Adjacent spin operator correlations in the Heisenberg spin chain

Klauser, A.M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
List of Figures

1.1 Phase diagram of the XXZ spin chain in a magnetic field \(h \) at zero temperature and with \(J = 1 \). 12

2.1 Combinations of quantum numbers corresponding to the ground state and several excited states (see text for description) in the \(N = 16 \) spin chain. 28

2.2 For \(N = 128, M = 64 \), we show in (a) the DesCloizeaux-Pearson spectrum of 1 spinon and in (b), (c), (d) the densities of states corresponding of states containing 2,4 and 6 spinons. The \(\ldots \) represents any additional static quasiparticle like \(\infty, 1s^2, 1s^3 \) which does not contribute to the density of states. 29

2.3 For \(N = 128, M = 16 \), we present (a) the artificial spectra of 1h, 1p and 1s^2 and (b),(c),(d),(e),(f) are the densities of states corresponding to the type of excitation mentioned in the label. 30

2.4 For \(N = 128, M = 32 \), we present (a) the artificial spectra of 1h, 1p and 1s^2 and (b),(c),(d),(e),(f) are the densities of states corresponding to the type of excitation mentioned in the label. 31

2.5 For \(N = 128, M = 48 \), we present (a) the artificial spectra of 1h, 1p and 1s^2 and (b),(c),(d),(e),(f) are the densities of states corresponding to the type of excitation mentioned in the label. 33

4.1 Experimental setup of time-of-flight spectroscopy. 48

4.2 This sketch outlines the 1D magnetic active part of Sr\(_2\)CuO\(_3\). We show here a layer of the crystal and in the bulk, each chain is isolated from the layers above and below by Strontium atoms. 51

4.3 Mechanism by which double-spin flip transitions are created in the indirect magnetic RIXS process. 52

5.1 \(S^{--+}(q,\omega) \) DSF in a \(N = 400 \) XXX spin chain and (a) \(M = 50 \), (b) 100, (c) 150 and (d) 200. 65
5.2 Separated graphs of the $S^{--++}(q,\omega)$ DSF for the three main types of excitation with $N = 400$ and $M = 150$. The type of excitation plotted is specified in the label and is described and explained in section 2.8. ... 66

5.3 Contributions by type of excitation to the $S^{--++}(q,\omega)$ DSF for $N = 400$ and $M = 200$. The graphs are labeled by the type of excitations that are represented. ... 67

5.4 $S^{zz}_{z}(q,\omega)$ DSF for a $N = 400$ XXX spin chain and (a) $M = 50$, (b) 100, (c) 150 and (d) 200 ... 75

5.5 Separated figures of the $S^{zz}_{z}(q,\omega)$ DSF with $N = 400$ corresponding to types of excitation in the labels. The magnetization is $M = 150$ in (a), (b) and (c) and $M = 200$ for (d) and (e) ... 77

6.1 (a) Spin-exchange DSF $S^{\text{exch}}_{z}(q,\omega)$ and (b) single spin DSF $S^{zz}_{z}(q,\omega)$ for $N = 400$ sites in $h = 0$. The intensity around $q = \pi$ is markedly different in the two cases and the signal of the spin-exchange DSF around $q = \frac{\pi}{2}, \frac{3\pi}{2}$ is enhanced. ... 85

6.2 Fixed momentum profiles of the biased spin-exchange DSF $S^{\text{exch}}_{z}(q,\omega)/(\cos^2(q/2))$ (plain) and $S^{zz}_{z}(q,\omega)$ (dashed), each normalized to its own sum rule. 86