Charged-particle multiplicities in pp interactions at $\sqrt{s} = 900$ GeV measured with the ATLAS detector at the LHC

DOI
10.1016/j.physletb.2010.03.064

Publication date
2010

Document Version
Final published version

Published in
Physics Letters B

Citation for published version (APA):
https://doi.org/10.1016/j.physletb.2010.03.064
Charged-particle multiplicities in \(pp\) interactions at \(\sqrt{s} = 900\) GeV measured with the ATLAS detector at the LHC\(^\star,\star\star\)

ATLAS Collaboration

1. Introduction

Inclusive charged-particle distributions have been measured in \(pp\) and \(p\bar{p}\) collisions at a range of different centre-of-mass energies [1–13]. Many of these measurements have been used to constrain phenomenological models of soft-hadronic interactions and to predict properties at higher centre-of-mass energies. Most of the previous charged-particle multiplicity measurements were obtained by selecting data with a double-arm coincidence trigger, thus removing large fractions of diffractive events. The data were then further corrected to remove the remaining single-diffractive component. This selection is referred to as non-single-diffractive (NSD). In some cases, designated as inelastic non-diffractive, the residual double-diffractive component was also subtracted. The selection of NSD or inelastic non-diffractive charged-particle spectra involves model-dependent corrections for the diffractive components and for effects of the trigger selection on events with no charged particles within the acceptance of the detector. The measurement presented in this Letter implements a different strategy, which uses a single-arm trigger overlapping with the acceptance of the tracking volume. Results are presented as inclusive-inelastic distributions, with minimal model-dependence, by requiring one charged particle within the acceptance of the measurement.

This Letter reports on a measurement of primary charged particles with a momentum component transverse to the beam direction \(p_T \geq 500\) MeV and in the pseudorapidity range \(|\eta| < 2.5\). Primary charged particles are defined as charged particles with a mean lifetime \(\tau > 0.3 \times 10^{-10}\) s directly produced in \(pp\) interactions or from subsequent decays of particles with a shorter lifetime. The distributions of tracks reconstructed in the ATLAS inner detector were corrected to obtain the particle-level distributions:

\[
\frac{1}{N_{ev}} \frac{dN_{ch}}{d\eta}, \quad \frac{1}{N_{ev}} \frac{1}{2\pi p_T} \frac{d^2N_{ch}}{d\eta dp_T}, \quad \frac{1}{N_{ev}} \frac{dN_{ev}}{dN_{ch}} \quad \text{and} \quad \langle p_T \rangle \text{ vs. } n_{ch},
\]

where \(N_{ev}\) is the number of events with at least one charged particle inside the selected kinematic range, \(N_{ch}\) is the total number of charged particles, \(n_{ch}\) is the number of charged particles in an event and \(\langle p_T \rangle\) is the average \(p_T\) for a given number of charged particles.

\(\star\) The ATLAS reference system is a Cartesian right-handed co-ordinate system, with the nominal collision point at the origin. The anti-clockwise beam direction defines the positive \(z\)-axis, while the positive \(x\)-axis is defined as pointing from the collision point to the centre of the LHC ring and the positive \(y\)-axis points upwards. The azimuthal angle \(\phi\) is measured around the beam axis, and the polar angle \(\theta\) is measured with respect to the \(z\)-axis. The pseudorapidity is defined as \(\eta = -\ln \tan(\theta/2)\).
Comparisons are made to previous measurements of charged-particle multiplicities in pp and $p\bar{p}$ collisions at $\sqrt{s} = 900$ GeV centre-of-mass energies [1,5] and to Monte Carlo (MC) models.

2. The ATLAS detector

The ATLAS detector [14] at the Large Hadron Collider (LHC) [15] covers almost the whole solid angle around the collision point with layers of tracking detectors, calorimeters and muon chambers. It has been designed to study a wide range of physics topics at LHC energies. For the measurements presented in this Letter, the tracking devices and the trigger system were of particular importance.

The ATLAS inner detector has full coverage in φ and covers the pseudorapidity range $|\eta| < 2.5$. It consists of a silicon pixel detector (Pixel), a silicon microstrip detector (SCT) and a transition radiation tracker (TRT). These detectors cover a sensitive radial distance from the interaction point of 50.5–150 mm, 299–560 mm and 563–1066 mm, respectively, and are immersed in a 2 T axial magnetic field. The inner-detector barrel (end-cap) parts consist of 3 (2 × 3) Pixel layers, 4 (2 × 9) double-layers of single-sided silicon microstrips with a 40 mrad stereo angle, and 73 (2 × 160) layers of TRT straws. These detectors have position resolutions of typically 10, 17 and 130 μm for the R–$φ$ co-ordinate and, in case of the Pixel and SCT, 115 and 580 μm for the second measured co-ordinate. A track from a particle traversing the barrel detector would typically have 11 silicon hits (3 pixel clusters and 8 strip clusters), and more than 30 straw hits.

The ATLAS detector has a three-level trigger system: Level 1 (L1), Level 2 (L2) and Event Filter (EF). For this measurement, the trigger relies on the L1 signals from the Beam Pickup Timing devices (BPTX) and the Minimum Bias Trigger Scintillators (MBTS). The BPTX are composed of beam pick-ups attached to the beam pipe ±175 m from the centre of the ATLAS detector. The MBTS are mounted at each end of the detector in front of the liquid-argon end-cap calorimeter cryostats at $z = ±3.56$ m and are segmented into eight sectors in azimuth and two rings in pseudorapidity (2.09 < $|\eta|$ < 2.82 and 2.82 < $|\eta|$ < 3.84). Data were collected for this analysis using the MBTS trigger, formed from BPTX and MBTS trigger signals. The MBTS trigger was configured to require one hit above threshold from either side of the detector. The efficiency of this trigger was studied with a separate prescaled L1 BPTX trigger, filtered to obtain inelastic interactions by inner detector requirements at L2 and EF.

3. Monte Carlo simulation

Low-p_T scattering processes may be described by lowest-order perturbative Quantum Chromodynamics (QCD) two-to-two parton scatters, where the divergence of the cross section at $p_T = 0$ is regulated by phenomenological models. These models include multiple-parton scattering, partonic-matter distributions, scattering between the unresolved protons and colour reconnection [16]. The PYTHIA [17] MC event generator implements several of these models. The parameters of these models have been tuned to describe charged-hadron production and the underlying event in pp and $p\bar{p}$ data at centre-of-mass energies between 200 GeV and 1.96 TeV.

Samples of ten million MC events were produced for single-diffractive, double-diffractive and non-diffractive processes using the PYTHIA 6.4.21 generator. A specific set of optimised parameters, the ATLAS MC09 PYTHIA tune [18], which employs the MRST LO* parton density functions [19] and the p_T-ordered parton shower, is the reference tune throughout this Letter. These parameters were derived by tuning to underlying event and minimum-bias data from Tevatron at 630 GeV and 1.8 TeV. The MC samples generated with this tune were used to determine detector acceptances and efficiencies and to correct the data.

For the purpose of comparing the present measurement to different phenomenological models describing minimum-bias events, the following additional MC samples were generated: the ATLAS MC09c [18] PYTHIA tune, which is an extension of the ATLAS MC09 tune optimising the strength of the colour reconnection to describe the p_T distributions as a function of n_{ch}, as measured by CDF in pp collisions [3]; the Perugia0 [20] PYTHIA tune, in which the soft-QCD part is tuned using only minimum-bias data from the Tevatron and CERN pp colliders; the DW [21] PYTHIA tune, which uses the virtuality-ordered showers and was derived to describe the CDF Run II underlying event and Drell–Van data. Finally, the PHOJET generator [22] was used as an alternative model. It describes low-p_T physics using the two-component Dual Parton Model [23,24], which includes soft hadronic processes described by Pomeron exchange and semi-hard processes described by perturbative parton scattering. PHOJET relies on PYTHIA for the fragmentation of partons. The versions used for this study were shown to agree with previous measurements [3,5,6,9].

For the non-diffractive, single-diffractive and double-diffractive contributions in the generated samples were mixed according to the generator cross sections to fully describe the inelastic scattering. All the events were processed through the ATLAS detector simulation program [25], which is based on Geant4 [26]. They were then reconstructed and analysed by the same program chain used for the MBTS trigger and inner detector information were applied in this event selection. The integrated luminosity for the final event sample, which is given here for reference only, was estimated using a sample of events with energy deposits in both sides of the forward and end-cap calorimeters. The MC-based efficiency and the PYTHIA default cross section of 52.5 mb were then used to determine the luminosity of the data sample to be approximately 9 μb$^{-1}$, while the maximum instantaneous luminosity was approximately 5 × 1026 cm$^{-2}$s$^{-1}$. The probability of additional interactions in the same bunch crossing was estimated to be less than 0.1%.

2 PHOJET 1.12 with PYTHIA 6.4.21.
Fig. 1. Comparison between data (dots) and minimum-bias ATLAS MC09 simulation (histograms) for the average number of Pixel hits (a) and SCT hits (b) per track as a function of η, and the transverse (c) and longitudinal (d) impact parameter distributions of the reconstructed tracks. The MC distributions in (c) and (d) are normalised to the number of tracks in the data. The inserts in the lower panels show the distributions in logarithmic scale.

During this data-taking period, more than 96% of the Pixel detector, 99% of the SCT and 98% of the TRT were operational. Tracks were reconstructed offline within the full acceptance range $|\eta| < 2.5$ of the inner detector [27,28]. Track candidates were reconstructed by requiring seven or more silicon hits in total in the Pixel and SCT, and then extrapolated to include measurements in the TRT. Typically, 88% of tracks inside the TRT acceptance ($|\eta| < 2$) include a TRT extension, which significantly improves the momentum resolution.

This Letter reports results for charged particles with $p_T > 500$ MeV, which are less prone than lower-p_T particles to large inefficiencies and their associated systematic uncertainties resulting from interactions with material inside the tracking volume. To reduce the contribution from background events and non-primary tracks, as well as to minimise the systematic uncertainties, the following criteria were required:

- the presence of a primary vertex [29] reconstructed using at least three tracks, each with:
 - $p_T > 150$ MeV,
 - a transverse distance of closest approach with respect to the beam-spot position $|d_{0S}| < 4$ mm;
- at least one track with:
 - $p_T > 500$ MeV,
 - a minimum of one Pixel and six SCT hits,
 - transverse and longitudinal impact parameters calculated with respect to the event primary vertex $|d_0| < 1.5$ mm and $|z_0| \cdot \sin \theta < 1.5$ mm, respectively.

These latter tracks were used to produce the corrected distributions and will be referred to as selected tracks. The multiplicity of selected tracks within an event is denoted by n_{Sel}. In total 326,201 events were kept after this offline selection, which contained 1,863,622 selected tracks. The inner detector performance is illustrated in Fig. 1 using selected tracks and their MC simulation. The shapes from overlapping Pixel and SCT modules in the forward region and the inefficiency from a small number of disabled Pixel modules in the central region are well modelled by the simulation. The simulated impact-parameter distributions describe the data to better than 10%, including their tails as shown in the inserts of Fig. 1(c) and (d). The difference between data and MC observed in the central region of the d_0 distribution is due to small residual misalignments not simulated in the MC, which are found to be unimportant for this analysis.

Trigger and vertex-reconstruction efficiencies were parameterized as a function of the number of tracks passing all of the track selection requirements except for the constraints with respect to the primary vertex. Instead, the transverse impact parameter with respect to the beam spot was required to be less than 4 mm, which is the same requirement as that used in the primary vertex reconstruction preselection. The multiplicity of these tracks in an event is denoted by $n_{BS Sel}$.
5. Background contribution

There are two possible sources of background events that can contaminate the selected sample: cosmic rays and beam-induced background. A limit on the fraction of cosmic-ray events recorded by the L1 MBTS trigger during data taking was determined from cosmic-ray studies, the maximum number of proton bunches, and the central trigger processor clock width of 25 ns, and was found to be smaller than 10^{-6}. Beam-induced background events can be produced by proton collisions with upstream collimators or with residual particles inside the beam pipe. The L1 MBTS trigger was used to select beam-induced background events from un-paired proton bunch-crossings. By applying the analysis selection criteria to these events, an upper limit of 10^{-4} was determined for the fraction of beam-induced background events within the selected sample. The requirement of a reconstructed primary vertex is particularly useful to suppress the beam-induced background.

Primary charged-particle multiplicities are measured from selected-track distributions after correcting for the fraction of secondary particles in the sample. The potential background from fake tracks is found to be less than 0.1% from simulation studies. Non-primary background.

6. Selection efficiency

The data were corrected to obtain inclusive spectra for charged primary particles satisfying the event-level requirement of at least one primary charged particle within $p_T > 500$ MeV and $|\eta| < 2.5$. These corrections include inefficiencies due to trigger selection, vertex and track reconstruction. They also account for effects due to the momentum scale and resolution, and for the residual background from secondary tracks.

Trigger efficiency The trigger efficiency was measured from an independent data sample selected using the control trigger introduced in Section 2. This control trigger required more than 6 Pixel clusters and 6 SCT hits at L2, and one or more reconstructed tracks with $p_T > 200$ MeV at the EF. The vertex requirement for selected tracks was removed for this study, to avoid correlations between the trigger and vertex-reconstruction efficiencies for L1 MBTS triggered events. The trigger efficiency was determined by taking the ratio of events from the control trigger in which the L1 MBTS also accepted the event, over the total number of events in the control sample. The result is shown in Fig. 2(a) as a function of n_{BS}^{Sel}. The trigger efficiency is nearly 100% everywhere and the requirement of this trigger does not affect the p_T and η track distributions of the selected events.

Vertex-reconstruction efficiency The vertex-reconstruction efficiency was determined from the data, by taking the ratio of triggered events with a reconstructed vertex to the total number of triggered events. It is shown in Fig. 2(b) as a function of n_{BS}^{Sel}. The efficiency amounts to approximately 67% for the lowest bin and rapidly rises to 100% with higher multiplicities. The dependence of the vertex-reconstruction efficiency on the η and p_T of the selected tracks was studied. The η dependence was found to be approximately flat for $n_{BS}^{Sel} > 1$ and to decrease at larger η for events with $n_{BS}^{Sel} = 1$. This dependence was corrected for. No dependence on p_T was observed.

Track-reconstruction efficiency The track-reconstruction efficiency in each bin of the $p_T-\eta$ acceptance was determined from MC. The comparison of the MC and data distributions shown in Fig. 1 highlights their agreement. The track-reconstruction efficiency was defined as:

$$
\epsilon_{bin}(p_T, \eta) = \frac{N_{rec}^{matched}(p_T, \eta)}{N_{gen}(p_T, \eta)},
$$

where p_T and η are generated quantities, and $N_{rec}^{matched}(p_T, \eta)$ and $N_{gen}(p_T, \eta)$ are the number of reconstructed tracks in a given bin matched to a generated charged particle and the number of generated charged particles in that bin, respectively. The matching between a generated particle and a reconstructed track was done using a cone-matching algorithm in the $\eta-\phi$ plane, associating the particle to the track with the smallest $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ within a cone of radius 0.05. The resulting reconstruction efficiency as a function of p_T integrated over η is shown in Fig. 2(c). The drop to $\approx 70\%$ for $p_T < 600$ MeV is an artefact of the p_T cut at the pattern-recognition level and is discussed in Section 8. The reduced track-reconstruction efficiency in the region $|\eta| > 1$ (Fig. 2(d)) is mainly due to the presence of more material in this region. These inefficiencies include a 5% loss due to the track selection used in this analysis, approximately half of which is due to is silicon-hit requirements and half to the impact-parameter requirements.

7. Correction procedure

The effect of events lost due to the trigger and vertex requirements can be corrected for using an event-by-event weight:

$$
W_{ev}(n_{BS}^{Sel}) = \frac{1}{\epsilon_{trig}(n_{BS}^{Sel})} \cdot \frac{1}{\epsilon_{vtx}(n_{BS}^{Sel})},
$$

where $\epsilon_{trig}(n_{BS}^{Sel})$ and $\epsilon_{vtx}(n_{BS}^{Sel})$ are the trigger and vertex reconstruction efficiencies discussed in Section 6. The vertex-reconstruction efficiency for events with $n_{BS}^{Sel} = 1$ includes an η-dependent correction which was derived from the data.
Fig. 2. Trigger (a) and vertex-reconstruction (b) efficiencies as a function of the variable n_{BS}^{Sel} defined in Section 4; track-reconstruction efficiency as a function of p_T (c) and of η (d). The vertical bars represent the statistical uncertainty, while the shaded areas represent the statistical and systematic uncertainties added in quadrature. The two bottom panels were derived from the PYTHIA ATLAS MC09 sample.

The p_T and η distributions of selected tracks were corrected on a track-by-track basis using the weight:

$$w_{\text{trk}}(p_T, \eta) = \frac{1}{\epsilon_{\text{bin}}(p_T, \eta)} \cdot \left(1 - f_{\text{sec}}(p_T)\right) \cdot \left(1 - f_{\text{okr}}(p_T, \eta)\right),$$

where ϵ_{bin} is the track-reconstruction efficiency described in Section 6 and $f_{\text{sec}}(p_T)$ is the fraction of secondaries determined as described in Section 5. The fraction of selected tracks for which the corresponding primary particles are outside the kinematic range, $f_{\text{okr}}(p_T, \eta)$, originates from resolution effects and has been estimated from MC. Bin migrations were found to be due solely to reconstructed track momentum resolution and were corrected by using the resolution function taken from MC.

In the case of the distributions versus n_{ch}, a track-level correction was applied by using Bayesian unfolding [30] to correct back to the number of charged particles. A matrix $M_{\text{ch.Sel}}$, which expresses the probability that a multiplicity of selected tracks n_{Sel} is due to n_{ch} particles, was populated using MC and applied to obtain the n_{ch} distribution from the data. The resulting distribution was then used to re-populate the matrix and the correction was re-applied. This procedure was repeated without a regularisation term and converged after four iterations, when the change in the distribution between iterations was found to be less than 1%. It should be noted that the matrix cannot correct for events which are lost due to track-reconstruction inefficiency. To correct for these missing events, a correction factor $1/(1 - (1 - \epsilon(n_{\text{ch}}))^{n_{\text{ch}}})$ was applied, where $\epsilon(n_{\text{ch}})$ is the average track-reconstruction efficiency.

In the case of the (p_T) versus n_{ch} distribution, each event was weighted by $w_{\text{ev}}(n_{BS}^{\text{Sel}})$. For each n_{Sel}, a MC-based correction was applied to convert the reconstructed average p_T to the average p_T of primary charged particles. Then the matrix $M_{\text{ch.Sel}}$ was applied as described above.

8. Systematic uncertainties

Numerous detailed studies have been performed to understand possible sources of systematic uncertainties. The main contributions are discussed below.
Trigger The trigger selection dependence on the p_T and η distributions of reconstructed tracks was found to be flat within the statistical uncertainties of the data recorded with the control trigger. The statistical uncertainty on this result was taken as a systematic uncertainty of 0.1% on the overall trigger efficiency.

Since there is no vertex requirement in the data sample used to measure the trigger efficiency, it is not possible to make the same impact-parameter cuts as are made on the final selected tracks. Therefore the trigger efficiency was measured using impact-parameter constraints with respect to the primary vertex or the beam spot and compared to that obtained without such a requirement. The difference was taken as a systematic uncertainty of 0.1% for $n_{\text{Sel}}^{BS} \leq 3$.

The correlation of the MBTS trigger with the control trigger used to select the data sample for the trigger-efficiency determination was studied using the simulation. The resulting systematic uncertainty was found to affect only the case $n_{\text{Sel}}^{BS} = 1$ and amounts to 0.2%.

Vertex reconstruction The run-to-run variation of the vertex-reconstruction efficiency was found to be within the statistical uncertainty. The contribution of beam-related backgrounds to the sample selected without a vertex requirement was estimated by using non-colliding bunches. It was found to be 0.3% for $n_{\text{Sel}}^{BS} = 1$ and smaller than 0.1% for higher multiplicities, and was assigned as a systematic uncertainty. This background contribution is larger than that given in Section 5, since a reconstructed primary vertex was not required for these events.

Track reconstruction and selection Since the track-reconstruction efficiency is determined from MC, the main systematic uncertainty results from the level of disagreement between data and MC.

Three different techniques to associate generated particles to reconstructed tracks were studied: a cone-matching algorithm, an evaluation of the fraction of simulated hits associated to a reconstructed track and an inclusive technique using a correction for secondary particles. A systematic uncertainty of 0.5% was assigned from the difference between the cone-matching and the hit-association methods.

A detailed comparison of track properties in data and simulation was performed by varying the track-selection criteria. The largest deviations between data and MC were observed by varying the $z_0 \cdot \sin \theta$ requirement, and by varying the constraint on the number of SCT hits. These deviations are generally smaller than 1% and rise to 3% at the edges of the η range.

The systematic effects of misalignment were studied by smearing simulation samples by the expected residual misalignment and by comparing the performance of two alignment algorithms on tracks reconstructed from the data. Under these conditions the number of reconstructed tracks was measured and the systematic uncertainty on the track reconstruction efficiency due to the residual misalignment was estimated to be less than 1%.

To test the influence of an imperfect description of the detector material in the simulation, two additional MC samples with approximately 10% and 20% increase in radiation lengths of the material in the Pixel and SCT active volume were used. The impact of excess material in the tracking detectors was studied using the tails of the impact-parameter distribution, the length of tracks, and the change in the reconstructed K_S^0 mass as a function of the decay radius, the direction and the momentum of the K_S^0. The MC with nominal material was found to describe the data best. The data were found to be consistent with a 10% material increase in some regions, whereas the 20% increase was excluded in all cases. The efficiency of matching full tracks to track segments reconstructed in the Pixel detector was also studied. The comparison between data and simulation was found to have good agreement across most of the kinematic range. Some discrepancies found for $|\eta| > 1.6$ were included in the systematic uncertainties. From all these studies a systematic uncertainty on the track reconstruction efficiency of 3.7%, 5.5% and 8% was assigned to the pseudorapidity regions $|\eta| < 1.6$, $1.6 < |\eta| < 2.3$ and $|\eta| > 2.3$, respectively.

The track-reconstruction efficiency shown in Fig. 2(c) rises sharply in the region $500 < p_T < 600$ MeV. The observed turn-on curve is produced by the initial pattern recognition step of track reconstruction and its associated p_T resolution, which is considerably worse than the final p_T resolution. The consequence is that some particles which are simulated with $p_T > 500$ MeV are reconstructed with momenta below the selection requirement. This effect reduces the number of selected tracks. The shape of the threshold was studied in data and simulation and a systematic uncertainty of 5% was assigned to the first p_T bin.

In conclusion, an overall relative systematic uncertainty of 4.0% was assigned to the track reconstruction efficiency for most of the kinematic range of this measurement, while 8.5% and 6.9% were assigned to the highest $|\eta|$ and to the lowest p_T bins, respectively.

Momentum scale and resolution To obtain corrected distributions of charged particles, the scale and resolution uncertainties in the reconstructed p_T and η of the selected tracks have to be taken into account. Whereas the uncertainties for the η measurement were found to be negligible, those for the p_T measurement are in general more important. The inner detector momentum resolution was taken from MC as a function of p_T and η. It was found to vary between 1.5% and 5% in the range relevant to this analysis. The uncertainty was estimated by comparing with MC samples with a uniform scaling of 10% additional material at low p_T and with large misalignments at higher p_T. Studies of the width of the mass peak for reconstructed K_S^0 candidates in the data show that these assumptions are conservative. The reconstructed momentum scale was checked by comparing the measured value of the K_S^0 mass to the MC. The systematic uncertainties from both the momentum resolution and scale were found to have no significant effect on the final results.

Fraction of secondaries The fraction of secondaries was determined as discussed in Section 5. The associated systematic uncertainty was estimated by varying the range of the impact parameter distribution that was used to normalise the MC, and by fitting separate distributions for weak decays and material interactions. The systematic uncertainty includes a small contribution due to the η dependence of this correction. The total uncertainty is 0.1%.

Correction procedure Several independent tests were made to assess the model dependence of the correction matrix $M_{\text{ch,Sel}}$ and the resulting systematic uncertainty. In order to determine the sensitivity to the p_T and η distributions, the matrix was re-populated using the other MC parameterizations described in Section 3 and by varying the track-reconstruction efficiency by $\pm 5\%$. The correction factor for events lost due to the track-reconstruction inefficiency was varied by the same amount and treated as fully correlated. For the overall normalisation, this leads to an uncertainty of 0.4% due to the model dependence and of 1.1% due to the track-reconstruction efficiency. The size of the systematic uncertainties on n_{ch} increases with the multiplicity.
The correction for the $\langle p_T \rangle$ was also studied using the different PYTHIA tunes and PHOJET. The change was found to be less than 2% over the whole sample.
As the track-reconstruction efficiency depends on the particle type, the uncertainty in the composition of the charged particles in the minimum-bias MC sample was studied. The relative yields of pions, kaons and protons in the simulation were separately varied by ±10%. These variations, combined with changing the fraction of electrons and muons by a factor of three, resulted in a systematic uncertainty of 0.2%.

The systematic uncertainty on the normalisation and on the number of charged particles were treated separately. In each of these two groups the systematic uncertainties were added in quadrature. These were then combined taking into account their anti-correlation and were propagated to the final distributions. Table 1 summarises the various contributions to the systematic uncertainties on the charged-particle density at $\eta = 0$.

9. Results

The corrected distributions for primary charged particles for events with $n_{ch} \geq 1$ in the kinematic range $p_T > 500$ MeV and $|\eta| < 2.5$ are shown in Fig. 3, where they are compared to predictions of models tuned to a wide range of measurements. The data are presented as inclusive-inelastic distributions with minimal model-dependent corrections to facilitate the comparison with models.

The charged-particle pseudorapidity density is shown in Fig. 3(a). It is measured to be approximately flat in the range $|\eta| < 1.5$, with an average value of 1.333 ± 0.003(stat.) ± 0.040(syst.) charged particles per event and unit of pseudorapidity in the range $|\eta| < 0.2$. The particle density is found to drop at higher values of $|\eta|$. All MC tunes discussed in this Letter are lower than the data by 5–15%, corresponding to approximately 1–4 standard deviations. The shapes of the models are approximately consistent with the data with the exception of PYTHIA DW.

The N_{ch} distribution in bins of p_T is shown in Fig. 3(b) and is constructed by weighting each entry by $1/p_T$. The MC models do not reproduce the data for $p_T > 0.7$ GeV. The most significant difference is seen for the PHOJET generator.

The multiplicity distribution as a function of n_{ch} is shown in Fig. 3(c). The PYTHIA models show an excess of events with $n_{ch} = 1$ with respect to the data, while the fraction of events with $n_{ch} \geq 10$ is consistently lower than the data. The net effect is that the integral of charged particles predicted by the models is below that of the data (Fig. 3(a) and (b)). The PHOJET generator successfully models the number of events with $n_{ch} = 1$, while it deviates from the data distributions at higher values of n_{ch}.

The average p_T as a function of n_{ch} is illustrated in Fig. 3(d). It is found to increase with increasing n_{ch} and a change of slope is observed around $n_{ch} = 10$. This behaviour was already observed by the CDF experiment in $p\bar{p}$ collisions at 1.96 TeV [3]. The Perugia0 parameterization, which was tuned using CDF minimum-bias data at 1.96 TeV, describes the data well. The other models fail to describe the data below $n_{ch} \approx 25$, with the exception of the PYTHIA-MC09c tune.

The N_{ch} distribution as a function of p_T in the kinematic range $p_T > 500$ MeV and $|\eta| < 2.5$ is shown in Fig. 4. The CMS [1] results at the same centre-of-mass energy are superimposed. The number of charged particles in the CMS data is consistently lower than the data presented in this Letter. This offset is expected from the CMS measurement definition of NSD events, where events with $n_{ch} = 0$ enter the normalisation and the number of lower transverse momentum particles are reduced by the subtraction of the PYTHIA single diffractive component. The UA1 [5] results, normalised by their associated cross section measurements, are also overlaid. They are approximately 20% higher than the present data. A shift in this direction is expected from the double-arm scintillator trigger requirement used to collect the UA1 data, which rejected events with low charged-particle multiplicities.

To compare more directly the present data with results from CMS, the mean charged-particle density was calculated in the range $|\eta| < 2.4$ and a model dependent correction was applied to form an NSD particle density. For the calculation of the NSD value the PYTHIA DW tune was selected due to its similarity with the tune used in the CMS analysis. This generator set-up was used to produce a correction for the removal of the fraction of single diffractive events, the removal of electrons from π^0 Dalitz decays and the addition of non-single diffractive events with no charged particles within the kinematic range $p_T > 500$ MeV and $|\eta| < 2.5$. The net effect of the correction is to reduce the charged-particle multiplicity. The resulting value 1.240 ± 0.040(syst.) is consistent with the CMS measurement of 1.202 ± 0.043(syst.) in the kinematic range of $p_T > 500$ MeV and $|\eta| < 2.4$.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Summary of systematic uncertainties on the number of events, N_{ev}, and on the charged-particle density $(1/N_{ev}) \cdot (dN_{ch}/d\eta)$ at $\eta = 0$. The uncertainty on N_{ev} is anti-correlated with $dN_{ch}/d\eta$. All other sources are assumed to be uncorrelated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systematic uncertainty on the number of events, N_{ev}</td>
<td></td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Vertex-reconstruction efficiency</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Track-reconstruction efficiency</td>
<td>1.1%</td>
</tr>
<tr>
<td>Different MC tunes</td>
<td>0.4%</td>
</tr>
<tr>
<td>Total uncertainty on N_{ev}</td>
<td>1.2%</td>
</tr>
<tr>
<td>Systematic uncertainty on $(1/N_{ev}) \cdot (dN_{ch}/d\eta)$ at $\eta = 0$</td>
<td></td>
</tr>
<tr>
<td>Track-reconstruction efficiency</td>
<td>4.0%</td>
</tr>
<tr>
<td>Trigger and vertex efficiency</td>
<td>< 0.1%</td>
</tr>
<tr>
<td>Secondary fraction</td>
<td>0.1%</td>
</tr>
<tr>
<td>Total uncertainty on N_{ev}</td>
<td>−1.2%</td>
</tr>
<tr>
<td>Total uncertainty on $(1/N_{ev}) \cdot (dN_{ch}/d\eta)$ at $\eta = 0$</td>
<td>2.8%</td>
</tr>
</tbody>
</table>
Fig. 3. Charged-particle multiplicities for events with \(n_{ch} \geq 1 \) within the kinematic range \(p_T > 500 \) MeV and \(|\eta| < 2.5 \). The panels show the charged-particle multiplicity as a function of pseudorapidity (a) and of the transverse momentum (b), the charged-particle multiplicity (c), and the average transverse momentum as a function of the number of charged particles in the event (d). The dots represent the data and the curves the predictions from different MC models. The vertical bars represent the statistical uncertainties, while the shaded areas show statistical and systematic uncertainties added in quadrature. The values of the ratio histograms refer to the bin centroids.

10. Conclusions

Charged-particle multiplicity measurements with the ATLAS detector using the first collisions delivered by the LHC during 2009 are presented. Based on over three hundred thousand proton–proton inelastic interactions, the properties of events with at least one primary charged particle produced within the kinematic range \(|\eta| < 2.5 \) and \(p_T > 500 \) MeV were studied. The data were corrected with minimal model dependence to obtain inclusive distributions. The charged-particle multiplicity per event and unit of pseudorapidity at \(\eta = 0 \) is
measured to be $1.333 \pm 0.003^{+0.040}_{-0.003}$ (stat.) ± 0.040 (syst.), which is 5–15% higher than the Monte Carlo model predictions. The selected kinematic range and the precision of this analysis highlight clear differences between Monte Carlo models and the measured distributions.

Acknowledgements

We are greatly indebted to all CERN's departments and to the LHC project for their immense efforts not only in building the LHC, but also for their direct contributions to the construction and installation of the ATLAS detector and its infrastructure. All our congratulations go to the LHC operation team for the superb performance during this initial data-taking period. We acknowledge equally warmly all our technical colleagues in the collaborating institutions without whom the ATLAS detector could not have been built. Furthermore we are grateful to all the funding agencies which supported generously the construction and the commissioning of the ATLAS detector and also provided the computing infrastructure.

We acknowledge the support of ANPCyT, Argentina; Yerevan Physics Institute, Armenia; ARC and DEST, Australia; Bundesministerium für Wissenschaft und Forschung, Austria; National Academy of Sciences of Azerbaijan; State Committee on Science & Technologies of the Republic of Belarus; CNPq and FINEP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; NSFC, China; COLCIENCIAS, Colombia; Ministry of Education, Youth and Sports of the Czech Republic; Ministry of Industry and Trade of the Czech Republic, and Committee for Collaboration of the Czech Republic with CERN; Danish National Science Research Council and the Lundbeck Foundation; European Commission, through the ARTEMIS Research Training Network; IN2P3-CNRS and Dapnia-CEA, France; Georgian Academy of Sciences; BMBF, HGF, DFG and MPG, Germany; Ministry of Education and Religion, through the EPEAEK program PYTHAGORAS II and GSRT, Greece; ISF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; CNRS, Morocco; FOM and NWO, Netherlands; The Research Council of Norway; Ministry of Science and Higher Education, Poland; GRICES and FCT, Portugal; Ministry of Education and Research, Romania; Ministry of Education and Science of the Russian Federation and State Atomic Energy Corporation “Rosatom”; JINR; Ministry of Science, Serbia; Department of International Science and Technology Cooperation, Ministry of Education of the Slovak Republic; Slovenian Research Agency, Ministry of Higher Education, Science and Technology, Slovenia; Ministerio de Educación y Ciencia, Spain; The Swedish Research Council, The Knut and Alice Wallenberg Foundation, Sweden; State Secretariat for Education and Science, Swiss National Science Foundation, and Cantons of Bern and Geneva, Switzerland; National Science Council, Taiwan; TAEK, Turkey; The Science and Technology Facilities Council and The Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.
References

ATLAS Collaboration

University of Iowa, 103 Van Allen Hall, Iowa City, IA 52242-1479, United States

Iowa State University, Department of Physics and Astronomy, Ames High Energy Physics Group, Ames, IA 50011-3160, United States

Joint Institute for Nuclear Research, JINR Dubna, RU-141 980 Moscow Region, Russia

KEK, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305-0801, Japan

Kobe University, Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, JP - Kobe 657-8501, Japan

Kyoto University, Faculty of Science, 606-8502, Japan

Kyoto University of Education, 1 Fukakusa, Fushimi-ku, Kyoto-shi, JP - Kyoto 612-8522, Japan

Universidad Nacional de La Plata, Fac, Departamento de Fisica, IFLP (CONICET-UNLP), C.C. 67, 1900 La Plata, Argentina

Lancaster University, Physics Department, 201 Physics Building, Lancaster LA1 4YB, United Kingdom

INFN Sezione di Lecce a), Università del Salento, Dipartimento di Fisica b), Via Arnesano, IT-73100 Lecce, Italy

University of Liverpool, Olive Lodge Laboratory, P.O. Box 147, Oxford Street, Liverpool L69 3BX, United Kingdom

Jozef Stefan Institute and University of Ljubljana, Department of Physics, SI-1000 Ljubljana, Slovenia

Queen Mary University of London, Department of Physics, Mile End Road E1 4NS, United Kingdom

Royal Holloway, University of London, Department of Physics, Egham Hill, Egham, Surrey TW20 0EX, United Kingdom

University College London, Department of Physics and Astronomy, Gower Street, London WC1E 6BT, United Kingdom

Laboratoire de Physique Nucleaire et de Hautes Energies, Universite Pierre et Marie Curie (Paris 6), Université Denis Diderot (Paris 7), CNRS/IN2P3, Tour 33, 4 place Jussieu, FR-75252 Paris Cedex 05, France

Lunds Universitet, Naturvetenskapliga Fakulteten, FysikInstitionen, P.O. Box 118, SE-221 00 Lund, Sweden

Universidade Autonoma de Madrid, Facultad de Ciencias, Departamento de Fisica Teorica, ES-28049 Madrid, Spain

Universität Mainz, Institut für Physik, Staudinger Weg 7, D-55099 Mainz, Germany

University of Manchester, School of Physics and Astronomy, Manchester M13 9PL, United Kingdom

CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France

University of Massachusetts, Department of Physics, 710 North Pleasant Street, Amherst, MA 01003, United States

McGill University, High Energy Physics Group, 3600 University Street, Montreal, Quebec H3A 2T8, Canada

University of Melbourne, School of Physics, AU - Parkville, Victoria 3010, Australia

The University of Michigan, Department of Physics, 2477 Randall Laboratory, 500 East University, Ann Arbor, MI 48109-1120, United States

Michigan State University, Department of Physics, High Energy Physics Group, East Lansing, MI 48824-2320, United States

INFN Sezione di Milano-Industriale a), via Celoria 16, IT-20133 Milano, Italy

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Independence Avenue 68, Minsk 220072, Republic of Belarus

National Scientific & Educational Centre for Particle & High Energy Physics, Vegetable Bin, NCHEP BSU, M. Bogdanovich St. 153, Minsk 220040, Republic of Belarus

Massachusetts Institute of Technology, Department of Physics, Room 24-316, Cambridge, MA 02139, United States

University of Montreal, Group of Particle Physics, C.P. 6126, Succursale Centre-Ville, Montreal, Quebec, H3C 3J7, Canada

P.N. Lebedev Institute of Physics, Academy of Sciences, Leninsky pr. 53, RU-117 94 Moscow, Russia

Institute for Theoretical and Experimental Physics (ITEP), B. Cheremushkinskaya ul. 25, RU-117 21 Moscow, Russia

Moscow Engineering & Physics Institute (MEPhI), Kashirskoe Shosse 31, RU-115409 Moscow, Russia

Lomonosov Moscow State University Skobeltsyn Institute of Nuclear Physics (MSU SINP), 1(2), Luzhniki gory, GSP-1, Moscow 119991, Russia

Luther University, Department of Science, 525 5001 Aachen, Fakultät für Physik, Am Coulombwall 1, D-58748 Garching, Germany

Max-Planck-lnstitut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, 80805 München, Germany

Nagasaki Institute of Applied Science, 536 Aka-machi, JP - Nagasaki 851-013, Japan

Nagoya University, Graduate School of Science, Furo-Cho, Chikusa-ku, Nagoya 464-8602, Japan

INFN Sezione di Napoli a), Università di Napoli, Dipartimento di Scienze Fisiche b), Complesso Universitario di Monte Sant’Angelo, via Cinthia, IT-80126 Napoli, Italy

University of New Mexico, Department of Physics and Astronomy, MSC07 4220, Albuquerque, NM 87131, United States

Radboud University Nijmegen/NIKHEF, Department of Experimental High Energy Physics, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands

Nikhef National Institute for Subatomic Physics, and University of Amsterdam, Science Park 105, 1098 XG Amsterdam, Netherlands

Budker Institute of Nuclear Physics (BINP), RU - Novosibirsk 630 090, Russia

New York University, Department of Physics, 4 Washington Place, New York, NY 10003, United States

Ohio State University, 191 West Woodruff Ave, Columbus, OH 43210-1117, United States

Okayama University, Faculty of Science, Tsushima-cho 3-1-1, Okayama 700-8530, Japan

University of Oklahoma, Homer L. Dodge Department of Physics and Astronomy, 440 West Brooks, Room 100, Norman, OK, 73019-0225, United States

Oklahoma State University, Department of Physics, 145 Physical Sciences Building, Stillwater, OK 74078-3072, United States

Palacký University, 17. listopadu 50a, 772 07 Olomouc, Czech Republic

University of Oregon, Center for High Energy Physics, Eugene, OR 97403-1274, United States

LAL, Univ. Paris-Sud, IN2P3/CNRS, Orsay, France

Osaka University, Graduate School of Science, Machikaneyama-machi 1-1, Toyonaka, Osaka 560-0043, Japan

University of Oslo, Department of Physics, P.O. Box 1048, Blindern, NO-0316 Oslo 3, Norway

Oxford University, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom

INFN Sezione di Pavia a), Università di Pavia, Dipartimento di Fisica Nucleare e Teorica b), Via Bassi 6, IT-27100 Pavia, Italy

University of Pennsylvania, Department of Physics, High Energy Physics Group, 209 S. 33rd Street, Philadelphia, PA 19104, United States

Petersburg Nuclear Physics Institute, RU-180 300 Gatchina, Russia

INFN Sezione di Pisa a), Università di Pisa, Dipartimento di Fisica E. Fermi b), Largo B. Pontecorvo 3, IT-56127 Pisa, Italy

University of Pittsburgh, Department of Physics and Astronomy, 3941 O'Hara Street, Pittsburgh, PA 15260, United States

Laboratorio de Instrumentacion y Fisica Experimental de Particulas - LINFIP a), Avenida Elías Garcia 14-1, PT 1000-149 Lisboa; Universidad de Granada, Departamento de Fisica Teorica y del Cosmos and CAFFÉ b), E-18071 Granada, Spain

Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha 8, Czech Republic

Charles University in Prague, Faculty of Mathematics and Physics, Institute of Particle and Nuclear Physics, V Holesovickach 2, CZ-18000 Praha 8, Czech Republic

Czech Technical University in Prague, CZ-117 94 Prague, Czech Republic

State Research Center Institute for High Energy Physics, Pobeda street 1, 142281 Protvino, Moscow Region, Russia

Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX, United Kingdom

University of Regina, Physics Department, Canada

Ritsumeikan University, Noji Higashi 1 chome 1-1, JP - Kusatsu, Shiga 525-8577, Japan

INFN Sezione di Roma a), Università La Sapienza, Dipartimento di Fisica b), Piazzale A. Moro 2, IT-00185 Roma, Italy

INFN Sezione di Roma Tor Vergata a), Università di Roma Tor Vergata, Dipartimento di Fisica, via della Ricerca Scientifica, IT-00133 Roma, Italy

INFN Sezione di Roma Tre b), Università di Roma Tre c), via della Vasca Navale 56, IT-00146 Roma, Italy

Réseau Universitaire de Physique des Hautes Energies (RUPHE), Université Hassan II, Faculté des Sciences Aïn Chock a), B.P. 5366, MA - Casablanca; Centre National de l’Energie des Sciences Techniques Nucleaires (CENESTEN) b), B.P. 1382 R.P. 10001 Rabat 10001; Université Mohamed Premier c), LPTPM, Faculté des Sciences, B.P.717, B. Mohamed VI, 60000 Oujda; Université Mohammed V, Faculté des Sciences d), 4 Avenue Ibn Battouta, BP 1014 RP 10000 Rabat, Morocco

CEA, DSM/IPJ, Centre d’Etudes de Saclay, FR-91191 Gif-sur-Yvette, France

University of California Santa Cruz, Santa Cruz Institute for Particle Physics (SCIPP), Santa Cruz, CA 95064, United States

University of Washington, Department of Physics, P.O. Box 351560, Seattle, WA 98195-1560, United States