UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Design Space Exploration for Distributed Cyber-Physical Systems: State-of-the-
art, Challenges, and Directions

Herget, M.; Saadatmand, F.S.; Bor, M.; Gonzalez Alonso, |.; Stefanov, T.; Akesson, B.;
Pimentel, A.D.

DOI
10.1109/DSD57027.2022.00090

Publication date
2022

Document Version
Final published version

Published in
2022 25th Euromicro Conference on Digital System Design

License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-
we-take-care)

Link to publication

Citation for published version (APA):

Herget, M., Saadatmand, F. S., Bor, M., Gonzalez Alonso, |., Stefanov, T., Akesson, B., &
Pimentel, A. D. (2022). Design Space Exploration for Distributed Cyber-Physical Systems:
State-of-the-art, Challenges, and Directions. In H. Fabelo, S. Ortega, & A. Skavhaug (Eds.),
2022 25th Euromicro Conference on Digital System Design: DSD 2022 : 31 August-2
September 2022, Maspalomas, Spain : proceedings (pp. 632-640). IEEE Computer Society.
https://doi.org/10.1109/DSD57027.2022.00090

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You

wilh o pe M ACeT@S80RBAS RPRSBIRIS of the University of Amsterdam (https://dare.uva.nl)

Download date:05 Dec 2023

https://doi.org/10.1109/DSD57027.2022.00090
https://dare.uva.nl/personal/pure/en/publications/design-space-exploration-for-distributed-cyberphysical-systems-stateoftheart-challenges-and-directions(3bc89a49-a5a2-4914-9df0-e63839fc7c01).html
https://doi.org/10.1109/DSD57027.2022.00090

2022 25th Euromicro Conference on Digital System Design (DSD)

Design Space Exploration for
Distributed Cyber-Physical Systems:
State-of-the-art, Challenges, and Directions

Marius Herget*, Faezeh Sadat Saadatmand’, Martin Bor*,
Ignacio Gonzéilez Alonso!, Todor Stefanov’, Benny Akesson*$, and Andy D. Pimentel*

* Informatics Institute (IvI), University of Amsterdam, Netherlands
T Leiden Institute of Advanced Computer Science, Leiden University, Netherlands
t ASML Netherlands B.V., Netherlands
§ ESI (TNO), Netherlands

Abstract—Industrial Cyber-Physical Systems (CPS) are com-
plex heterogeneous and distributed computing systems, typically
integrating and interconnecting a large number of subsystems
and containing a substantial number of hardware and software
components. Producers of these distributed Cyber-Physical Sys-
tems (dCPS) face serious challenges with respect to designing the
next generations of these machines and require proper support
in making (early) design decisions to avoid expensive and time
consuming oversights. This calls for efficient and scalable system-
level Design Space Exploration (DSE) methods for dCPS.

In this position paper, we review the current state of the art
in DSE, and argue that efficient and scalable DSE technology
for dCPS is more or less non-existing and constitutes a largely
unchartered research area. Moreover, we identify several re-
search challenges that need to be addressed and discuss possible
directions for targeting such DSE technology for dCPS.

Index Terms—Distributed Cyber-Physical Systems, Design
Space Exploration, Workload Modelling, Performance Modelling,
Model Inference, Workload Dynamism

I. INTRODUCTION

YBER-PHYSICAL SYSTEMS comprise one of the

largest information-technology sectors worldwide, driv-
ing innovation in other crucial industrial sectors, such as health
industries, industrial automation, robotics, avionics and space.
Nowadays, the embedded compute infrastructure of complex
CPS is based on heterogeneous multi-core or many-core
systems, which are distributed, and connected via complex
networks [1]. Manufacturing companies of dCPS, such as
ASML, Canon Production Printing, and Philips, face important
challenges in designing their next-generation lithography scan-
ner machines, industrial printers, and X-ray machines, respec-
tively [16]. Typically, these machines are very complex dCPS
that integrate and interconnect a large number of sub-systems
containing multiple dependent compute nodes (hardware and
software components) that perform different tasks, e.g., data
processing, control, monitoring, thereby realising a wide range
of functionality and features. Designers of such systems need

This work was supported by the NWO Mastering Complexity (MasCot)
research program in partnership with TNO-ESI (project 17930) and by ASML
Netherlands B.V.

2771-2508/22/$31.00 ©2022 IEEE
DOI 10.1109/DSD57027.2022.00090

632

quick answers to so-called “what-if” questions concerning
design decisions and their impact on non-functional aspects,
such as system performance, cost, or energy consumption.
Hence, the academic community, along with the industrial
sector, are calling for more research on efficient and scalable
system-level DSE methods for dCPS [32]. These need to
integrate appropriate application workload and system archi-
tectures models, simulation and optimisation techniques, as
well as supporting tools, to facilitate the exploration of a wide
range of design decisions.

In this position paper, we argue that such efficient and
scalable DSE technology for dCPS is more or less non-
existing and constitutes largely unchartered research area.
Moreover, we identify several research challenges that need
to be addressed and discuss possible solution directions when
targeting DSE technology for dCPS. The four major contri-
butions of this position paper are: (i) the presentation of an
abstracted general workflow that can be used to structure and
position work in the area of DSE (Sections II and III), (ii) the
identification and description of open scientific challenges in
the area of Design Space Exploration for dCPS (Section IV),
(iii) a simple experiment with a state-of-the-art DSE tool to
demonstrate some of the mentioned challenges (Section V),
and (iv) a description of our ongoing research addressing the
aforementioned challenges (Section VI).

II. BACKGROUND

Design Space Exploration (DSE) is the process of discov-
ering one or many design solutions that best satisfy defined
design objectives given a space of tentative solutions called
design points. Although this research field is often seen in the
context of hardware design, there is no explicit definition of
which kind of design is targeted. Hence, design points can
consist of pure hardware, or software, or a combination of
both. The complexity of the complete design space is based
on the defined design choices and is defined by the cartesian
product of all those choices (all possible combinations). In
general terms, DSE is either a single or multi-objective optimi-

sation problem where a cost function of all design objectives is
maximised or minimised subject to several constraints. Classic
design objectives include energy consumption, cost, reliability,
throughput, or a combination thereof. DSE has a long history
in mathematics (as an optimisation problem) and computer
science research domains. Nonetheless, within the latter area,
it has been mainly researched and utilised within the field of
embedded Systems-on-a-Chip (SoC) design [12, 23].

The precise implementation of a DSE process is subject
to various factors, e.g., the specific system/use-case, desired
accuracy, abstraction level, restrictions, design objectives, and
available computing resources for the actual DSE process.
Nevertheless, each implementation and approach mostly share
similar steps, which can be abstracted in a typical workflow
outline shown in Fig. 1. This workflow concentrates on the
evolutionary aspect of DSE, i.e. desiging a new generation
of machines based on existing CPS. In more detail, DSE
can generally be defined by four steps: (i) the preparation
(description and creation) of the models based on existing
systems (Fig. la), (ii) the construction of the design space
(Fig. 1b), (iii) the systematic analysis of the set of all possible
design points in the design space, including the evaluation
of each individual design point based on specified criteria
(Fig. 1c), and (iv) the further processing/presentation of the
results (Fig. 1d).

The construction of design points is split up into two sub-
steps: Modelling and Design Space Construction. Modelling
(see Fig. la) is the preparation of the environment to be
explored. This includes discovering and describing the system
artefacts, like software applications, available/suitable archi-
tectural platforms, and design choices (e.g., various hardware
options, scheduling of tasks to specific processors, or the
system’s topology). Complex and too detailed descriptions
are often unsuitable for efficient, time-constrained analysis.
Hence, an appropriate level of abstraction needs to be chosen
for the models. The last substep is mapping all models into
one abstract system representation. This should result in one
designated model of combined software and hardware of the
system to which the further DSE steps can be applied.

As seen in Fig. 1b, the constructed models can then be
used to “span” a design space by creating all possible design
points based on the design choices the models capture. A
static/pre-exploration pruning can already be conducted based
on external constraints or apparent incompatibilities within
generated design points.

The third significant step of the general DSE workflow is
the exploration of the design points, followed by the results
of the DSE process. During exploration (shown in Fig. 1c),
a search algorithm is used to determine which design points
need evaluation. Each of these points is then evaluated, and
the results are stored. An evaluation of a design point is
defined as studying the extra-functional behaviour of system
configurations (models), producing measurable KPIs to op-
timise for. Design points are dynamically pruned depending
on the search strategy and information from newly obtained
evaluation results. This can drastically decrease the size of the

633

Discovery
- 3
3
S Description
s p!
Bl L2
Abstraction Mapping
:g Des.lgn ‘_> Design Sgace
£ Choices : »| Construction
=
2
S
IS (Pre-Exploration)
3 Static Pruning ~ [€
v
Search Strategy
: Pick
: Design Point
kS ;
§
3 : Evaluate
] Dynamic ¢ Design Point
> Pruning :
Performance)
H Result
o — |
?; Validation Feedback Decision
&
<

Fig. 1: General DSE workflow

design space. The exploration either yields intermediate results
or a conclusive recommendation for design decisions (see
Fig. 1d). Intermediate results can be used to tune the models,
adjust the search algorithm via feedback loops, or validate
either. Consequently, the Design Space Exploration workflow
is able to be restructured as a multi-level, hierarchical approach
where the abstraction level can be decreased in multiple runs.
Nevertheless, in the end, recommendations for the design
decisions are presented in a suitable form (e.g. as pareto
fronts [19]) to the designer to guide decision making.

While the idea of this abstracted DSE workflow can be
observed in various forms in different implementations; the
explicit realisation is not limited to its specific arrangement.
Hence steps can be skipped, exchanged or added depending
on the use case. Nevertheless, this position paper will use
this workflow as the structure for related work and open
challenges.

III. RELATED WORK

The goal of this section is to present major related work
in form of general methods and techniques for specific steps
during DSE, as well as related scientific studies in the field.
This presentation is oriented to the abstract DSE workflow
presented in Fig. 1 and focusses especially on Models and
Exploration (Figs. 1a and 1c).

As already indicated in Section II, most implementations
have common features in their DSE workflow. One key obser-

vation often used is the “separation of concerns” philosophy
during modeling which, e.g., Kienhuis [15] realized as the Y-
Chart methodology. Hereby, the functionality in the form of
the application workload, the architecture of the underlying
system, and the mapping between them are clearly separated.
This idea has been adopted in many system modeling ap-
proaches. It is also indicated in Fig. 1a in the form of various
models representing different concerns and their relationship
expressed by a mapping layer. It has been also identified as
an industry best practice for DSE by Van der Sanden et al.
[32]. The initial models are — in the overwhelming majority of
related work — created manually [20], but, with the increasing
complexity of the systems, efforts have been made to infer
them from recorded or discovered data [38].

In Fig. lc, the evaluation of each design point, and the
search strategy through the design space have been briefly
mentioned. Pimentel [23] divides the evaluation of each de-
sign point in the design space roughly into three categories:
(i) benchmark measurements of prototype implementations,
(i1) simulation-based examination, and (iii) analytical model
estimations. Analytical models allow for efficient evaluation
of design points [23]. Mechanistic analytical models are built
in a bottom-up fashion and capture the actual behaviour
of the application and architectural elements by considering
and accounting for a variety of events (e.g., cache misses,
and resource contention) [13, 23]. In contrast to mechanistic
models, empirical models, statistical inference, and machine
learning techniques infer the performance from previously
learned data. This “black box™ approach requires less intimate
knowledge of the mechanics of the modelled system and,
therefore, is easier to develop.

The simulation-based approach mimics the system’s be-
haviour and can be performed on various levels of abstraction.
While a high abstraction level increases evaluation speed,
details of the system are lost, and thus the accuracy is lower.
Register-transfer level simulation is the lowest meaningful
level for digital systems, whereby the digital signals between
registers and combinational logic is explicitly mimicked.
For each increasing level of abstraction there are various
frameworks and implementations available [23] (e.g., cycle-
accurate [5] or transaction-level modeling [6]). For exhaustive
and complex systems, all these program execution-driven
approaches are often still too cost-intensive and detailed for
efficient evaluation of a large number of design points. Hence,
the trace-driven approach focuses on collected application
artefacts called event traces, reducing the modeling com-
plexity [24]. While it potentially reduces the simulation cost
significantly, an initial system configuration from which traces
can be extracted has to exist already.

The second large sub-step of Fig. 1c are search strategies
which are categorized as; (i) exhaustively evaluating every
possible design point, (ii) random/intelligent sampling, or
(iii) incorporating domain knowledge of the environment [12].
Panerati, Sciuto, and Beltrame [21] present an overview of how
to choose the appropriate algorithm for the specific DSE use
case by classifyng and comparing fifteen methodologies based

634

on several metrics.

The final feature in Fig. lc, orthogonal to the above-
explained sub-step, is static and dynamic pruning of the design
space. Gries [12] divides this into practical approaches: (i)
hierarchical exploration, (ii) subsampling of the design space,
and (iii) subdividing the design space. The hierarchical ap-
proach starts with a coarse model identifying promising design
space regions, followed by a low-level, more detailed model
exploration within each region. The subsampling approach
chooses regions based on randomness or patterns. The third
approach explores independent parts of the design space one
by one and combines the resulting sub-solutions afterwards. In
the end, all classes identify potential regions of design points
for further exploration while effectively pruning the design
space.

While the domain of DSE is an active topic in many research
areas, within the computer science domain, it mostly evolves
around Systems-on-a-Chip and Multiprocessor Systems-on-a-
Chip (MPSoC) designs. For example, SESAME [22] is a trace-
driven software framework for the latter category that allows
the designer to do system-level modeling and simulation at a
high level of abstraction with a Genetic Algorithm (GA) [8].
The framework follows the Y-Chart approach for trace-driven
modeling and supports scheduling during mapping. A GA is
used to search the design space [8], followed by a simulation-
based evaluation of the chosen design points.

Within the SoC/MPSoC domain, many efforts study the
allocation (spatial binding) of application tasks to (heteroge-
neous) processing elements. The temporal binding (schedul-
ing) is often removed from the scope since it dramatically
increases the design space. Nevertheless, some research has
been conducted around scheduling and allocation in various
environments [2, 3, 17, 26, 27, 28]. In 2022, Wan and Zeng
[35] proposed a novel but highly limited co-design methodol-
ogy specialized for modular CPS within a production setting.

In general, the domain of DSE for Cyber-Physical Systems
(CPS) has slowy received more attention from the scientific
community in recent years. While Miihleis et al. [18] mainly
focused on DSE on electronic system level, Vanommeslaeghe
et al. [33] incorporated domain knowledge to explore an
electric DC motor. DISPATCH is a two-step methodology
especially designed for CPS [30] that improved the sample
efficiency for electrical circuit benchmarks. Nevertheless, all
these explored CPS designs are relativly small arrangements.

The automotive sector is one of the leading forces for
more complex systems; Canedo and Richter [7] presented
a Functional Modeling Compiler approach for realistic au-
tomotive architectures (i.e., validate new Electronic Control
Units and control strategies). Other literature includes DSE
for controller area network (CAN) systems [36], or elec-
trical/electronic (E/E) architecture component platforms for
modern automotive systems [11].

While all authors explored different types of Cyber-Physical
Systems, none explored widely distributed architectures out-
side of a specific subsystem. Zhang et al. [37] conducted an
extensive gap analysis for state-of-the-art DSE methods in

the context of the automotive sector in 2017 and concluded
that besides many other challenges, almost all of the DSE
methods made oversimplifying assumptions for the vehicle’s
subsystems (i.e., ECUs, network topology).

In a more general sense, DSE for distributed (hetero-
geneous) computing systems is also a largely unchartered
research area. In 2010, Fummi et al. [9] introduced a math-
ematical language to model distributed applications focussing
on exploring communication infrastructures like wireless sen-
sors or peer-to-peer networks. A similar but more practical
approach has been made by Tanganelli et al. [29]. Their
methodology looked at systems for smart environments with
“Fog Computing”. While this area has some similarities with
our domain of industrial distributed Cyber-Physical Systems,
their abstraction level is still too high (i.e., a fire detection and
surveillance system for an office floor plan).

To the best of the authors’ knowledge, very few to no stud-
ies have considered system-level DSE for distributed Cyber-
Physical Systems, and there still exists a significant number of
open scientific challenges in terms of scalability, performance,
and accuracy of these DSE methodologies.

IV. SCIENTIFIC CHALLENGES

Designers of industrial distributed Cyber-Physical Systems
(dCPS) face the challenge of highly complex systems that
cannot be realistically understood in reasonable detail by
one individual alone. Consequently, there is an enormous
amount of subsystems with heterogeneous hardware and ample
opportunities to modify each and every one of them. While
designing new and advanced products, a considerable number
of design objectives, highly complex models, an inconceivable
number of design decisions, and a lot of internal and external
factors have to be taken into account. This results in a vast
design space with a potentially much larger number of design
points that current methodologies cannot handle.

In the survey-based study of Van der Sanden et al. [32],
industrial dCPS companies express great interest to research
and develop efficient DSE methods to support the design
process. One example is ASML, a leading force in the
semiconductor industry, developing and manufacturing chip
lithography machines. The improvement goals for these in-
tricate dCPS include, but are not limited to, increasing the
throughput of produced wafers, improving the quality and
reliability of the final product, avoiding workflow disruptions,
and decreasing the required maintenance. These machines
consist of over 500 software processes distributed to tens of
processors with hundreds of cores distributed over a network.
Additionally, hundreds of specialised sensors and actuators
within smaller subsystems are (partly) controlled by these
software processors. Moreover, many more design decisions
need to be taken into account: e.g., network topology, speed
of links, the configuration of network components, or database
infrastructure. Although many of these design points can be
pruned early due to design constraints, the resulting design
space is still immense.

635

This section is dedicated to identifying, describing and
appraising (scientific) challenges based on observations during
our research. It has to be mentioned that we limit the scope
of this analysis to complex industrial, distributed Cyber-
Physical Systems (e.g., ASML lithography machines or Canon
industrial printers).

A. Modelling complex dCPS

The first step in having a comprehensive DSE is creating
the models of the system at an appropriate level of abstraction.
dCPS consist of multiple heterogeneous subsystems on a com-
plex network with much interaction, usually running a com-
bination of new and legacy software. Legacy software within
the industrial sector can be multiple years, or even decades,
old without detailed documentation. Hence, the creation of the
models is, in comparison to SoC and MPSoC systems, often
a huge challenge, and completely manual generation is not
feasible in a timely manner. (Semi-)automatic model inference
of the application and platform models is, therefore, the only
viable option for DSE of dCPS.

A sufficiently accurate model mimics the system’s be-
haviour by being a virtual “re-creation”. Based on the
separation-of-concerns idea, a comprehensive system repre-
sentation consists at least of an application workload and a
platform architecture model. As already depicted in Fig. la,
the discovery and gathering of relevant information is the first
step in describing a system (e.g., via doing static analysis
as well as dynamic analysis or monitoring and capturing of
event traces). A significant challenge during the abstraction of
this description is handling conflicting requirements regarding
evaluation speed, modeling effort and accuracy. Capturing the
software behaviour of the dCPS in the models needs to be
accurate enough to support trustworthy DSE. At the same time,
it also must allow for fast (co-)simulation (and should thus be
abstract enough). This calls for an extensive infrastructure that
helps move the abstraction level dynamically to find the best
balance to meet speed and accuracy requirements. This type
of knowledge-based and automatic modeling is challenging.

Thus, one specific scientific challenge is the development
of concepts and techniques to automatically infer the (initial)
platform architecture and application workload models. This
extends to the amalgamation of all models in application-to-
resource mappings and scheduling.

B. Scalable Design Space Exploration (DSE)

The fundamental problems of a vast design space has been
briefly discussed. The application workload (typically contain-
ing hundreds of software processes) and the various mappings
of the application workload on these platforms already make
the search space vast, but this is exacerbated by the fact that
application workloads in dCPS typically are not static. For
example, in the case of ASML lithography scanner machines,
the application workload behaviour is highly dependent on
factors such as the wafer size, recipe (mask) complexity,
required accuracy, application configuration settings, external
influences like customer or fab cronjobs, emergent dynamic

I 1 d 1

KPN Process network Genetic Algorithms Mapping Discrete Event
Description execution engine Process traces Mapping configuration Simulator
Tnput
Process codes

Arch topology

? 4I
stimulus Arch components

Fig. 2: SESAME workflow [10]

behaviour of the system, etc. All of these factors complicate
the previous modeling efforts and contribute to an ever-
increasing number of design points.

This calls for efficient and scalable search and pruning
strategies. It is unclear if, and actually not to be expected
that, state of the art in DSE (see Section III) is able to
handle the much larger design spaces of dCPS. This is further
exacerbated by the fact that design point evaluations take
longer for dCPS compared to classical DSE of on-chip systems
(SoCs and MPSoC) simply because of their complexity and,
hence, allows for fewer evaluations in the same amount of
time. Although the minimisation of the computational effort
is primarily dictated by the chosen abstraction level for the
models, there is also still limited but significant research
potential in, e.g., optimisation of the simulation codebase
(acceleration of each evaluation), exploitable parallelisation by
designing algorithms with limited dependencies, or support for
distributed parallel computing.

While the right search strategy highly depends on the design
space and its characteristics, a general observation can be
made; there is a trade-off between the effort required to
configure an algorithm for a given design space, the quality
of the results and the total number of design points evaluated.
Similar observations apply to choosing a pruning technique;
how many design points can be pruned before the accuracy
of the DSE is too low, while the cost of implementation and
execution is still feasible/balanced?

Consequently, another scientific challenge is the need for
new search and pruning strategies and efficient design point
evaluation, which all need to be sufficiently scalable. Since
there most likely will not be a perfect solution, combining
various concepts and algorithms is not out of the scope.

V. EXPERIMENTS

The previous section presented and discussed open scientific
challenges to be faced when developing the next generation
of DSE for complex dCPS. In this section, some of these
challenges are further motivated through a suite of simple DSE
experiments.

The experiments are designed using the SESAME (Sim-
ulation of Embedded System Architectures for Multilevel
Exploration) framework, which is a well-known system-level
modeling, simulation, and exploration framework for em-
bedded MPSoC systems introduced by Pimentel, Erbas, and
Polstra [22]. Fig. 2 shows the various components of the
SESAME modeling, simulation, and exploration framework.
The application models (modeling a network of application
processes and their interactions) are mapped onto architecture
models via a transitional scheduling layer. A process network

636

execution engine executes the application models generating
application event traces for every process. These process traces
are afterwards used to drive a transaction-level simulation
model of the underlying platform architecture via a Discrete
Event Simulation (DES). A Genetic Algorithm (GA) is used
to drive the search within the design space, exploring and
evaluating the fitness (using the DES) of different application-
to-architecture mappings. More detailed descriptions and ex-
planations can be found in [10, 22]. We selected SESAME
for this experiment since it models MPSoCs and their appli-
cation workload at a high level of abstraction, achieving high
performance in simulating and exploring these MPSoCs.

The structure of our experiment is based on exploring the
course of key performance metrics when scaling up a simple
DSE example. As a building block for our application models,
we picked a readily available (multi-media) application from
the domain of streaming applications since, at a high level of
abstraction, many industrial CPS can be modelled as streaming
applications. Since these MPSoC applications are typically
small in size (only six processes in our selected application),
we duplicated our application a number of times to simulate
larger workloads. As a basis for our platform model, we use
an MPSoC architecture in which four different processor types
can be deployed, each having a different cost and performance.
For simplification, all CPUs are connected to and communicate
via one bus and shared memory. To avoid the bus becoming
a bottleneck, we mimic a system with ideal communication.
This means that all memory and communication costs have
been set to zero. To model an industrial dCPS system, we
have scaled the MPSoC platform model so that it can contain
up to a few hundred cores.

In our experiment, we explored the different mappings
of the application workload (processes) onto the underlying
platform architecture. We used a GA with a population size
of 20, and each DSE run consists of 50 search iterations
(generations) of the GA (i.e., each DSE run explores 1000
design points). The metrics studied are (i) runtime of the
complete DSE, (ii) the convergence rate of the GA, and (iii) the
amount of generated infeasible design points, but we will focus
our discussion on the DSE runtime. Each experiment was
conducted between two and four times with the same input
parameters, averaging the results in the end. Due to limited
time and computing resources some experiments have been
performed only once or twice. These are indicated with a white
shading in Fig. 3. All experiments were run on a computer
with an Intel Xeon E5-2650v4 (12 cores) running at 2.2 GHz
using 64GB of RAM, running Ubuntu 18.04 LTS.

Fig. 3 shows the results for the DSE mean runtime when
varying the number of processes in the application workload
and the number of processing cores in the underlying platform
in the form of a heatmap. The 458 experiments had a combined
runtime of roughly 64 days and 2 hours. On average, the
results - within multiple runs of the same parameters - are
within a 3.8% deviation respectively (with a maximum of
13.99%).

Our results show that the DSE runtimes significantly in-

0 S0 6 70 8 %0 100
Duration (h)

Number of processor cores
30

1 s 020 30 4 0 60 70
Number of application processes

80

Fig. 3: Heatmap of the DSE runtime results when varying the
number of application processes and number of cores

crease (superlinear) with the number of used application
processes and processing cores due to the higher simulation
overheads of the large(r) systems. This is especially true
when scaling the number of application processes. To put it
more simply, exploring a simplified design space with 100
applications and tens of cores is already a significant time
investment and cannot be efficiently evaluated by a currently
state-of-the-art framework. The previously described use case
of ASML machines already has a considerably higher number
of both parameters. In addition, these dCPS have a more
complex network with more communication and increased
dependencies. We would like to stress the fact that our simple
experiment does produce an extremely large mapping space
(i.e., different application processes to processor mappings).
However, the design space itself is still rather “predictable”.
Evidently, this is due to the simplicity of the modelled platform
(e.g., no distributed system but an idealized bus-based system,
limited component diversity, etc.), as well as the simplicity of
the modelled application workload (e.g., it does not contain
any dependencies between the small, replicated applications).
Considering this, we expect that the runtime of real-life use-
cases will be even higher than these results.

Since we have made simplifying assumptions that, e.g.,
guarantee that every application process can always commu-
nicate with another process irrespective to which processing
core it is mapped, our experiments do not show overhead for
invalid design point repairs. However, it is expected to increase
with a more complex and realistic use case significantly. Given
the above, we expect our experiment to constitute a best-case
scenario.

In conclusion, our experiments show that the current
state-of-the-art methodologies are - in the best case - only
partially capable of running DSE for dCPS. For more realistic
use cases, we believe that a slower convergence behaviour
and a less effective search process due to an increasing
number of infeasible design points will significantly slow
down the DSE process even further.

637

VI. PROPOSED APPROACH

Section IV presented the currently biggest scientific chal-
lenges in designing DSE for industrial, complex dCPS. Com-
panies of these systems have a growing interest in facilitating
DSE to support early design. Hence, in this section, we sketch
a possible approach to address these challenges in the context
of our collaboration with ASML. This discussion will mostly
focus on the first challenge of automatically inferring the
system models used in DSE. However, we want to remind
the reader that this is a position paper and therefore does not
present an actual implementation of the proposed solution.
Moreover, similary to Fig. 1, we focus on the evolutionary
aspect of DSE.

A. Modelling

For the models, we are following the well-known
principle of “separation of concerns” [14]. Therefore, the
(distributed) platform architecture model, the application
workload model (i.e., the software processes executing
on the platform architecture), and the mapping of the
application processes/tasks to the platform resources are
modelled separately. This approach allows for easy re-use
of the different models involved. Consequently, it facilitates
effective DSE of various platform architectures, application
workload variants, and application-to-resource mappings.

Application Workload Model: We are following a prag-
matic step-wise approach, starting with an initial definition and
investigation of a first-order model and applying it on (part of)
an ASML scanner machine software infrastructure to evaluate
the ability of the model to capture the workload behaviour of
such a complex real-world infrastructure accurately enough.
Then, if needed, we will perform several model refinement
steps to fine-tune the (first-order) model to increase or decrease
its accuracy.

Our first-order model is based on the observation that a
complex dCPS software infrastructure could be considered —
at a high level — as hundreds of software processes triggered by
events and exchanging messages among each other. Different
processes perform different tasks, such as data processing,
control, monitoring, logging/reporting, etc. Once a process is
triggered, it performs a certain amount of computation and
communication (this is called firing), and when ready, it exits
(it stops and waits to be triggered again). Such fire-and-exit
behaviour repeats during the whole life cycle of a process.
Therefore, we model the workload behaviour of the software
infrastructure as a directed graph defined by the tuple (P,
Ch). As depicted in Fig. 4, P is a set of processes (P =
{po,p1,.--,P0}), Where each process models/corresponds to
a process of the dCPS software infrastructure. Ch is a set of
communication channels (Ch = {chg, chy,...,chi}) model-
ing the exchange of control messages (triggering events), status
messages (process state), and data messages (chunks of data
to be processed or stored).

ASML machines, as a dCPS, can have different modes of
operation. Hence, we consider that each process consists of

Different Trace Modes

I\

%,

Events Order
[RIcIw]r[R]cTw]c]w]R]

e

chy

Fig. 4: Our first-ordered workload model

a set of traces T (T' = {to,t1,...,tm}). T allows capturing
dynamically changing workload behaviour of a process since
each trace captures, in an abstract way, the workload behaviour
of a process in a specific system mode (configuration) during
a single firing. Each trace is defined as a finite sequence of
coarse-grained abstract events ({eg, €1, . . ., €, }), modeling the
type and order of actions performed during a single firing.
Event e can be compute (C), read (R) or write (W). The
compute events imitate computational actions with an abstract
workload described by the number of cycles needed to execute
that computation. Events read and write mimic communica-
tion actions happening over communication channel Ch (e.g.,
memory accesses, communication between processors, or disk
I/0 depending on the mapping of Ch). Communications are
described by the size (in terms of bytes) and type (control,
data, or status) of a message they transfer besides the source
and destination processes.

All in all, our first-order application workload model,
adresses the challenges of system-level DSE of complex dCPS
(see Section IV-A) with the following characteristics:

1) The model is abstract and coarse-grained. This po-
tentially allows capturing the whole software infras-
tructure behaviour of a complex dCPS effectively at a
high, system-level abstraction. The process traces can be
(re)played, and their events synchronised relatively fast,
thereby generating a proper workload for the platform
model of the dCPS;

The model is as timing and architecture agnostic as
possible. Avoiding timing and architecture artefacts in the
model attributed to a specific hardware platform gives us
very high flexibility to efficiently explore alternative map-
pings (alternative resource allocations, process bindings,
and scheduling strategies) of the application workload
onto a wide variety of existing/new hardware platforms;
The model is dependency-aware. Analysing the depen-
dencies between processes, captured explicitly by the
channels in the model and due to the exchange of mes-
sages of different types, allows us to effectively explore
and exploit different degrees of parallelism when the
application workload is mapped onto a platform;

The model is mode-aware. Capturing different modes by
the set of traces in a process allows us to model dif-
ferent workload scenarios, thereby representing different
system configurations and enabling workload dynamism
modeling by switching between traces when generating
workloads for the platform model.

2)

3)

4)

638

Our first-order model does not follow the semantics of any
well-known Model of Computation (MoC) [25]. Initially,
our DSE should not be limited to the specific analysis and
expressive power of a formal MoC to effectively capture
the heterogeneous nature of the software infrastructure
behaviour. As we explained before in Section IV-A, the
software infrastructures of dCPS, such as ASML lithography
machines, are too complex to be modelled manually.
Hence, automated model inference is required. To infer
our first-order model, we need runtime monitoring and
data collection to obtain real software execution traces that
typically contain time-stamped computation, communication,
and synchronisation events with descriptors (e.g., the unique
ID of a process, source/destination of a communicated
message, etc.). The timing information in the traces depends
on the platform architecture of the dCPS and the specific
scheduling/mapping of the software infrastructure on this
platform. Therefore, we need to transform this data in order to
reduce time- and hardware-dependent information to extract
the time and platform architecture agnostic workload model.

Architecture Platform Model: The platform architecture
models represent the underlying system infrastructure of the
dCPS. The inference of the model is initially based on the cur-
rent architecture of the dCPS. Hence, we use a custom pipeline
to discover, describe and abstract the available infrastructure:

1) Discover network topology. Firstly, starting at a main
entry point, we record topology data by observing the
network traffic and network interfaces. This includes, e.g.,
network connections, configurations of interfaces and
network components (e.g., switches, routers, or hubs).
Ethernet information like DNS/DHCP configurations,
forwarding tables, etc., as well as data from custom
connection techniques, are collected. This may or may
not be manually supplemented with custom data from
the designer. After that, all data are used to generate a
network topology model.

Computational components. The first steps should have

identified all components within the dCPS. Every compo-

nent is addressed based on the network topology model,
and hardware information (e.g., processor, memory, or
storage) can be obtained.

Description. The information from the first two steps can

then be combined by adding the discovered computational

information (step 2) of the components to the network
topology model (step 1). This results in a complete
description of the used hardware.

4) Abstraction. The resulting network topology and com-
ponents model is then abstracted to a discrete-time
model. Key performance metrics are summarised into
performance indices that describe each component’s ca-
pabilities (e.g., a processing index, which describes how
many computations can be executed per time unit). This
abstraction is highly dynamic since it depends on the
defined abstraction level, i.e., an index can describe the
fundamental component (e.g., database write entries per

2)

3)

second) or specific characteristics (e.g., separate indices
for processing speed and memory capabilities).
It has to be noted that depending on the specific use-case
and dCPS custom discovery and description techniques may
need to be implemented (e.g., for specific sensors or actuators).

Mapping: The mapping concept determines the binding of
application processes (i.e., their event traces) to the modelled
platform resource. The mapping model allocates the compu-
tational events to the platform resources by considering the
mapping policy, hardware platform specification, inter-process
communications, and several other constraints (i.e., access to
specialized hardware like sensors). Since this step of allocation
and scheduling already chooses specific parameters for design
decisions, it is integrated into our approach’s design space
generation.

B. Scalable Design Space Exploration (DSE)

While generating the design space, we distinguish between
structural and behavioural design decisions, resulting in two
virtual design spaces. Structural design decisions change the
models’ structural integrity, e.g., modifying the network topol-
ogy, creating or deleting communication channels between
components, or exchanging key characteristics of a component
(e.g., switching a GPU to an ASIC). The behavioural design
decisions do not modify the structure of the system, but change
the behaviour of the models, e.g., increasing or decreasing
a performance index, or changing the mapping of specific
processes to a different computing component.

Each dCPS design instance will be evaluated using a
discrete-event simulation model of the workload model
mapped onto the platform model using event traces. These
simulations will be structured in campaigns [4, 34] — paral-
lelising the evaluation of multiple independent design points
simultaneously on a distributed computing cluster. While
structural design decisions result in the need to rebuild a
simulation model, behavioural decisions can be implemented
as input parameters for simulation models. This allows for
optimising the search strategy by creating and compiling a
few design points in the structural design space with a range
of parameters for behavioural design decisions. Additional
techniques to deal with the vast design space can, for starters,
be borrowed (and then extended) from the state-of-the-art in
MPSoC DSE, such as hierarchical DSE methods (see [23]),
and design space pruning by adding domain knowledge to the
search algorithm (see [31]).

VII. CONCLUSION

In this position paper, we argued for the need for efficient
and scalable Design Space Exploration (DSE) technology for
distributed Cyber-Physical Systems (dCPS). Although there
already exists a large body of research on DSE of SoC and
MPSoC designs, there are no comprehensive research efforts
to integrate DSE for the much more complex dCPS. Hence,
we presented some of the major (scientific) challenges for
this endeavour, namely the automatic generation of sufficiently

639

accurate (application and platform) models and the need for
efficient and scalable exploration techniques. To support some
of our claims, we have demonstrated, using a simple experi-
ment, that the DSE runtime, even for a best-case scenario, is
significantly increasing with the number of used application
processes and processing cores. Finally, we positioned our
ongoing research in light of these challenges. In particular, the
development of a workload and platform model that can be
automatically inferred from process traces of industrial dCPS,
as well as efforts to optimise the exploration of the vast design
spaces in the domain of dCPS.

REFERENCES

Benny Akesson et al. “A comprehensive survey of industry practice
in real-time systems”. In: Real-Time Systems (Nov. 11, 2021). DOI:
10.1007/s11241-021-09376- 1.

Benny Akesson et al. “An efficient configuration methodology for
time-division multiplexed single resources”. In: 2/st IEEE Real-Time
and Embedded Technology and Applications Symposium. 2015. DOI:
10.1109/RTAS.2015.7108439.

Sudarshan Banerjee et al. “Design space exploration of real-
time multi-media MPSoCs with heterogeneous scheduling policies”.
In: Proceedings of the 4th International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS ’06).
Oct. 2006. DOI: 10.1145/1176254.1176261.

Pablo Andrés Barbecho Bautista et al. “Large-Scale Simulations
Manager Tool for OMNeT++: Expediting Simulations and Post-
Processing Analysis”. In: IEEE Access 8 (2020). por: 10.1109/
ACCESS.2020.3020745.

Anastasiia Butko et al. “Accuracy evaluation of GEMS simula-
tor system”. In: 7th International Workshop on Reconfigurable
and Communication-Centric Systems-on-Chip (ReCoSoC). July 2012.
DOI: 10.1109/ReCoS0C.2012.6322869.

Lukai Cai and Daniel Gajski. “Transaction Level Modeling: An
Overview”. In: Proceedings of the 1st IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis.
CODES+ISSS ’03. Newport Beach, CA, USA: Association for Com-
puting Machinery, 2003. DOI: 10.1145/944645.944651.

Arquimedes Canedo and Jan H. Richter. “Architectural Design Space
Exploration of Cyber-physical Systems Using the Functional Model-
ing Compiler”. In: Procedia CIRP 21 (2014). por: 10.1016/j.procir.
2014.03.183.

C. Erbas, S. Cerav-Erbas, and A.D. Pimentel. “Multiobjective op-
timization and evolutionary algorithms for the application mapping
problem in multiprocessor system-on-chip design”. In: IEEE Trans-
actions on Evolutionary Computation 10.3 (June 2006). DOT: 10.1109/
TEVC.2005.860766.

F. Fummi et al. “Modeling of communication infrastructure for
design-space exploration”. In: 2010 Forum on Specification & Design
Languages (FDL 2010). Southampton, UK: IET, 2010. bor: 10.1049/
ic.2010.0135.

Andres Goens et al. “Why Comparing System-Level MPSoC Mapping
Approaches is Difficult: A Case Study”. In: IEEE 10th Int. Sympo-
sium on Embedded Multicore/Many-core Systems-on-Chip (MCSOC).
Lyon, France: IEEE, Sept. 2016. por: 10.1109/MCS0C.2016.48.
Sebastian Graf et al. “Multi-Variant-Based Design Space Exploration
for Automotive Embedded Systems”. In: Proceedings of the Confer-
ence on Design, Automation & Test in Europe. DATE ’14. Dresden,
Germany: European Design and Automation Association, 2014.

M Gries. “Methods for evaluating and covering the design space
during early design development”. In: Integration, the VLSI Journal
38.2 (Dec. 2004). poI1: 10.1016/S0167-9260(04)00032-X.

Rik Jongerius et al. “Analytic processor model for fast design-
space exploration”. In: 2015 33rd IEEE International Conference on
Computer Design (ICCD). Oct. 2015. por: 10.1109/ICCD.2015.
7357136.

K. Keutzer et al. “System-level design: orthogonalization of concerns
and platform-based design”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 19.12 (Dec. 2000).
DOI: 10.1109/43.898830.

(1]

(2]

(4]

(51

(71

(81

191

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

Albert Carl Jan Kienhuis. “Design space exploration of stream-based
dataflow architectures”. PhD thesis. Delft, 1999.

Brit Meier et al. HTSM Systems Engineering Roadmap. Tech. rep.
2020.

Anna Minaeva et al. “Control Performance Optimization for Applica-
tion Integration on Automotive Architectures”. In: JEEE Transactions
on Computers 70.7 (July 1, 2021). por: 10.1109/TC.2020.3003083.

Nina Miihleis et al. “A co-simulation approach for control perfor-
mance analysis during design space exploration of cyber-physical
systems”. In: ACM SIGBED Review 8.2 (June 2011). por: 10.1145/
2000367.2000372.

P. Ngatchou, A. Zarei, and A. El-Sharkawi. “Pareto Multi Objective
Optimization”. In: Proceedings of the 13th International Conference
on, Intelligent Systems Application to Power Systems. Nov. 2005. DOI:
10.1109/ISAP.2005.1599245.

Marcio F. S. Oliveira et al. “Model driven engineering for MPSOC
design space exploration”. In: Proceedings of the 20th annual confer-
ence on Integrated circuits and systems design. SBCCI *07. New York,
NY, USA: Association for Computing Machinery, Sept. 3, 2007. DOI:
10.1145/1284480.1284509.

Jacopo Panerati, Donatella Sciuto, and Giovanni Beltrame. “Opti-
mization Strategies in Design Space Exploration”. In: Handbook of
Hardware/Software Codesign. Ed. by Soonhoi Ha and Jiirgen Teich.
Dordrecht: Springer Netherlands, 2016. po1: 10.1007/978-94-017-
7358-4_7-1.

A.D. Pimentel, C. Erbas, and S. Polstra. “A systematic approach
to exploring embedded system architectures at multiple abstraction
levels”. In: IEEE Transactions on Computers 55.2 (Feb. 2006). DOI:
10.1109/TC.2006.16.

Andy D. Pimentel. “Exploring Exploration: A Tutorial Introduction
to Embedded Systems Design Space Exploration”. In: IEEE Design
& Test 34.1 (Feb. 2017). pot: 10.1109/MDAT.2016.2626445.

G S Sangeetha et al. “Trace-Driven Simulation and Design Space
Exploration of Network-on-Chip Topologies on FPGA”. In: 8th Int.
Symposium on Embedded Computing and System Design (ISED). Dec.
2018. por: 10.1109/ISED.2018.8703884.

John E. Savage. Models of Computation. June 1998.

Mario Schoélzel and Peter Bachmann. “DESCOMP: A New Design
Space Exploration Approach”. In: Systems Aspects in Organic and
Pervasive Computing - ARCS 2005. Ed. by Michael Beigl and Paul
Lukowicz. Berlin, Heidelberg: Springer, 2005. Do1: 10.1007/978-3-
540-31967-2_13.

Anirban Sengupta and Reza Sedaghat. “Integrated scheduling, allo-
cation and binding in High Level Synthesis using multi structure
genetic algorithm based design space exploration”. In: 2011 12th
International Symposium on Quality Electronic Design. Mar. 2011.
por: 10.1109/ISQED.2011.5770772.

640

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

Anirban Sengupta, Reza Sedaghat, and Pallabi Sarkar. “A multi
structure genetic algorithm for integrated design space exploration
of scheduling and allocation in high level synthesis for DSP kernels”.
In: Swarm and Evolutionary Computation 7 (Dec. 2012). po1: 10.
1016/j.swevo0.2012.06.003.

Giacomo Tanganelli et al. “A methodology for the design and deploy-
ment of distributed cyber—physical systems for smart environments”.
In: Future Generation Computer Systems 109 (Aug. 2020). por: 10.
1016/j.future.2020.02.047.

Prerit Terway, Kenza Hamidouche, and Niraj K. Jha. “DISPATCH:
Design Space Exploration of Cyber-Physical Systems”. In: CoRR
abs/2009.10214 (2020). arXiv: 2009.10214.

Mark Thompson and Andy D. Pimentel. “Exploiting domain knowl-
edge in system-level MPSoC design space exploration”. In: Journal
of Systems Architecture 59.7 (Aug. 2013). DOI: 10.1016/j.sysarc.
2013.05.023.

Bram Van der Sanden et al. “Model-Driven System-Performance
Engineering for Cyber-Physical Systems : Industry Session Paper”.
In: 2021 International Conference on Embedded Software (EMSOFT).
Oct. 2021.

Yon Vanommeslaeghe et al. “Leveraging Domain Knowledge for
the Efficient Design-Space Exploration of Advanced Cyber-Physical
Systems”. In: 22nd Euromicro Conference on Digital System Design
(DSD). 2019. por: 10.1109/DSD.2019.00058.

Andras Varga. “A Practical Introduction to the OMNeT++ Simula-
tion Framework”. In: Recent Advances in Network Simulation: The
OMNeT++ Environment and its Ecosystem. Ed. by Antonio Virdis
and Michael Kirsche. Cham: Springer International éublishing, 2019.
DOI: 10.1007/978-3-030-12842-5_1.

Guangxi Wan and Peng Zeng. “Codesign of Architecture, Control,
and Scheduling of Modular Cyber-Physical Production Systems for
Design Space Exploration”. In: IEEE Transactions on Industrial
Informatics 18.4 (Apr. 2022). por: 10.1109/T11.2021.3097761.

Yong Xie et al. “Security/Timing-Aware Design Space Exploration
of CAN FD for Automotive Cyber-Physical Systems”. In: /EEE
Transactions on Industrial Informatics 15.2 (Feb. 2019). por: 10.
1109/TI1.2018.2851939.

Xinhai Zhang et al. “Architecture exploration for distributed em-
bedded systems: a gap analysis in automotive domain”. In: 2017
12th IEEE International Symposium on Industrial Embedded Systems
(SIES). Toulouse, France: IEEE, June 2017. bo1: 10.1109/SIES.2017.
7993377.

Hao Zheng et al. “Model Synthesis for Communication Traces of
System Designs”. In: 2021 IEEE 39th International Conference on
Computer Design (ICCD). Oct. 2021. por: 10.1109/ICCD53106.
2021.00082.

