Modelling and measuring the dynamics of scientific communication
Lucio Arias, D.P.

Citation for published version (APA):
Lucio-Arias, D. (2010). Modelling and measuring the dynamics of scientific communication

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of Tables and Figures

CHAPTER 2
Figure 1. Three selection environments operating upon one another.................................15
Figure 2. Mediation between the context of discovery and the context of justification...........18
Figure 3. Schematic representation of the analysis of diffusion versus codification..............24
CHAPTER 3
Figure 1. Number of documents in the SCI with “fullerene” and “nanotube”.......................40
Figure 2. Distribution of fullerene-related documents in journals .......................................41
Figure 3. Number of documents in Fullerene, Science and Technology...............................42
Table 1. Factor structure among journals citing Fullerene, Science and Technology..............43
Figure 4. Journals citing Fullerene, Science and Technology ..............................................44
Table 2. Factor structure among journals citing Fullerene, Nanotubes and Carbon Nanostructures.................................................................46
Figure 5. Journals citing Fullerene, Nanotubes and Carbon Nanostructures........................46
Table 3. Factor structure among journals cited by Fullerene, Nanotubes and Carbon Nanostructures .......................................................................................47
Figure 6. Journals cited within articles in Fullerene, Nanotubes and Carbon Nanostructures...47
Figure 7. Cosine map of the first 2,565 titles in fullerene related documents.........................49
Figure 8. Cosine map of the second 2,565 titles in fullerene related documents.....................50
Figure 9. Cosine map of the third 2,566 titles in fullerene related documents.......................51
Figure 10. Cosine map of the first 3,224 titles in nanotube related documents.......................52
Figure 11. Cosine map of the second 3,224 titles in nanotube related documents...................53
Figure 12. Cosine map of the third 3,224 titles in nanotube related documents......................54
Figure 13. Patent applications in USPTO with “fullerene(s)” or “nanotube(s)”. .................55
Figure 14. Cosine map of the titles in fullerene related patent documents ............................56
Figure 15. Cosine map of the titles in nanotube related patent documents ...........................57
Figure 16. Citing relations among documents with “fullerene(s)” .....................................60
Figure 17. Citing relations among documents with “nanotube(s)” .....................................62
Figure 18. Citing relations among nanotube- and fullerene-related documents ...................64
CHAPTER 4
Figure 1. Number of documents in the set of “fullerene” or “nanotube” .............................69
Figure 2. Prediction and possible revision of the prediction among three documents ............74
Figure 3. Thirty most highly-cited documents among “fullerene” ....................................77
Table 1. Thirty most highly-cited documents among “fullerene” ........................................78
Figure 4. Thirty most highly-cited documents among “nanotube” ....................................79
Table 2. Most highly-cited documents among “nanotube” ..............................................80
Figure 5. Main path for 30 most often cited documents in the set of “fullerene” .................80
Figure 6. Main path for 30 most often cited documents for “fullerene” in HistCite output ....81
Figure 7. Main-path for 30 most often cited documents for “nanotube” in HistCite output ....82
Figure 8. Path-dependent transitions in the distributions of cited references for the set of “nanotube” ..............................................................83
Figure 9. Critical transitions in the cited references distributions for the 30 in the set of “fullerene” ........................................................................85
Figure 10. Most influential papers in the diffusion of research in fullerenes.......................87
Figure 11. Most influential papers in the diffusion of research in nanotubes .......................88
Figure 12. Critical transitions in the citing documents distribution for the 30 most cited documents in the set of “nanotube” ........................................89
CHAPTER 5
Figure 1. Three dimensions considered for the computation of the configurational information..........................96
Figure 2. Relations between probabilistic entropies for three interacting variables..........98
Table 1. Descriptive information about the various data sets used in the analysis.................101
Figure 3. Configurational information in bits of information for “fullerenes” and “nanotubes.” 102
Figure 4. Configurational information in bits for “citations” and “paradigms” ..................104
Figure 5. Configurational information in bits for “paradigms” in the Science Citation Index, the Social Science Citation Index, and the Arts & Humanities Citation Index ..............................105

Figure 6. Configurational information in bits for journals related to scientometric discourse.....106

Figure 7. Two-year moving averages of number of publications for JASIST, Scientometrics, IP&M, and the Journal of Documentation...............................................................107

Figure 8. Configurational information in bits for the aggregated journals related to the scientometric discourse ........................................................................................................108