Safe models for risky decisions
Steingröver, H.M.

Citation for published version (APA):
In everyday life, we often have to decide between options that differ in their immediate and long-term consequences. Would you, for example, opt for a delicious piece of cake or rather eat a healthy apple? To investigate how people make risky decisions, this thesis focuses on the Iowa gambling task (IGT) and scrutinizes assumptions about the performance of healthy participants on the IGT. This thesis also challenges the trustworthiness of conclusions typically obtained from fitting reinforcement-learning models to IGT data. I argue that the risk of drawing premature conclusions from behavioral analyses and computational modeling can be minimized if researchers follow a number of crucial steps. These steps concern behavioral data analyses, model selection, model fitting, and assessment of absolute model fit. In particular, I advocate Bayesian techniques involving Bayesian repeated measures ANOVA for behavioral data analyses, the Bayes factor for model selection, the Bayesian hierarchical framework for model fitting, and posterior predictives to assess the absolute account of the models for the data at hand. Discussing a large variety of models and methods to compare the models, this dissertation illustrates that research efforts about risky decision making greatly advanced during the last years. On the other hand, this dissertation also illustrates the major challenges by pointing to problems with respect to behavioral analyses and cognitive modeling. Pursuing these suggestions will hopefully yield more reliable measures of risky decision making and a better understanding of the underlying psychological processes.

helensteingroever.com
Safe Models for Risky Decisions

Helen Maria Steingröver
SAFE MODELS FOR RISKY DECISIONS

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. K.I.J. Maex

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op vrijdag 21 april 2017, te 10.00 uur

door Helen Maria Steingröver

geboren te Münster, Duitsland
Promotiecommissie:

Promotor: Prof. dr. E.-J. Wagenmakers University of Amsterdam

Overige leden: Dr. R.P.P.P. Grasman University of Amsterdam
Prof. dr. H.M. Huizenga University of Amsterdam
Prof. dr. M.D. Lee University of California, Irvine
Prof. dr. T.J. Pleskac Max Planck Institute for Human Development, Berlin
Prof. dr. H.L.J. van der Maas University of Amsterdam
Dr. I. Visser University of Amsterdam

Faculteit: Faculteit der Maatschappij- en Gedragswetenschappen
Für meine Eltern
Contents

1 Introduction .. 1
 1.1 Chapter Outline ... 6

2 Performance of Healthy Participants on the Iowa Gambling Task 9
 2.1 The Iowa Gambling Task 11
 2.2 Literature Reviews and Data Analyses 15
 2.3 Discussion ... 26

3 A Comparison of Reinforcement-Learning Models for the Iowa Gambling Task Using Parameter Space Partitioning 31
 3.1 The IGT and Three Reinforcement-Learning Models 33
 3.2 Comparison of the EV, PVL, and EV-PU Models 38
 3.3 Discussion ... 50

4 Validating the PVL-Delta Model for the Iowa Gambling Task 55
 4.1 The Iowa Gambling Task and the PVL-Delta Model 56
 4.2 Parameter Space Partitioning 59
 4.3 Test of Selective Influence 69
 4.4 Discussion ... 76

5 Absolute Performance of Reinforcement-Learning Models for the Iowa Gambling Task 79
 5.1 The Iowa Gambling Task and Three Reinforcement-Learning Models 81
 5.2 Performance of the EV, PVL, and PVL-Delta Models 87
 5.3 General Discussion .. 99

6 $w = .2, \hat{a} = .8, \hat{c} = .6$: So What? On the Meaning of Parameter Estimates from Reinforcement-Learning Models 103
 6.1 Clarification of Our Initial Goal 104
 6.2 Post Hoc Absolute Fit Method Versus Simulation Method 108
 6.3 Statistical Adequacy Versus Psychological Relevance 110
 6.4 Conclusion ... 110

7 Bayes Factors for Reinforcement-Learning Models of the Iowa Gambling Task 111
 7.1 The Iowa Gambling Task 113
 7.2 The EV, PVL, PVL-Delta, and VPP Models 114
Contents

7.3 The Bayes Factor .. 118
7.4 Obtaining Bayes Factors for RL Models Using Importance Sampling 119
7.5 Application to IGT Data from 771 Healthy Participants 120
7.6 Discussion ... 125

8 A Tutorial on Bridge Sampling ... 129
8.1 Four Sampling Methods to Approximate the Marginal Likelihood 132
8.2 Case Study: Bridge Sampling for Reinforcement Learning Models 149
8.3 Discussion ... 157

9 Bayesian Techniques for Analyzing Group Differences in the Iowa Gambling Task: A Case Study of Intuitive and Deliberate Decision Makers 159
9.1 The IGT and PVL-Delta Model .. 161
9.2 Proposed Methodology for Comparing Groups on the IGT 164
9.3 Case Study: Intuitive versus Deliberate Decision Making 166
9.4 Discussion ... 172

10 Using Bayesian Regression to Incorporate Covariates into Hierarchical Cognitive Models .. 175
10.1 Regression Framework for Relating Cognitive Model Parameters to Covariates 179
10.2 Simulation Study .. 182
10.3 Discussion ... 190

11 Summary and Future Directions ... 193
11.1 Summary of Results .. 193
11.2 Future Directions ... 197
11.3 Concluding Remarks ... 200

Appendices ... 203

A Performance and Awareness in the Iowa Gambling Task 205

B Data from 617 Healthy Participants Performing the Iowa Gambling Task: A “Many Labs” Collaboration ... 209
B.1 Overview ... 210
B.2 Methods .. 210
B.3 Dataset Description ... 211
B.4 Reuse Potential .. 214
B.5 Supporting Text 1 .. 215

C Appendix to Chapter 4: “Validating the PVL-Delta Model for the Iowa Gambling Task” .. 219

D Appendix to Chapter 5: “Absolute Performance of Reinforcement-Learning Models for the Iowa Gambling Task” ... 225
D.1 Recipe for Obtaining Choice Probabilities According to the Post Hoc Absolute Fit Method .. 225
D.2 Recipe for Obtaining Choice Probabilities According to the Simulation Method 226
E Appendix to Chapter 7: “Bayes Factors for Reinforcement-Learning Models of the Iowa Gambling Task” 227
 E.1 Recipe for Importance Sampling .. 227
 E.2 Model-Recovery Studies ... 228
 E.3 Savage-Dickey Density Ratio Tests ... 228
 E.4 Robustness Analyses ... 232
 E.5 Comparison to BIC ... 233

F Appendix to Chapter 8: “A Tutorial on Bridge Sampling” 241
 F.1 The Bridge Sampling Estimator as a General Case of Methods 1 – 3 241
 F.2 Bridge Sampling Implementation: Avoiding Numerical Issues 243
 F.3 Correction for the Probit Transformation 244
 F.4 Details on the Application of Bridge Sampling to the Individual-Level EV Model 245
 F.5 Details on the Application of Bridge Sampling to the Hierarchical EV Model ... 246

G Appendix to Chapter 9: “Bayesian Techniques for Analyzing Group Differences in the Iowa Gambling Task: A Case Study of Intuitive and Deliberate Decision Makers” 247
 G.1 Experiment ... 247
 G.2 Obtaining Bayes Factors with the Product Space Method 250

H Appendix to Chapter 10: “Using Bayesian Regression to Incorporate Covariates into Hierarchical Cognitive Models” 251
 H.1 Complete Results of the Simulation Study 251
 H.2 Priors for the Regression Coefficients ... 255

References 259

Nederlandse Samenvatting 277

Acknowledgments 283

Publications 285