single diffractive events, the removal of electrons from π^0 Dalitz decays and the addition of non-single diffractive events with no charged particles within the kinematic range $p_T > 500$ MeV and $|\eta| < 2.5$. The net effect of the correction is to reduce the charged-particle multiplicity. The resulting value $1.240 \pm 0.040(\text{syst})$ is consistent with the CMS measurement of $1.202 \pm 0.043(\text{syst})$ in the kinematic range of $p_T > 500$ MeV and $|\eta| < 2.4$.

Table 1

Summary of systematic uncertainties on the number of events, N_{ev}, and on the charged-particle density $(1/N_{\text{ev}}) \cdot (dN_{\text{ch}}/d\eta)$ at $\eta = 0$. The uncertainty on N_{ev} is anti-correlated with $dN_{\text{ch}}/d\eta$. All other sources are assumed to be uncorrelated.
Fig. 3. Charged-particle multiplicities for events with $n_{ch} \geq 1$ within the kinematic range $p_T > 500$ MeV and $|\eta| < 2.5$. The panels show the charged-particle multiplicity as a function of pseudorapidity (a) and of the transverse momentum (b), the charged-particle multiplicity (c), and the average transverse momentum as a function of the number of charged particles in the event (d). The dots represent the data and the curves the predictions from different MC models. The vertical bars represent the statistical uncertainties, while the shaded areas show statistical and systematic uncertainties added in quadrature. The values of the ratio histograms refer to the bin centroids.

10. Conclusions

Charged-particle multiplicity measurements with the ATLAS detector using the first collisions delivered by the LHC during 2009 are presented. Based on over three hundred thousand proton–proton inelastic interactions, the properties of events with at least one primary charged-particle produced within the kinematic range $|\eta| < 2.5$ and $p_T > 500$ MeV were studied. The data were corrected with minimal model dependence to obtain inclusive distributions. The charged-particle multiplicity per event and unit of pseudorapidity at $\eta = 0$ is
Fig. 4. The measured p_T spectrum of charged-particle multiplicities. The ATLAS pp data (black dots) are compared to the UA1 $p\bar{p}$ data (blue open squares) and CMS NSD pp data (red triangles) at the same centre-of-mass energy.

measured to be $1.333 \pm 0.003^{(\text{stat.})} \pm 0.040^{(\text{syst.})}$, which is 5–15% higher than the Monte Carlo model predictions. The selected kinematic range and the precision of this analysis highlight clear differences between Monte Carlo models and the measured distributions.

Acknowledgements

We are greatly indebted to all CERN’s departments and to the LHC project for their immense efforts not only in building the LHC, but also for their direct contributions to the construction and installation of the ATLAS detector and its infrastructure. All our congratulations go to the LHC operation team for the superb performance during this initial data-taking period. We acknowledge equally warmly all our technical colleagues in the collaborating institutions without whom the ATLAS detector could not have been built. Furthermore we are grateful to all the funding agencies which supported generously the construction and the commissioning of the ATLAS detector and also provided the computing infrastructure.

The ATLAS detector design and construction has taken about fifteen years, and our thoughts are with all our colleagues who sadly could not see its final realisation.

We acknowledge the support of ANPCyT, Argentina; Yerevan Physics Institute, Armenia; ARC and DEST, Australia; Bundesministerium für Wissenschaft und Forschung, Austria; National Academy of Sciences of Azerbaijan; State Committee on Science & Technologies of the Republic of Belarus; CNPq and FINEP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; NSFC, China; COLCIENCIAS, Colombia; Ministry of Education, Youth and Sports of the Czech Republic, Ministry of Industry and Trade of the Czech Republic, and Committee for Collaboration of the Czech Republic with CERN; Danish Natural Science Research Council and the Lundbeck Foundation; European Commission, through the ARTEMIS Research Training Network; IN2P3-CNRS and Dapnia-CEA, France; Georgian Academy of Sciences; BMBF, HGF, DFG and MPG, Germany; Ministry of Education and Religion, through the EPEAEK program PYTHAGORAS II and GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; CNRS, Morocco; FOM and NWO, Netherlands; The Research Council of Norway; Ministry of Science and Higher Education, Poland; GRICES and FCT, Portugal; Ministry of Education and Research, Romania; Ministry of Education and Science of the Russian Federation and State Atomic Energy Corporation "Rosatom"; JINR; Ministry of Science, Serbia; Department of International Science and Technology Cooperation, Ministry of Education of the Slovak Republic; Slovenian Research Agency, Ministry of Higher Education, Science and Technology, Slovenia; Ministerio de Educación y Ciencia, Spain; The Swedish Research Council, The Knut and Alice Wallenberg Foundation, Sweden; State Secretariat for Education and Science, Swiss National Science Foundation, and Cantons of Bern and Geneva, Switzerland; National Science Council, Taiwan; TAEK, Turkey; The Science and Technology Facilities Council and The Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

1 University at Albany, 1400 Washington Ave, Albany, NY 12222, United States
2 University of Alberta, Department of Physics, Centre for Particle Physics, Edmonton, AB T6G 2G7, Canada
3 Ankara University19a, Faculty of Sciences, Department of Physics, TR 06100 Tondag, Ankara, Ankara; Durumginar University19b, Faculty of Arts and Sciences, Department of Physics, Kastaba, Gazi University19c, Faculty of Arts and Sciences, Department of Physics, 06560 Teknikokullar, Ankara; TOBB University of Economics and Technology19d, Faculty of Arts and Sciences, Division of Physics, 06560 Sogukpin, Ankara; Turkish Atomic Energy Authority19e, 06530 Lodumlu, Ankara, Turkey
4 LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux, France
5 Argonne National Laboratory, High Energy Physics Division, 9700 S. Cass Avenue, Argonne, IL 60439, United States
6 University of Arizona, Department of Physics, Tucson, AZ 85721, United States
7 The University of Texas at Arlington, Department of Physics, P.O. Box 19059, Arlington, TX 76019, United States
8 University of Athens, Nuclear & Particle Physics, Department of Physics, Panepistimioupoli, Zographou, GR 15771, Athens, Greece
9 National Technical University of Athens, Physics Department, 9-Iiron Polytechnico, GR 15780, Zographou, Greece
10 Institute of Physics, Azerbaijan Academy of Sciences, H. Javid Avenue 33, AZ 143 Baku, Azerbaijan
11 Instituto de Física d’Altes Energies, IFAE, Edifici Cn, Universitat Autònoma de Barcelona, ES-08193 Bellaterra (Barcelona), Spain
12 University of Belgrade19a, Institute of Physics, P.O. Box 57, 11001 Belgrade; Vinca Institute of Nuclear Sciences19b, Mihajla Petrovica Alasa 12-14, 11001 Belgrade, Serbia
13 University of Bergen, Department for Physics and Technology, Allégaten 15, NO-5007 Bergen, Norway
14 Lawrence Berkeley National Laboratory and University of California, Physics Division, MS508-6227, 1 Cyclotron Road, Berkeley, CA 94720, United States
15 Humboldt University, Institute of Physics, Berlin, Newtonstr. 15, D-12489 Berlin, Germany
16 University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, Sidlerstrasse 5, CH-3012 Bern, Switzerland
17 University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT, United Kingdom
18 Bogazici University19a, Faculty of Sciences, Department of Physics, TR-80815 Bebek-Istanbul; Dogus University19b, Faculty of Arts and Sciences, Department of Physics, 34722 Kadikoy, Istanbul; Gaziantep University19c, Faculty of Physics, Department of Physics Engineering, 27310 Sehitkamil, Gaziantep; Istanbul Technical University19d, Faculty of Arts and Sciences, Department of Physics, 34469 Mask, Istanbul, Turkey
19 INFN Sezione di Bologna19e, Università di Bologna, Dipartimento di Fisica19f, viale C. Berti Pichat, 6/2, IT-40127 Bologna, Italy
20 University of Bonn, Physikalisches Institut, Nussallee 12, D-53115 Bonn, Germany
21 Boston University, Department of Physics, 590 Commonwealth Avenue, Boston, MA 02215, United States
22 Brandeis University, Department of Physics, MS507, 415 South Street, Waltham, MA 02454, United States
23 Universidade Federal do Rio De Janeiro, COPPE/EE/IE19a, Caixa Postal 68528, Ilha do Fundao, BR-21945-970 Rio de Janeiro, Universidade de Sao Paulo19b, Instituto de Fisica, Rdo Matta Trav. R.187, Sao Paulo, SP 05508-900, Brazil
24 Brookhaven National Laboratory, Physics Department, Bldg. 510A, Upton, NY 11973, United States
25 National Institute of Physics and Nuclear Engineering19a, Bucharest-Magurele, Str. Atomistilor 407, P.O. Box MG-6, R-077125; University Politehnica Bucharest19b, Rectorat - AN 001, 313 Splaiul Independentei, sector 6, 060042 Bucuresti; West University19c, Timisoara, Bd. Vasile Parvan 4, Timisoara, Romania
26 Universidad de Buenos Aires, FCEyN, Dto. Fisica, Pab L - C. Universitario, 1428 Buenos Aires, Argentina
27 University of Cambridge, Cavendish Laboratory, J.J. Thomson Avenue, CB3 0HE, United Kingdom
28 Carleton University, Department of Physics, 1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada
29 CERN, CH-1211 Geneva 23, Switzerland
30 University of Chicago, Enrico Fermi Institute, 5649 S. Ellis Avenue, Chicago, IL 60637, United States
31 Pontificia Universidad Católica de Chile, Facultad de Física, Departamento de Física32a, Avda. Vicuna Mackenna 4860, San Joaquin, Santiago; Universidad Técnica Federico Santa María, Departamento de Física32b, Avda. España 1680, Casilla 110-V, Valparaíso, Chile
32 Institute of High Energy Physics, Chinese Academy of Sciences33, P.O. Box 918, 19 Yuqan Road, Shijing Shan District, CN - Beijing 100049; University of Science & Technology of China (USTC), Department of Modern Physics34; Hefei, CN - Anhui 230026; Nanjing University, Department of Physics35; 22 Hankou Road, Nanjing 210093, Shanghai/University, High Energy Physics Group36; Jinan, CN - Shandong 250106, China
33 Laboratori Nazionali di Frascati, INFN, Rome, Via Enrico Fermi 40, 00044 Frascati, Italy
34 University of Edinburgh, School of Physics & Astronomy, James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
35 Fachhochschule Wiener Neustadt, Johannes Gutenbergstrasse 3, AT-2700 Wiener Neustadt, Austria
36 INFN Laboratori Nazionali di Frascati, via Enrico Fermi 40, 00044 Frascati, Italy
37 Albert-Ludwigs-Universität, Fakultät für Mathematik und Physik, Hermann-Herder Str. 3, D-79104 Freiburg i.Br., Germany
38 University of Genève, Section de Physique, 24 rue Ernest Ansermet, CH-1211 Genève 4, Switzerland
39 INFN Sezione di Genova37, Università di Genova, Dipartimento di Fisica37, via Dodecaneso 33, IT-16146 Genova, Italy
40 Institute of Physics of the Georgian Academy of Sciences, 6 Tamaraishvili St., GE-380077 Tbilisi; Tbilisi State University38, M. Tavisuplebis St., Tbilisi, Georgia
41 Justus-Liebig-Universität Giessen, II Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
42 University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ, United Kingdom
43 Georg-August-Universität, II. Physikalisches Institut, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
44 Laboratoire de Physique Subatomique et de Cosmologie, CNRS/IN2P3, Université Joseph Fourier, INPG, 53 avenue des Martyrs, FR-38026 Grenoble Cedex, France
45 Hampton University, Department of Physics, Hampton, VA 23668, United States
46 Harvard University, Laboratory for Particle Physics and Cosmology, 180 Cambridge Street, MA 02138, United States
47 Kueprcht-Karls-Universität Heidelberg: Kirchhoff-Institut für Physik48, Im Neuenheimer Feld 227, D-69120 Heidelberg; Physikalisches Institut48, Philosophenweg 12, D-69120 Heidelberg; ZITI Kueprcht-Karls-Universität Heidelberg48, Lehrstuhl für Informatik V, 86, 23-29, D-68131 Mannheim, Germany
48 Hiroshima University, Faculty of Science, 1-3-1 Kagamiyama, Higashi-hiroshima-shi, Japan - Hiroshima-shi, Japan - Hiroshima 739-8526, Japan
49 Hiroshima Institute of Technology, Faculty of Applied Information Science, 2-1 Miyake Saei-ku, Hiroshima-shi, JP - Hiroshima-shi 731-5193, Japan
50 Indiana University, Department of Physics, Swain Hall West H, Bloomington, IN 47405-7105, United States
51 Institute für Astro- und Teilchenphysik, Technikerstrasse 25, A-6020 Innsbruck, Austria