Search for new particles in two-jet final states in 7 TeV proton-proton collisions with the ATLAS detector at the LHC

Published in:
Physical Review Letters

DOI:
10.1103/PhysRevLett.105.161801

Citation for published version (APA):
Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC

G. Aad et al.*
(ATLAS Collaboration)
(Received 13 August 2010; published 11 October 2010)

A search for new heavy particles manifested as resonances in two-jet final states is presented. The data were produced in 7 TeV proton-proton collisions by the LHC and correspond to an integrated luminosity of 315 nb\(^{-1}\) collected by the ATLAS detector. No resonances were observed. Upper limits were set on the product of cross section and signal acceptance for excited-quark (q*) production as a function of q* mass. These exclude at the 95% C.L. the q* mass interval 0.30 < m_{q*} < 1.26 TeV, extending the reach of previous experiments.

DOI: 10.1103/PhysRevLett.105.161801
PACS numbers: 13.85.Rm, 12.60.Rc, 13.87.Ce, 14.80.–j

Two-jet (dijet) events in high-energy proton-proton (pp) collisions are usually described in the standard model (SM) by applying QCD to the scattering of beam-constituent quarks and gluons. Several extensions beyond the SM predict new heavy particles, accessible at LHC energies, that decay into two energetic partons. Such new states may include an excited composite quark q*, exemplifying quark substructure [1–3], an axigluon predicted by chiral color models [4,5], a flavor-universal color-octet coloron [6,7], or a color-octet techni-\(\rho\) meson predicted by models of extended technicolor and top-color-assisted technicolor [8–11].

Particularly sensitive to such new objects is the dijet invariant mass observable, defined as \(m_{jj} = \sqrt{(E_j + E_J)^2 - (p_j + p_J)^2}\), where \(E_j\) and \(p_j\) are the jet energy and momentum, respectively. Several experiments have examined \(m_{jj}\) distributions in search of new resonances [12–17]; recently, 1.13 fb\(^{-1}\) of pp collision data at the Fermilab Tevatron collider have excluded the existence of excited quarks q* with mass 260 < m_{q*} < 870 GeV [16]. This Letter reports the first search by the ATLAS experiment [18] at the LHC for such massive particles in pp collisions at a center-of-mass energy of \(\sqrt{s} = 7\) TeV, based on a data sample corresponding to an integrated luminosity of 315 nb\(^{-1}\). The analysis presented here focused on a search for excited quarks because of the accessible predicted cross section [2,3] for such particles and the benchmark nature of the model that allows limits on the acceptance times cross section to be set for resonant states with intrinsic widths narrower than the experimental resolution.

The analysis technique consisted of a model-independent search for a dijet mass resonance on top of a smooth and rapidly falling spectrum and relied on the measured \(m_{jj}\) distribution to estimate the background level to this new possible signal. In the absence of an observed new physics signal, upper limits were determined on products of cross section (\(\sigma\)) and signal acceptance (\(\mathcal{A}\)) for several q* test masses for a standard set of model parameters.

The ATLAS detector [18] is a multipurpose particle physics apparatus with a forward-backward symmetric cylindrical geometry and near \(4\pi\) coverage in solid angle [19]. The overall layout of the detector is dominated by its three large toroids with an eightfold azimuthal symmetry.

The calorimeters, which are surrounded by an extensive muon system, are of particular importance to this analysis. In the pseudorapidity region |\(\eta\)| < 3.2, high-granularity liquid-argon (LAr) electromagnetic sampling calorimeters are used. An iron-scintillator tile calorimeter provides hadronic coverage in the range |\(\eta\)| < 1.7. The end-cap and forward regions, spanning 1.5 < |\(\eta\)| < 4.9, are instrumented with LAr calorimetry for both electromagnetic and hadronic measurements.

The data sample was collected during stable periods of 7 TeV pp collisions using a trigger configuration requiring the lowest-level hardware-based calorimeter jet trigger to satisfy a nominal transverse energy threshold of 15 GeV [20]. This trigger had an efficiency greater than 99% for events with at least one jet with transverse energy higher than 80 GeV.

Jets were reconstructed by using the anti-\(k_T\) jet clustering algorithm [21] with a radius parameter \(R = 0.6\). The inputs to this algorithm were clusters of calorimeter cells seeded by cells with energy significantly above the measured noise. Jet four-vectors were constructed by performing a four-vector sum over these cell clusters, treating each as an \((E, \vec{p})\) four-vector with zero mass. These were cor-

*Full author list given at the end of the article.

Published by The American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
rected for the effects of calorimeter noncompensation and inhomogeneities by using transverse-momentum (p_T) and η-dependent calibration factors based on Monte Carlo (MC) corrections and validated with extensive test-beam and collision-data studies [20,22]. The m^{jj} observable was computed without unfolding jets to hadrons or partons.

In order to suppress cosmic-ray and beam-related backgrounds, events were required to contain at least one primary collision vertex, defined by at least five reconstructed charged-particle tracks, each with a position, when extrapolated to the beam line, of $|z| < 10$ cm. Events with at least two jets were retained if the highest p_T jet (the “leading” jet) satisfied $p_T^j > 80$ GeV and the next-to-leading jet satisfied $p_T^{j} > 30$ GeV; this ensured that the data sample had high and unbiased trigger and jet reconstruction efficiencies. Those events containing a poorly measured jet with $p_T > 15$ GeV were vetoed to prevent cases where a jet was incorrectly identified as one of the two leading jets [23]; this affected the event selection by less than 0.5%. The two leading jets were required to satisfy several quality criteria [23] and to lie outside destruction efficiencies. Those events containing a poorly measured jet with $p_T > 15$ GeV were vetoed to prevent cases where a jet was incorrectly identified as one of the two leading jets [23]; this affected the event selection by less than 0.5%. The two leading jets were required to satisfy several quality criteria [23] and to lie outside detector regions where the jet energy was not yet measured in an optimal way, such as the interval $1.3 < |\eta^{jj}| < 1.8$. Finally, both jets were required to be in the pseudorapidity region $|\eta^{jj}| < 2.5$, and their pseudorapidity difference was required to satisfy $|\eta^{jj} - \eta^{jj}| < 1.3$. These cuts, which suppress high-mass SM multijet background, were determined by performing an optimization of the potential signal from q^* decays (using a q^* mass of 1 TeV) compared with the SM background. There were 132 433 candidates that satisfied these requirements.

The final event sample was selected by requiring the dijet invariant mass to satisfy $m^{jj} > 200$ GeV in order to eliminate any potential kinematic bias in the m^{jj} distributions from the selection requirements on the jet candidates. There were 37 805 events in this sample, which formed the m^{jj} distribution shown in Fig. 1.

MC signal events were generated by using the excited-quark ($qg \to q^*$) production model [2,3]. The excited quark q^* was assumed to have spin 1/2 and quarklike couplings, relative to those of the SM $SU(2)$, $U(1)$, and $SU(3)$ gauge groups, of $f = f' = f_s = 1$, respectively. The compositeness scale (Λ) was set to the q^* mass. Signal events were generated by using PYTHIA [24] 6.4.21, a leading-order parton-shower MC generator, with the modified leading-order MRST2007 [25] parton distribution functions (PDFs) and with the renormalization and factorization scales set to the mean p_T of the two leading jets. PYTHIA was also used to decay the excited quarks to all possible SM final states, which were dominantly gg but also qW, qZ, and $q\gamma$. The MC samples were produced [26] using the ATLAS MC09 parameter tune [27] and a GEANT4-based detector simulation [28].

Figure 1 shows the predicted signals for q^* masses of 500, 800, and 1200 GeV, after all selection cuts. The signal acceptance (A), which included reconstruction and trigger efficiencies near 100%, was found to range from ~31% for $m_{q^*} = 300$ GeV to ~58% for $m_{q^*} = 1.7$ TeV [29]. The choice of dijet mass binning was motivated by the dijet mass resolution of the signal. The predicted experimental width ranged from $\sigma_{m^{jj}/m^{jj}} \sim 11\%$ at $m_{q^*} = 300$ GeV to $\sigma_{m^{jj}/m^{jj}} \sim 7\%$ at $m_{q^*} = 1.7$ TeV and was dominated by the detector energy resolution.

The background shape was determined by fitting the observed spectrum with the function [16]

$$f(x) = p_1(1 - x)^{p_2} x^{p_3} + p_4 \ln x,$$ (1)

where $x \equiv m^{jj}/\sqrt{s}$, such that $f(1) = 0$ and $f(0) \to +\infty$, and $p_{1,2,3,4}$ are free parameters. The $x^p \ln x$ factor was included to describe the high-m^{jj} part of the spectrum. The function in Eq. (1) has been shown to fit the m^{jj} observable well in PYTHIA, HERWIG, and next-to-leading-order perturbative QCD predictions for pp collisions at $\sqrt{s} = 1.96$ TeV [16]. Studies using PYTHIA and the ATLAS GEANT4-based detector simulation were performed to demonstrate that the smooth and monotonic form of Eq. (1) describes QCD-predicted dijet mass distributions in pp collisions at $\sqrt{s} = 7$ TeV. There is good agreement between the MC prediction and the fitted parametrization in Eq. (1), as evidenced by a χ^2 per degree of freedom of 27/22 over the dijet mass range $200 < m^{jj} < 1900$ GeV.

The results of fitting the data with Eq. (1) are shown in Fig. 1. The presence or absence of detectable m^{jj} resonances in this distribution was determined by performing

![Figure 1](color online). The data (D) dijet mass distribution (filled points) fitted by using a binned background (B) distribution described by Eq. (1) (histogram). The predicted q^* signals [2,3] for excited-quark masses of 500, 800, and 1200 GeV are overlaid, and the bin-by-bin significance of the data-background difference is shown.
several statistical tests of the background-only hypothesis. A suite of six tests was employed: the BumpHunter [30], the Jeffreys divergence [31], the Kolmogorov-Smirnov test, the likelihood, the Pearson χ², and the TailHunter statistic [32]. The agreement of the data with the background-only hypothesis of a smoothly varying and monotonic distribution was determined for each statistic by calculating the p value for the data using 10³ pseudo-spectra drawn from Poisson variations seeded by the results of the fit of Eq. (1) to the data. The p value of the background-only hypothesis is defined as the fraction of pseudoexperiments that result in a value of the same statistic found in the zero-signal hypothesis, a Bayesian approach was used to determine the posterior probability density in

\[
L/C_{23} \left(b/C_{23}, s_i \right) = \prod_i \frac{[b_{ri} + s_i(\nu)]^{d_i}}{d_i!} e^{-[b_{ri} + s_i(\nu)]},
\]

where \(d_i \) is the observed number of data events in bin \(i \), \(b_{ri} \) is the background in bin \(i \) obtained as described below, and \(s_i(\nu) \) is the predicted signal added in bin \(i \) by the signal template; the latter was normalized to the total number of predicted signal events \(s = \sum s_i(\nu) \). For each \(\nu \), the backgrounds in the bins \(b_{ri} \) were evaluated from a simultaneous five-parameter fit of the signal and background distributions to ensure that the background determination would not be biased by the presence of any signal. The four background parameters were those in Eq. (1); the fifth parameter consisted of the normalization of the predicted \(\nu \)th \(q^* \) signal template. To avoid acceptance bias, the lowest \(q^* \) test mass used was 300 GeV. For every \(q^* \) mass, Eq. (2) was computed for a range of possible signal yields \(s \), and the resulting likelihood function was multiplied by a flat prior in \(s \) to give a posterior probability density in \(s \). The 95% probability region was then determined by integration of the posterior probability distribution. This Bayesian technique was found to yield credibility intervals that corresponded well with frequentist confidence intervals. This was verified by performing a series of pseudoexperiments to determine, by way of a standard frequentist calculation, the coverage, or the fraction of times that the 95% Bayesian credibility interval contained the true number of signal events.

The dominant sources of systematic uncertainty, in decreasing order of importance, were the absolute jet energy scale, the background fit parameters, the integrated luminosity, and the jet energy resolution (JER). The jet energy scale uncertainty was quantified as a function of \(p_T \) and \(\eta^j \), with values in the range 6%–9% [20,33,34]. The jet calibration relied on the MC simulation of the response of the ATLAS detector; its uncertainty was constrained by varying the ATLAS simulation and from \textit{in situ} information. The systematic uncertainty on the determination of the background was taken from the uncertainty on the parameters resulting from the fit of Eq. (1) to the data sample. The uncertainty on \(\sigma \cdot A \) due to integrated luminosity was estimated to be ±11% [35]. The JER uncertainty was treated as uniform in \(p_T \) and \(\eta^j \) with a value of ±14% on the fractional \(p_T \) resolution of each jet [36]. The effects of jet energy scale, background fit, integrated luminosity, and JER were incorporated as nuisance parameters into the likelihood function in Eq. (2) and then marginalized by numerically integrating the product of this modified likelihood, the prior in \(s \), and the priors corresponding to the nuisance parameters to arrive at a modified posterior probability distribution. In the course of applying this convolution technique, the JER was found to make a negligible contribution to the overall systematic uncertainty.

Figure 2 depicts the resulting 95% C.L. upper limits on \(\sigma \cdot A \) as a function of the \(q^* \) resonance mass after incorporation of systematic uncertainties. Linear interpolations

![Graph showing ATLAS data](image)

FIG. 2 (color online). The 95% C.L. upper limit on \(\sigma \cdot A \) as a function of dijet resonance mass (black filled circles). The black dotted curve shows the expected 95% C.L. upper limit, and the light and dark yellow shaded bands represent the 68% and 95% credibility intervals of the expected limit, respectively. The dashed curves represent excited-quark \(\sigma \cdot A \) predictions for different MC tunes, each using a different PDF set.
between test masses were used to determine where the experimental bound intersected with a theoretical prediction to yield a lower limit on allowed mass. The corresponding observed 95% C.L. excited-quark mass exclusion region was found to be $0.30 < m_{q^*} < 1.26$ TeV by using MRST2007 PDFs in the ATLAS default MC09 tune. Table I shows the results obtained by using CTEQ6L1 [37] and CTEQ5L [39] PDF sets. The variations in the observed limit associated with the error eigenvectors of a CTEQ PDF set were found to be smaller than the spread displayed in Table I. The excluded regions were ~ 30 GeV greater when only statistical uncertainties were taken into account. The expected limits corresponding to the data sample were computed by using an analogous approach but replacing the actual data with pseudodata generated by random fluctuations around the smooth function described by fitting the data with Eq. (1); these are shown in Fig. 2, with a resulting expected q^* mass exclusion region of $0.30 < m_{q^*} < 1.06$ TeV using MRST2007 PDFs. As indicated in Table I, the two other PDF sets yielded similar results, with expected exclusion regions extending to near 1 TeV. An indication of the dependence of the m_{q^*} limits on the theoretical prediction for the q^* signal was obtained by simultaneously varying both the renormalization and factorization scales by factors of 0.5 and 2, which was tantamount to modifying the predicted cross section by approximately $\pm 20\%$; this changed the observed MRST2007 limit of 1.26 TeV to 1.32 and 1.22 TeV, respectively.

In conclusion, a model-independent search for new heavy particles manifested as mass resonances in dijet final states was conducted using a 315 nb$^{-1}$ sample of 7 TeV proton-proton collisions produced by the LHC and recorded by the ATLAS detector. No evidence of a resonance structure was found, and upper limits at the 95% C.L. were set on the products of cross section and signal acceptance for hypothetical new q^* particles decaying to dijets. These data exclude at the 95% C.L. excited-quark masses from the lower edge of the search region, 0.30 TeV, to 1.26 TeV for a standard set of model parameters and using the ATLAS default MC09 tune [27]. This result extends the reach of previous experiments and constitutes the first exclusion of physics beyond the standard model by the ATLAS experiment. In the future, such searches will be extended to exclude or discover additional hypothetical particles over greater mass ranges.

We deeply thank everybody at CERN involved in operating the LHC in such a superb way during this initial high-energy data-taking period. We acknowledge equally warmly all the technical and administrative staff in the collaborating institutions without whom ATLAS could not be operated so efficiently. We acknowledge the support of ANPCyT, Argentina; Yerevan Physics Institute, Armenia; ARC and DEST, Australia; Bundesministerium für Wissenschaft und Forschung, Austria; National Academy of Sciences of Azerbaijan; State Committee on Science and Technologies of the Republic of Belarus; CNPq and FINEP, Brazil; NSERC, NRC, and CFI, Canada; CERN; CONICYT, Chile; NSFC, China; COLCIENCIAS, Colombia; Ministry of Education, Youth and Sports of the Czech Republic; Ministry of Industry and Trade of the Czech Republic, and Committee for Collaboration of the Czech Republic with CERN; Danish Natural Science Research Council and the Lundbeck Foundation; European Commission, through the ARTEMIS Research Training Network; IN2P3-CNRS and CEA-DSM/IRFU, France; Georgian Academy of Sciences; BMBF, DFG, HGF and MPG, Germany; Ministry of Education and Religion, through the EPEAEK program PYTHAGORAS II and GSRT, Greece; IF, MINERVA, GIF, DIP, and Benoziyo Center, Israel; INFN, Italy; MEXT, Japan; CNRS, Morocco; FOM and NWO, The Netherlands; The Research Council of Norway; Ministry of Science and Higher Education, Poland; GRICES and FCT, Portugal; Ministry of Education and Research, Romania; Ministry of Education and Science of the Russian Federation and State Atomic Energy Corporation ROSATOM; JINR; Ministry of Science, Serbia; Department of International Science and Technology Cooperation, Ministry of Education of the Slovak Republic; Slovenian Research Agency, Ministry of Higher Education, Science and Technology, Slovenia; Ministerio de Educación y Ciencia, Spain; The Swedish Research Council, The Knut and Alice Wallenberg Foundation, Sweden; State Secretariat for Education and Science, Swiss National Science Foundation, and Cantons of Bern and Geneva, Switzerland; National Science Council, Taiwan; TAEK, Turkey; The Science and

<table>
<thead>
<tr>
<th>MC tune</th>
<th>PDF set</th>
<th>Observed mass limit [TeV]</th>
<th>Expected mass limit [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC09 [27]</td>
<td>MRST2007 [25]</td>
<td>1.26</td>
<td>1.28</td>
</tr>
<tr>
<td>MC09a</td>
<td>CTEQ6L1 [37]</td>
<td>1.20</td>
<td>1.23</td>
</tr>
<tr>
<td>Perugia [38]</td>
<td>CTEQ5L [39]</td>
<td>1.22</td>
<td>1.25</td>
</tr>
</tbody>
</table>

aThe MC09a tune is identical to MC09 except for the PYTHIA [24] parameter PARP(82) = 2.1 and use of the CTEQ6L1 PDF set.
United Kingdom; DOE and NSF, United States of America.

1University of Albany, 1400 Washington Avenue, Albany, New York 12222, USA
2University of Alberta, Department of Physics, Centre for Particle Physics, Edmonton, Alberta T6G 2G7, Canada
3Ankara University, Faculty of Sciences, Department of Physics, TR 061000 Tandogan, Ankara, Turkey;
3aDumlupinar University, Faculty of Arts and Sciences, Department of Physics, K sanya, Turkey;
3bGazi University, Faculty of Arts and Sciences, Department of Physics, 06500, Teknikokullar, Ankara, Turkey;
3cTOBB University of Economics and Technology, Faculty of Arts and Sciences, Division of Physics, 06560, Sogutozu, Ankara, Turkey;
3dTurkish Atomic Energy Authority, 06530, Lodoslu, Ankara, Turkey;
4LAPP, Université de Savoie, CNRS/IN2P3, Annecy-le-Vieux, France
5Argonne National Laboratory, High Energy Physics Division, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
6University of Arizona, Department of Physics, Tucson, Arizona 85721, USA
7The University of Texas at Arlington, Department of Physics, Box 19059, Arlington, Texas 76019, USA
8University of Athens, Nuclear and Particle Physics, Department of Physics, Panepistimiopolioi, Zografou, GR 15771 Athens, Greece
9National Technical University of Athens, Physics Department, 9-Iiron Politechniou, GR 15780 Zografou, Greece
10Institute of Physics, Azerbaijan Academy of Sciences, H. Javid Avenue 33, AZ 143 Baku, Azerbaijan
11Institut de Física d'Altes Energies, IFAE, Edifici Cn, Universitat Autònoma de Barcelona, ES-08193 Bellaterra (Barcelona), Spain
12aUniversity of Belgrade, Institute of Physics, P.O. Box 57, 11001 Belgrade, Serbia;
12bUniversity of Bergen, Department for Physics and Technology, Allegaten 55, NO-5007 Bergen, Norway
13University of Bergen, Department of Physics and Technology, Algedalen 55, NO-5007 Bergen, Norway
14Lawrence Berkeley National Laboratory and University of California, Physics Division, MS50B-6227, 1 Cyclotron Road, Berkeley, California 94720, USA
15Humboldt University, Institute of Physics, Berlin, Newtonstrasse 15, D-12489 Berlin, Germany
Stockholm University: Department of Physics; Royal Institute of Technology (KTH), Physics Department, SE-106 91 Stockholm, Sweden
Stony Brook University, Department of Physics and Astronomy, Nicolls Road, Stony Brook, New York 11794-3800, USA
University of Sussex, Department of Physics and Astronomy, Pevensey 2 Building, Falmer, Brighton BN1 9QH, United Kingdom
University of Sydney, School of Physics, AU - Sydney NSW 2006, Australia
Institute of Physics, Academia Sinica, TW - Taipei 11529, Taiwan
Technion, Israel Institute of Technology, Department of Physics, Technion City, IL - Haifa 32000, Israel
Tel Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Ramat Aviv, IL - Tel Aviv 69978, Israel
Aristotle University of Thessaloniki, Faculty of Science, Department of Physics, Division of Nuclear and Particle Physics, University Campus, GR-54124, Thessaloniki, Greece
The University of Tokyo, International Center for Elementary Particle Physics and Department of Physics, 7-3-1 Hongo, Bunkyo-ku, JP - Tokyo 113-0033, Japan
Tel Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Ramat Aviv, IL - Tel Aviv 69978, Israel
Aristotle University of Thessaloniki, Faculty of Science, Department of Physics, Division of Nuclear and Particle Physics, University Campus, GR-54124, Thessaloniki, Greece
The University of Tokyo, International Center for Elementary Particle Physics and Department of Physics, 7-3-1 Hongo, Bunkyo-ku, JP - Tokyo 113-0033, Japan