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Chapter 5

Absolute Performance of
Reinforcement-Learning Models for the

Iowa Gambling Task

This chapter has been published as:
Helen Steingroever, Ruud Wetzels, and Eric-Jan Wagenmakers (2014).

Absolute performance of reinforcement-learning models for the Iowa gambling task.
Decision, 1, 161–183.1

Abstract

Decision-making deficits in clinical populations are often studied using the Iowa gambling
task (IGT). Performance on the IGT can be decomposed in its constituent psychological
processes by means of cognitive modeling analyses. However, conclusions about the
hypothesized psychological processes are valid only if the model provides an adequate account
of the data. In this article, we systematically assessed absolute model performance of the
Expectancy Valence (EV) model, the Prospect Valence Learning (PVL) model, and a hybrid
version of both models –the PVL-Delta model– using two different methods. These methods
assess (1) whether a model provides an acceptable fit to an observed choice pattern, and (2)
whether the parameters obtained from model fitting can be used to generate the observed choice
pattern. Our results show that all models provided an acceptable fit to two stylized data sets;
however, when the model parameters were used to generate choices, only the PVL-Delta model
captured the qualitative patterns in the data. These findings were confirmed by fitting the
models to five published IGT data sets. Our results highlight that a model’s ability to fit a
particular choice pattern does not guarantee that the model can also generate that same choice
pattern. Future applications of RL models should carefully assess absolute model performance
to avoid premature conclusions about the psychological processes that drive performance on
the IGT.

1The final publication is available at http://psycnet.apa.org/index.cfm?fa=buy.optionToBuy&id=2013-44393
-001.
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5. Absolute Performance of Reinforcement-Learning Models for the Iowa
Gambling Task

The Iowa gambling task (IGT; Bechara et al., 1994) is arguably the most popular
neuropsychological paradigm to assess decision-making deficits in clinical populations. Originally,
the IGT was developed to assess decision-making deficits of patients with lesions to the ventromedial
prefrontal cortex (vmPFC), but in the last two decades the task has been applied to a variety of
clinical populations, such as patients with Asperger’s disorder (e.g., S. A. Johnson et al., 2006),
attention-deficit-hyperactivity disorder (e.g., Agay et al., 2010; Toplak et al., 2005), bipolar disorder
(e.g., Brambilla et al., 2012), obsessive-compulsive disorder (e.g., Cavedini, Riboldi, D’Annucci, et
al., 2002), pathological gambling disorder (e.g., Cavedini, Riboldi, Keller, et al., 2002), psychopathic
tendencies (e.g., Blair et al., 2001), and schizophrenia (e.g., Martino et al., 2007; Premkumar et
al., 2008). In addition, the IGT has been applied to cocaine addicts (e.g., Stout et al., 2004),
chronic cannabis users (e.g., Fridberg et al., 2010), heavy drinkers (e.g., Gullo & Stieger, 2011),
inmates (e.g., Yechiam, Kanz, et al., 2008), and traffic offenders (e.g., Lev et al., 2008). Impaired
performance on the IGT may be caused by several factors, such as only focusing on immediate
rewards, avoidance of immediate losses, poor memory for past payoffs, or underweighting of rare
events (e.g., Barron & Erev, 2003; Yechiam & Busemeyer, 2005).

In order to isolate and identify the psychological processes that drive performance on the
IGT, behavioral analyses of IGT data need to be complemented with cognitive modeling analyses.
To further this goal, several reinforcement-learning (RL) models have been proposed, and here we
focus on the two most popular exemplars –the Expectancy Valence model (EV; Busemeyer & Stout,
2002) and the Prospect Valence Learning model (PVL; Ahn et al., 2008, 2011)– and the hybrid
PVL-Delta model (Ahn et al., 2008; Fridberg et al., 2010; a detailed description of the three models
can be found in the section “The Ev, PVL, and PVL-Delta Models”). The parameters of these
models correspond to psychological processes such as motivation, learning/memory, and response
consistency (Busemeyer et al., 2003); hence, the purpose of fitting these models to empirical data is
to allow applied researchers to draw conclusions about the latent psychological processes that drive
performance on the IGT. Yechiam et al. (2005), for instance, fit the EV model to data of 10 groups
of people suffering from various neuropsychological disorders (e.g., Asperger’s syndrome, vmPFC
lesions, chronic cannabis abuse), and mapped these groups according to the differences between
their model parameters and those of their control group. The purpose of this analysis was to
characterize the decision-making deficits of each clinical group in terms of underlying psychological
processes, and to examine whether differences in neuropsychological disorders can be explained by
differences in psychological processes underlying decision-making deficits (i.e., differences in the
model parameters).

A prerequisite for drawing valid conclusions from RL model parameters is that the model
provides an adequate account for the IGT data. However, systematic and detailed evaluations of
model performance are virtually absent from the applied literature (see section “Methods to Assess
Performance of RL Models” for more details on previous methods that applied studies used to assess
model performance). This state of affairs makes it difficult to determine whether researchers can
draw valid conclusions from parameters of RL models.

Here we outline two methods for the assessment of absolute model performance (i.e., the
degree to which the choice behavior produced by a certain model matches the observed choice
behavior). One method, the post hoc absolute fit, assesses a model’s ability to fit an observed
choice pattern when provided with information on the observed choices and payoffs. The other
method, the simulation method, assesses a model’s ability to generate the observed choice pattern
with parameter values obtained from model fitting. The crucial difference between the two methods
is that the first method is guided by information on the observed choices and payoffs, whereas the
second method makes predictions using new, unobserved payoff sequences.

To anticipate our main result, the post hoc absolute fit method revealed that all models provided
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5.1. The Iowa Gambling Task and Three Reinforcement-Learning Models

Table 5.1: Payoff scheme of the traditional IGT as developed by Bechara et al. (1994).

Deck A Deck B Deck C Deck D
Bad deck Bad deck Good deck Good deck
with fre- with infre- with fre- with infre-

quent losses quent losses quent losses quent losses
Reward/trial 100 100 50 50
Number of losses/10 cards 5 1 5 1
Loss/10 cards −1250 −1250 −250 −250
Net outcome/10 cards −250 −250 250 250

an acceptable fit to two stylized data sets (i.e., constructed data sets that consist of homogeneous
participants with small individual differences). In contrast, the simulation method revealed that
the EV and PVL models failed to generate both types of choice patterns present in the two stylized
data sets. However, the PVL-Delta model adequately generates all choice patterns. These results
were confirmed by fitting five complete data sets. Our findings show that a model’s ability to fit
a particular choice pattern does not guarantee that the model is also able to generate that same
choice pattern. This indicates that a good post hoc absolute fit performance may be caused by
choice mimicry (see also Ahn et al., 2008; Erev & Haruvy, 2005; Yechiam & Ert, 2007; Yechiam &
Busemeyer, 2008, and see Lewandowsky, 1995, for a similar phenomenon).

The outline of this article is as follows. In the first section we explain the IGT, outline the three
RL models, and review methods to assess performance of RL models. In the second section, we
compare the absolute performance of the three RL models using the post hoc absolute fit method
and the simulation method. In particular, we compare the ability of the three RL models to fit and
generate choice patterns present in two stylized IGT data sets, and investigate whether our results
generalize to five IGT data sets from the review article of Steingroever, Wetzels, Horstmann, et
al. (2013). In the last section, we summarize our findings and discuss their ramifications. Readers
already familiar with the IGT, the RL models, and their Bayesian hierarchical implementation may
skip the corresponding parts of the first and second section below.

5.1 The Iowa Gambling Task and Three Reinforcement-Learning
Models

The Iowa Gambling Task

In this section we describe the IGT (see also Steingroever, Wetzels, & Wagenmakers, 2013a). The
purpose of the IGT is to measure decision-making deficits of clinical populations in an experimental
setting. In the traditional IGT, participants are initially given $2000 facsimile money and are
presented with four decks of cards with different payoffs. Participants are instructed to choose
cards in order to maximize their long-term net outcome (Bechara et al., 1994, 1997). Unbeknownst
to the participants, the task typically contains 100 trials. After each choice, participants receive
feedback on the rewards and the losses (if any) associated with that card, and the running tally.

The task aims to determine whether participants learn to prefer the good, safe decks over
the bad, risky decks because this is the only choice pattern that maximizes the long-term net
outcomes. The good, safe decks are typically labeled as decks C and D, whereas the bad, risky
decks are labeled as decks A and B. Table 5.1 presents the traditional payoff scheme as developed
by Bechara et al. (1994). This table illustrates that decks A and B yield high immediate, constant
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5. Absolute Performance of Reinforcement-Learning Models for the Iowa
Gambling Task

Table 5.2: Formalization of the EV, PVL, and PVL-Delta models.

Concept Model(s) Model equation Free parameters Range
Utility
function

EV uk(t) = (1− w) ·W (t) + w · L(t) w: Attention weight [0, 1]

PVL &
PVL-Delta

uk(t) =
{

X(t)A if X(t) ≥ 0
−w · |X(t)|A if X(t) < 0 A: Shape

w: Loss aversion
[0, 1]
[0, 5]

Learning
rule

EV &
PVL-Delta

Evk(t) = Evk(t− 1) + a · (uk(t)− Evk(t− 1)) a: Updating [0, 1]

PVL Evk(t) = a · Evk(t− 1) + δk(t) · uk(t) a: Recency [0, 1]

Choice
rule

All P [Sk(t+ 1)] = eθ(t)Evk(t)∑4
j=1 e

θ(t)Evj(t)

Sensitivity EV θ(t) = (t/10)c c: Consistency [−2, 2]

PVL &
PVL-Delta

θ(t) = 3c − 1 c: Consistency [0, 5]

Note. W (t) and L(t) are the rewards and losses, respectively, on trial t. X(t)
is the net outcome on trial t, X(t) = W (t) − |L(t)|. δk(t) is a dummy
variable that takes the value 1 if deck k is chosen on trial t and 0 otherwise.

rewards, but even higher unpredictable, occasional losses: hence, the long-term net outcome is
negative. Decks C and D, on the other hand, yield low immediate, constant rewards, but even
lower unpredictable, occasional losses: hence, the long-term net outcome is positive. In addition
to the different payoff magnitudes, the decks also differ in the frequency of losses: Two decks yield
frequent losses (decks A and C) and two decks yield infrequent losses (decks B and D).

The EV, PVL, and PVL-Delta Models

In this section, we describe the EV, PVL, and PVL-Delta models (see also Steingroever, Wetzels,
& Wagenmakers, 2013a). Table 5.2 contains the model equations, the psychological interpretation
of the free parameters, and their ranges. In the following, we describe each model separately;
the general idea, however, is that each model describes the performance on the IGT through the
interaction of distinct psychological processes captured by the model parameters.

The EV, PVL, and PVL-Delta models share the assumption that, following each choice,
participants evaluate the rewards and losses (if any) associated with the just-chosen card by means
of a utility function. These momentary utilities are used to update expectancies about the utilities
of all decks. This updating process entails that, on every trial, participants adjust their expected
utilities of the decks based on the new utility they just experienced, a process described by a learning
rule. In the next step, the models assume that the expected utilities of all decks are used to guide
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5.1. The Iowa Gambling Task and Three Reinforcement-Learning Models

the participants’ choices on the next trial. This assumption is formalized by the softmax choice
rule, also known as the ratio-of-strength choice rule, that all models use to compute the probability
of choosing a particular deck on a particular trial (Luce, 1959). This rule contains a sensitivity
parameter θ(t) that indexes the extent to which trial-by-trial choices match the expected deck
utilities. Values of θ(t) close to zero indicate a random choice behavior (i.e., strong exploration),
whereas large values of θ(t) indicate a choice behavior that is strongly determined by the expected
deck utilities (i.e., strong exploitation). As is customary, for all analyses in this paper, we scaled
the traditional payoffs of the IGT as presented in Table 5.1 by dividing by 100 (cf. Ahn et al.,
2011).

The EV model

The EV model uses three parameters to formalize its assumptions about participants’ performance
on the IGT (Busemeyer & Stout, 2002). The first model assumption is that after choosing a card
from deck k, k ∈ {1, 2, 3, 4} on trial t, participants compute a weighted mean of the experienced
rewards W(t) and losses L(t) to obtain the utility of deck k on trial t, uk(t). The weight that
participants assign to losses relative to rewards is the attention weight parameter w. A small value
of w, that is, w < .5, is characteristic for decision makers who put more weight on the immediate
rewards and can thus be described as reward-seeking, whereas a large value of w, that is, w > .5,
is characteristic for decision makers who put more weight on the immediate losses and can thus be
described as loss-averse (Ahn et al., 2008; Busemeyer & Stout, 2002).

The EV model assumes that decision makers use the utility of deck k on trial t, uk(t), to
update only the expected utility of deck k, Evk(t); the expected utilities of the unchosen decks
are left unchanged. This updating process is described by the Delta learning rule, also known as
the Rescorla-Wagner rule (Rescorla & Wagner, 1972). If the experienced utility uk(t) is higher
than expected, the expected utility of deck k is adjusted upward. If the experienced utility uk(t) is
lower than expected, the expected utility of deck k is adjusted downward. This updating process is
influenced by the second model parameter—the updating parameter a. This parameter quantifies
the memory for rewards and losses. A value of a close to zero indicates slow forgetting and weak
recency effects, whereas a value of a close to one indicates rapid forgetting and strong recency
effects. For all models, we initialized the expectancies of all decks to zero, Evk(0) = 0. This setting
reflects an absence of prior knowledge about the payoffs of the decks.

According to the EV model, the sensitivity θ(t) changes over trials depending on the response
consistency parameter c. If c is positive, successive choices become less random and more
determined by the expected deck utilities; if c is negative, successive choices become more random
and less determined by the expected deck utilities, a pattern that is clearly non-optimal. We
restricted the consistency parameter of the EV model to the range [−2, 2] instead of the proposed
range [−5, 5] (Busemeyer & Stout, 2002). This modification improved the estimation of the EV
model and prevented the choice rule from producing numbers that exceed machine precision.

In sum, the EV model has three parameters: (1) The attention weight parameter w, which
quantifies the weight of losses over rewards, (2) the updating parameter a, which determines the
memory for past expectancies, and (3) the response consistency parameter c, which determines the
amount of exploration versus exploitation.

The PVL model

The PVL model uses four parameters to formalize its assumptions about participants’ performance
on the IGT (Ahn et al., 2008, 2011). The PVL model assumes that decision makers only process
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5. Absolute Performance of Reinforcement-Learning Models for the Iowa
Gambling Task

the net outcome after choosing a card from deck k on trial t, X(t) = W (t)− |L(t)|. In contrast to
the linear utility function of the EV model, the PVL model uses the Prospect Utility function—a
non-linear utility function from prospect theory (Tversky & Kahneman, 1992). The Prospect
Utility function contains the first two model parameters—the shape parameter A, that determines
the shape of the utility function, and the loss aversion parameter w. As A approaches zero, the
shape of the utility function approaches a step function. The implication of such a step function
is that given a positive net outcome X(t), all utilities are similar because they approach one, and
given a negative net outcome X(t), all utilities are also similar because they approach −w. On the
other hand, as A approaches one, the subjective utility uk(t) increases in direct proportion to the
net outcome, X(t). A value of w larger than one indicates a larger impact of net losses than net
rewards on the subjective utility, whereas a value of w of one indicates equal impact of net losses
and net rewards. As w approaches zero, the model predicts that net losses will be neglected.

Unlike the EV model, the PVL model assumes that, on every trial t, decision makers update
the expected utilities of every deck according to the Decay learning rule (Erev & Roth, 1998). This
rule discounts expectancies of every deck on every trial to an extent depending on the recency
parameter a. This means that, in contrast to the EV model, the expectancies of the unchosen
decks are discounted. The dummy variable contained in the learning rule, δk, ensures that only
the current utility of the chosen deck k is added to the expectancy of that deck. A small value of
a indicates rapid forgetting and strong recency effects, whereas a large value of a indicates slow
forgetting and weak recency effects.

The PVL model assumes a trial-independent sensitivity parameter θ, which depends on the final
model parameter: the response consistency c. Small values of c cause a random choice pattern,
whereas large values of c cause a deterministic choice pattern.

In sum, the PVL model has four parameters: (1) The shape parameter A, which determines
the shape of the utility function, (2) the loss aversion parameter w, which quantifies the weight
of net losses over net rewards, (3) the recency parameter a, which determines the memory for
past expectancies, and (4) the response consistency parameter c, which determines the amount of
exploitation versus exploration.

The PVL-Delta model

The PVL-Delta model is a hybrid version of the EV and PVL models because it uses the Delta
learning rule of the EV model (Rescorla & Wagner, 1972), but all remaining equations of the PVL
model (i.e., the Prospect Utility function and the trial-independent sensitivity parameter; Ahn et
al., 2008; Fridberg et al., 2010). This construction results in a model with four parameters: (1)
The shape parameter A, which determines the shape of the utility function, (2) the loss aversion
parameter w, which quantifies the weight of net losses over net rewards, (3) the updating parameter
a, which determines the memory for past expectancies, and (4) the response consistency parameter
c, which determines the amount of exploitation versus exploration.

Methods to Assess Performance of RL Models

In this section, we review methods that previous studies have used to assess performance of RL
models. We differentiate between applied studies (i.e., studies that fit an RL model to IGT data
to compare model parameters across groups) and model comparison studies (i.e., studies that
search for the best performing model among a set of competitor models). First of all, it is evident
that many applied studies take model adequacy for granted; only about two thirds of the applied
literature assessed model performance at all (Steingroever, Wetzels, & Wagenmakers, 2013a). The
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5.1. The Iowa Gambling Task and Three Reinforcement-Learning Models

standard measure to assess model performance has been the conventional fit index BIC or G2.
This index is a relative measure that compares the performance of two models (i.e., the accuracy
of one-step-ahead predictions when provided with intermediate feedback on the observed choices
and payoffs); the first model is an RL model that aims to explain trial-to-trial dependencies and
learning effects; the second model is a baseline model that assumes constant choice probabilities
across all trials (equal to the individual’s overall choice proportions from each deck). This method
is also called post hoc fit criterion or one-step-ahead prediction method (see for example, Farah et
al., 2008; Yechiam et al., 2005; Yechiam, Kanz, et al., 2008). We call this measure post hoc relative
fit criterion in the remainder of the article to stress the comparison against a baseline model.

The disadvantage of the post hoc relative fit criterion is that it is a relative measure, and
thus provides no information on whether a given model is able to account for the data; relative
performance measures can only be used to investigate whether a given model outperforms a
reference model, but not to investigate whether it performs adequately in absolute terms. Thus,
it is possible that a particular model makes more accurate one-step-ahead predictions than the
reference model (i.e., a better performance according to the post hoc relative fit criterion), but
nonetheless provides a poor fit to the data.

In contrast, methods used by model comparison studies cover a wider range of meticulous and
sophisticated procedures of model checking. Nevertheless, they also used the post hoc relative
fit (see for example Ahn et al., 2008; Busemeyer & Stout, 2002; Fridberg et al., 2010; Worthy,
Hawthorne, & Otto, 2013; Yechiam & Busemeyer, 2005; Yechiam & Ert, 2007; Yechiam &
Busemeyer, 2008). Since these studies used different RL models and different tasks (i.e., the
IGT, but also gambling tasks with only two or three alternatives), it is difficult to draw strong
conclusions from these studies, especially because the findings are rather equivocal: The study of
Busemeyer and Stout (2002) showed that, among two competitor models, the EV model had the
best post hoc relative fit. Fridberg et al. (2010), on the other hand, showed that the PVL-Delta
model had a better post hoc relative fit than the EV model. In addition, Fridberg et al. (2010)
mentioned that their main conclusions were not affected by whether they used the PVL model with
Decay learning rule (labeled PVL model in this article) or the PVL-Delta model (see their footnote
1). Other studies, however, showed that models with a Decay learning rule resulted in a better
post hoc relative fit than models with a Delta learning rule (Ahn et al., 2008; Worthy, Hawthorne,
& Otto, 2013; Yechiam & Busemeyer, 2005; Yechiam & Ert, 2007; Yechiam & Busemeyer, 2008).

Model comparison studies have also investigated whether RL models can make generalizable
predictions, that is, accurate predictions for experimental conditions that differ from the original
ones (i.e., a different payoff sequence or task; see Busemeyer & Wang, 2000; Pitt, Kim, & Myung,
2003, for the importance of this type of tests). The least demanding test, that is, the test with
the smallest difference from the original experiment, is the simulation method (e.g., Ahn et al.,
2008; Fridberg et al., 2010; see also Laud & Ibrahim, 1995). This method assesses a model’s
ability to generate the observed choice pattern with parameter values obtained from model fitting.
More specifically, the parameter estimates from model fitting are used to generate predictions
for another payoff sequence that could have been observed (i.e., the underlying payoff structure
remains the same, but the exact ordering of immediate wins and losses may differ). Typically,
simulation performance is assessed by comparing the predicted choice probabilities from each deck
averaged across all trials to the observed choice proportions from each deck averaged across all
trials (Ahn et al., 2008; Fridberg et al., 2010; Worthy, Hawthorne, & Otto, 2013; but see Yechiam
& Busemeyer, 2005). All studies that used the simulation method have shown that the EV model
has poor simulation performance. In particular, Fridberg et al. (2010), Worthy, Hawthorne, and
Otto (2013), and Yechiam and Busemeyer (2005) pointed out that the EV model fails to generate
a preference for the decks with infrequent losses over the decks with frequent losses (see also

85



5. Absolute Performance of Reinforcement-Learning Models for the Iowa
Gambling Task

the parameter space partitioning study of Steingroever, Wetzels, & Wagenmakers, 2013a). The
PVL-Delta model, on the other hand, seems to be a model with good simulation performance (Ahn
et al., 2008; Fridberg et al., 2010).

A more challenging test is the so called test of generalizability. This method assesses a model’s
predictions for a second, different task. This method can be implemented as a relative assessment
(i.e., compared to a baseline model that makes random predictions for every trial; see Ahn et
al., 2008; Yechiam & Ert, 2007; Yechiam & Busemeyer, 2008) or as an absolute assessment (i.e.,
compared to the observed choice proportions on the second task; see Ahn et al., 2008; Yechiam
& Busemeyer, 2005).2 In addition, model comparison studies also used parameter consistency
tests (i.e., Yechiam & Busemeyer, 2008) –a method that compares the correlations between model
parameters estimated in different tasks– and parameter space partitioning (PSP; Steingroever,
Wetzels, & Wagenmakers, 2013a). PSP assesses all choice patterns that a given model can generate
over its entire parameter space.

Unfortunately, the model comparison studies mentioned above failed to identify an RL model
that uniquely outperforms its competitors across the various methods and data sets. First, method
dependency is apparent in the studies of Ahn et al. (2008), Yechiam and Ert (2007), and Yechiam
and Busemeyer (2008): These studies showed that models with the Decay learning rule produced a
better post hoc relative fit, whereas models with the Delta learning rule produced better long-term
generalizability and higher parameter consistency (see also Erev & Haruvy, 2005). According to
Yechiam and Ert (2007) and Yechiam and Busemeyer (2008), the better post hoc relative fit of the
Decay learning rule is due to mimicry of past choices. The Delta learning rule, on the hand, relies
more on past payoffs instead of past choices and therefore produces better generalizable predictions
and parameter consistency. In line with our results below, this suggests that the Delta learning
rule measures stable characteristics of an individual more successfully than does the Decay learning
rule.

Second, data set dependency is apparent in the study of Fridberg et al. (2010): In their control
group of healthy participants, the PVL-Delta model resulted in a better post hoc relative fit than
the EV model and the Bernoulli baseline model; however, in the case of their experimental group
of chronic cannabis abusers, the baseline model outperformed the EV model and the PVL-Delta
model. Fridberg et al. (2010) explained the superiority of the baseline model by arguing that the
experimental group does not learn on the IGT as indicated by a stable preference for the good decks
across trials. However, a stable preference for the good decks may hide changes in deck preferences
that occur on the level of individual decks; an inspection of the mean choice proportions from all
decks separately suggests substantial changes across trials in the popularity of decks B and D (see
Figure 2 in Fridberg et al., 2010).

Other examples of data set dependency include the studies of Ahn et al. (2008) and Yechiam
and Busemeyer (2005). Participants of the former study showed a preference for the good decks on
the IGT, whereas participants of the latter study showed a preference for the decks with infrequent
losses. Yechiam and Busemeyer (2005) found that models with the Decay-RL rule and softmax
choice rule predicted performance on a second task better than models with the Delta-RL rule and
softmax choice rule. However, Ahn et al. (2008) used a similar test for a different data set and
found the opposite result.3

2Note that the procedure of Yechiam and Busemeyer (2005) cannot be considered as a strong test of generalization
because the two tasks are relatively similar (i.e., both tasks used an implementation of the IGT, but the payoff scheme
used in the second task differs by a constant factor of 1.5 from the payoff scheme of the first task).

3It may be argued that Yechiam and Busemeyer (2005)’s implementation of the generalizability test is rather a
simulation method because the two tasks resemble each other strongly (i.e., both tasks used an implementation of the
IGT, but the payoff scheme used in the second task differs by a constant factor of 1.5 from the payoff scheme of the
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Data set dependency has also been confirmed by the PSP study of Steingroever, Wetzels,
and Wagenmakers (2013a) showing that the EV model, PVL model, and a modified version of
the EV model (i.e., the EV model with Prospect Utility function) all fail to generate the entire
spectrum of choice patterns that are typically observed in experiments. In particular, the EV model
fails to generate a pronounced preference for the decks with infrequent losses (see also Fridberg
et al., 2010; Yechiam & Busemeyer, 2005)—a choice pattern that is often observed in healthy
participants (e.g., Caroselli et al., 2006; Dunn et al., 2006; MacPherson et al., 2002; Lin et al.,
2007; Steingroever, Wetzels, Horstmann, et al., 2013; Wilder et al., 1998; Yechiam & Busemeyer,
2005). Such a dependency of the models’ performance on the observed choice pattern presents a
crucial limitation because a good RL model for the IGT should be able to generate choice patterns
present in all groups that are typically tested on the IGT.

To sum up, previous applied studies and model comparison studies used a wide variety of
methods to assess performance of RL models. Applied studies typically focused on relative
measures, even though assessing absolute model performance is essential to confirm model adequacy
and to legitimize inferences drawn from model parameters. We will therefore propose two
straightforward and general methods that allow a relatively thorough assessment of absolute model
performance. In addition, we will shed light on why results of previous model comparison studies
may depend on the method and data set used.

5.2 Performance of the EV, PVL, and PVL-Delta Models

Methods

We fit the EV, PVL, and PVL-Delta models using a Bayesian hierarchical estimation procedure
(detailed in the next section) to two data sets that were constructed from our IGT data pool of
healthy participants (Steingroever, Wetzels, Horstmann, et al., 2013).4 For the first data set, we
selected 31 healthy participants with a pronounced preference for the good decks (i.e., participants
with at least 75% choices from the good decks, (C+D) ≥ .75); for the second data set, we selected
31 healthy participants with a pronounced preference for the decks with infrequent losses (i.e.,
participants with at least 75% choices from the decks with infrequent losses, (B +D) ≥ .75).5 All
participants completed a 100-trial IGT.

We chose these two types of choice patterns because the first type is in line with Bechara et
al. (1994)’s assumptions about the performance of healthy participants on the IGT. The second
type goes against Bechara et al. (1994)’s assumptions, but it is frequently observed in healthy
participants (see for example, Caroselli et al., 2006; Chiu & Lin, 2007; Chiu et al., 2008; Dunn
et al., 2006; Fridberg et al., 2010; MacPherson et al., 2002; Lin et al., 2007; Steingroever,
Wetzels, Horstmann, et al., 2013; Wilder et al., 1998; Yechiam & Busemeyer, 2005). Since healthy

first task). However, the question whether Yechiam and Busemeyer (2005)’s method should be classified as a test of
generalizability or as a simulation method does not affect our point that results of previous model comparison studies
may depend on the data set analyzed because Ahn et al. (2008) showed that models with Delta-RL rule performed
better than models with Decay-RL rule on both the simulation method and test of long-term generalizability.

4See Steingroever, Wetzels, Horstmann, et al. (2013) for a description of the data sets. Note that we did not
use the data of Fernie and Tunney (2006), Fridberg et al. (2010), Rodríguez-Sánchez et al. (2005), and Toplak et al.
(2005) to construct the stylized data sets because we have received their data either only in bins of several trials,
because we did not receive information on the payoff of each participant, or because fewer than 100 IGT trials were
recorded.

5These participants were selected at random out of all participants showing a pronounced preference for the
decks with infrequent losses.
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Figure 5.1: Proportions of choice patterns shown by participants of our IGT data pool considered
for this article (total N = 359). The shaded areas represent the proportions of participants with
pronounced deck preferences (i.e., (B +D) ≥ .75 or (C +D) ≥ .75).

participants are typically used as a control group, it is important that the models can account for
these two types of choice patterns.

By using the cutoff of .75 to construct the two groups (i.e., (C+D) ≥ .75 or (B+D) ≥ .75), we
ensured that participants within each of these groups have similar deck preferences. This procedure
minimizes the impact of individual differences within each group, creating optimal conditions for
precise parameter estimation in the Bayesian hierarchical framework.

To visualize the representativeness of our two stylized data sets, Figure 5.1 displays the
proportions of choice patterns shown by participants in our IGT data pool considered for this
article (total N = 359). For this figure, we defined five different types of choice patterns based on
the deck rank order: (1) Preference for the decks with infrequent losses (i.e., {B,D} � {A,C});
(2) preference for the good decks (i.e., {C,D} � {A,B}); (3) preference for the bad decks (i.e.,
{A,B} � {C,D}); (4) preference for the decks with frequent losses (i.e., {A,C} � {B,D}); (5)
remaining choice patterns. From the figure it is evident that the choice patterns “preference for
the decks with infrequent losses” and “preference for the good decks” are most central in our
IGT data pool considered for this article. Even though we chose an arbitrary cutoff value of .75 to
construct the two groups, Figure 5.1 suggests that the construction of the two groups is empirically
well founded (i.e., 32.6% (N = 31) and 38.3% (N = 57) of the participants with a preference for
the decks with infrequent losses and for the good decks, respectively, show a pronounced deck
preference).

To assess the models’ performance in absolute terms, we used two different methods: the
post hoc absolute fit method and the simulation method. These two methods allow us to assess
the models’ ability to fit and generate the choice patterns present in the two stylized data sets.
Our implementation of both methods relies on visually contrasting –separately for each deck as a
function of 10 bins– the observed mean choice proportions from the experiment against the mean
choice probabilities from a particular model. For the data sets at hand a visual inspection is
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sufficient; a more formal approach is provided by posterior predictive p-values (Gelman, Meng, &
Stern, 1996; Meng, 1994; but see Bayarri & Berger, 1999, 2000).

The difference between the two methods lies in how the choice probabilities from a particular
model were obtained (see Appendix D for detailed recipes). Both methods start by sampling
parameter values from the joint posterior distributions over the individual-level parameters
(hereafter individual-level joint posteriors). For a given participant i, this sample represents a
parameter value combination {wi, ai, ci} in the case of the EV model, and {Ai, wi, ai, ci} in the
case of the PVL and PVL-Delta models. This parameter value combination is then provided to the
model. In the case of the post hoc absolute fit method, the model is also provided with the actual
choices and payoffs of participant i. Based on the information on the observed choices and payoffs
up to and including the current trial, the post hoc absolute fit method computes the probability
of choosing each deck on the next trial. The simulation method, on the other hand, relies on
generating choices for another sequence of payoffs that could have been observed.6 In particular,
on each trial, the simulation method generates a choice based on the predicted choice probabilities.
The model then uses the payoff that corresponds to the generated choice to compute the utility
of the chosen deck, it updates the expected utilities of the decks, and computes the probability
of choosing each deck on the next trial. These probabilities are then used to generate the next
choice. Thus, the simulation method spawns synthetic participants who are confronted with the
IGT just as the human participants. For both methods and for each participant, we repeated the
process of obtaining the predicted choice probabilities 100 times to account for uncertainty in the
individual-level joint posteriors.

We consider a model fit adequate whenever the observed choice proportions match the choice
probabilities calculated from the model with access to the observed sequence of choices and payoffs
(i.e., an adequate post hoc absolute fit). Similarly, we consider a model’s predictions adequate
whenever the observed choice proportions match the choice probabilities generated by the model
without access to the observed sequence of choices and payoffs (i.e., an adequate simulation
performance).

Our implementation of the post hoc absolute fit method and the simulation method differ from
previously used tests in the following ways. First, our post hoc absolute fit method entails an
absolute comparison to the data instead of a relative comparison to a baseline model (i.e., the post
hoc relative fit; but see Busemeyer & Stout, 2002; Wood et al., 2005, for an absolute presentation
featuring only the good decks). Second, our implementation of the simulation method considers
the choice probabilities for each deck and trial separately, instead of averaging across all trials
(see Ahn et al., 2008; Fridberg et al., 2010; Worthy, Hawthorne, & Otto, 2013). Yechiam and
Busemeyer (2005) also used this implementation, but they did not account for uncertainty in the
parameter estimates.

To investigate whether our conclusions hold more generally, we also fit the EV, PVL, and
PVL-Delta models to five complete data sets presented in the IGT review article of Steingroever,
Wetzels, Horstmann, et al. (2013; see therein for further details on the data sets). These data sets
were received from the authors upon request.7

6Note that we used the same payoff schedule as in the corresponding experiment.
7Note that we did not fit the models to the data sets of Fernie and Tunney (2006), Rodríguez-Sánchez et al.

(2005), and Toplak et al. (2005) because we received their data only in bins of several trials or because we did not
receive information on the payoff of each participant. The data set labeled as “own data set” in Steingroever, Wetzels,
Horstmann, et al. (2013) is here labeled as “Horstmann” because Annette Horstmann collected the data.

89



5. Absolute Performance of Reinforcement-Learning Models for the Iowa
Gambling Task

Bayesian hierarchical estimation procedure

To fit the EV, PVL, and PVL-Delta models to the data, we used a Bayesian hierarchical estimation
procedure (see Ahn et al., 2011; Wetzels, Vandekerckhove, et al., 2010, for advantages of the
Bayesian hierarchical approach). The Bayesian graphical PVL (and PVL-Delta) model for a
hierarchical analysis is shown in Figure 5.2. The Bayesian graphical EV model looks very similar;
the only difference is that the EV model has one fewer parameter, that parameter wi is immediately
drawn from a group-level distribution instead of being obtained from w′i, and that the sensitivity
parameter is trial-dependent (i.e., θi,t). Figure 5.2 shows that the graphical model consists of
two plates: The inner plate expresses the replications of the choices on t = 1, . . . , T trials of the
IGT, and the outer plate expresses the replications for i = 1, . . . , N participants. For the sake of
clarity, we omitted the notation that indexes the deck number k. The quantities Wi,t (rewards of
participant i on trial t), Li,t (losses of participant i on trial t), and Chi,t+1 (choice of participant i
on trial t+ 1) can directly be obtained from the data, and the quantities ui,t, Evi,t+1, and θi can
be calculated with the equations presented in Table 5.2. Each individual-level parameter vector zi,
that is {wi, Ai, ai, ci} in the case of the PVL and PVL-Delta models, and {wi, ai, ci} in the case of
the EV model, is assumed to be drawn from a group-level beta distribution, Beta(αz, βz). Since
beta distributions are restricted to the [0, 1] interval, we transformed parameters with different
ranges (see Table 5.2) to the [0, 1] interval, and only transformed them back to their correct ranges
after the analysis was complete. Beta distributions are typically defined by two shape parameters
α and β. Here we reparameterize the two shape parameters in terms of the group-level mean µz
and group-level precision λz as follows:

αz = µzλz (5.1)

βz = λz(1− µz) (5.2)

We assigned a uniform prior to the group-level means, µz ∼ U
(
0, 1
)
, and to the logarithm of

the group-level precisions, log(λz) ∼ U
(
log(2), log(600)

)
. Setting the lower limit of the prior on

log(λz) to log(2) prevents the beta group-level distributions from being bimodal (Beta distribution,
2013, January 17). However, to prevent numerical problems in the estimation program we had to
increase this lower limit to a maximum of 21 for the most challenging stylized data set and to a
maximum of 31 for the most challenging complete data set—a modification that can reduce the
variance of the group-level distributions; here this increase had little effect on our inferences as the
posterior distributions of the group-level precision parameters were not cut off at their lower limit.

We implemented the EV, PVL, and PVL-Delta models in the WinBUGS Development Interface
(WBDev, Lunn, 2003)—an add-on program to WinBUGS (BUGS stands for Bayesian inference
Using Gibbs Sampling; Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2012). The advantage of
WBDev over WinBUGS is that WBDev allows the implementation of user-defined functions and
distributions, and requires less computational time (Wetzels, Lee, & Wagenmakers, 2010). The
code for the fitting procedures of the EV, PVL, and PVL-Delta models in WBDev is available on
http://www.helensteingroever.com.

For each parameter, we collected posterior samples using three Markov chain Monte Carlo
(MCMC) chains that were run simultaneously. To assess whether the chains of all parameters
had converged successfully from their starting values to their stationary distributions, we visually
inspected the MCMC chains. In addition, we used the R̂ statistic (Gelman & Rubin, 1992), a formal
diagnostic measure of convergence that compares the between-chain variability to the within-chain
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Figure 5.2: Bayesian graphical PVL (and PVL-Delta) model for a hierarchical analysis.

variability. As a rule of thumb, values of R̂ close to 1.0 indicate adequate convergence to the
stationary distribution, whereas values greater than 1.1 indicate inadequate convergence.

We initialized all chains with different starting values that were generated from uniform
distributions covering a wide range of possible parameter values (i.e., randomly overdispersed
starting values). Fitting the PVL and PVL-Delta models with three chains often resulted in
convergence difficulties: for instance, two chains may appear to have converged to their stationary
distributions and gave the appearance of “hairy caterpillars” that are randomly intermixed, whereas
the third chain behaved differently, often seemingly stuck at either the lower or upper parameter
bound and consequently producing a much larger deviance (i.e., an inferior goodness of fit). In
such situations we decided to run at least five chains simultaneously and to base inferences on three
chains with the smallest deviance.8 However, even this procedure resulted in convergence problems

8Our convergence difficulties with the PVL and PVL-Delta models are not unique. Ahn et al. (2011) made
available online two alternative fitting routines for the PVL model, and also reported convergence difficulties for
their first code. They propose two solutions for the convergence difficulties: The first solution is the same as we
proposed here, that is, basing inferences on chains that have converged successfully. The second solution is to use their
second code that uses a different prior specification and model formulation in which the individual-level parameters
are assumed to be drawn from truncated normal distributions. Also, Ahn et al. (2011) needed a large amount of
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for a few participants (e.g., bimodal posterior distributions). We therefore excluded participants
with such convergence issues and repeated the fitting procedure. This explains why the sample
sizes presented in Table 5.3 are slightly smaller than stated earlier and than those reported by
Steingroever, Wetzels, Horstmann, et al. (2013).

Table 5.3 also contains, for each data set separately, the number of samples we discarded as
burn-in and the number of posterior samples that we collected for each chain. These specifications
differ across data sets to ensure that all chains reached convergence. We based our inferences on
these posterior samples.

Table 5.3: Sample size of the two stylized and five complete data sets, number of samples discarded
as burn-in, and number of posterior samples collected for each chain.

Data set Sample EV model PVL model PVL-Delta model
size Burn-in Posterior Burn-in Posterior Burn-in Posterior

samples samples samples samples samples samples
Good decks 30 2,000 2,000 1,000 5,000 3,000 2,000
Infrequent losses 31 1,000 3,000 1,000 2,333 12,000 2,000

Fridberg et al. (2010) 15 1,000 1,000 12,000 7,000 13,000 5,000
Horstmann 147 32,000 6,000 16,000 5,000 15,000 3,000
Kjome et al. (2010) 18 3,000 2,000 5,000 5,000 9,000 2,000
Premkumar et al. (2008) 25 1,000 1,000 4,000 3,800 12,000 4,333
Wood et al. (2005) 147 12,000 8,000 16,000 5,000 3,000 2,000

Results

Visual inspection of the MCMC chains and consideration of the R̂ statistics for all parameters
suggested that all chains converged successfully (i.e., all parameters of the two stylized data sets
and complete data sets had R̂ values below 1.04 and 1.05, respectively). To illustrate how we
assessed convergence visually, Figure 5.3 shows the chains of one individual-level parameter. From
the figure it is evident that the chains have converged to their stationary distribution, giving the
appearance of “fat hairy caterpillars” that are randomly intermixed.

Ability to fit

Figure 5.4 presents the post hoc absolute fit of the three RL models with respect to the two stylized
data sets. The first column presents the observed choice proportions from each deck as a function
of 10 bins; the second, third, and fourth column present the mean probabilities of choosing each
deck on each trial as calculated with the EV, PVL, and PVL-Delta models, respectively. The
participants from the first data set show a pronounced preference for the good decks (first panel
of the first row); the participants from the second data set show a pronounced preference for the
decks with infrequent losses (first panel of the second row).9

burn-in samples and iterations to fit their data set with their first code, that is, they based their inferences on 25,000
samples that were drawn after 70,000 burn-in samples. The necessity of such a large amount of burn-in samples and
iterations indicates the presence of convergence difficulties.

9The deck selection profiles of all 61 participants included in the two stylized data sets can be downloaded here:
https://dl.dropbox.com/u/12798592/DeckSelectionProfilesFit.zip. In these profiles, filled dots indicate the
occurrence of rewards and losses together, whereas unfilled dots indicate the occurrence of rewards only.
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Figure 5.3: MCMC chains of the individual-level PVL parameter c of the third participant in the
stylized data set featuring a pronounced preference for the good decks. We inspected this type
of plot for every parameter to assess convergence visually, in addition to quantifying convergence
through the formal diagnostic measure R̂.

It is evident from Figure 5.4 that all models provide an acceptable fit to the observed data.
All models capture the qualitative choice patterns (i.e., the rank order of the decks) shown by
the two stylized data sets. In addition, the models also adequately capture the size of the choice
proportions. Nonetheless, the EV model seems to fit the two stylized data sets slightly worse than
the PVL and PVL-Delta models: According to the EV model, it takes a few trials at the beginning
of the IGT until participants start learning and develop the pronounced deck preferences—a pattern
that is inconsistent with the observed data. But altogether, Figure 5.4 suggests that only small
qualitative differences exist in the models’ ability to fit the two stylized data sets.

To ascertain that our results generalize to other data sets, Figure 5.5 shows the post hoc
absolute fit performance of the three RL models with respect to the five complete data sets. The
first column presents the observed choice proportions from each deck as a function of 10 bins;
the second, third, and fourth column present the mean probabilities of choosing each deck on each
trial as calculated with the EV, PVL, and PVL-Delta models, respectively. At the behavioral level,
Figure 5.5 illustrates that only the data set of Premkumar et al. (2008) shows a preference for the
good decks. The remaining four data sets show a frequency-of-losses effect (i.e., a preference for the
decks with infrequent losses)—an effect that differs in its extent across the four data sets: The data
sets of Fridberg et al. (2010) and Horstmann show a pronounced frequency-of-losses effect with a
clear preference for both decks with infrequent losses (i.e., decks B and D) over both decks with
frequent losses, whereas the remaining two data sets show a less pronounced frequency-of-losses
effect, indicating that, at the end of the IGT, participants choose about equally often from decks
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Figure 5.4: Post hoc absolute fit performance of the three RL models with respect to the two
stylized data sets. The first column presents the observed mean proportions of choices from each
deck within 10 blocks. Each block contains 10 trials. The second, third, and fourth column present
the mean probabilities of choosing each deck on each trial as calculated with the EV, PVL, and
PVL-Delta model, respectively.

B, C, and D, while clearly avoiding deck A (i.e., Kjome et al., 2010; Wood et al., 2005). In general,
it is evident that the choice patterns shown by the five complete data sets are less pronounced than
those of the two stylized data sets presented in Figure 5.4.

It is evident that Figure 5.5 corroborates the conclusions from Figure 5.4: All models provide
an acceptable fit to the data, but the EV model fits the five complete data sets slightly worse than
the PVL and PVL-Delta models.

In addition to visually assessing the models’ ability to fit the two stylized and five complete
data sets, we also compared the deviance measure provided by WinBUGS of all models and data
sets (Table 5.4). The deviance is defined as D(θ) = −2 log p(y|θ), where p(y|θ) is the likelihood of
the data y given the parameters θ. Thus, the smaller the deviance, the better the fit. In line with
Figures 5.4 – 5.5, Table 5.4 shows that the EV model provides the worst fit to the two stylized and
five complete data sets. In addition, the PVL model has a smaller deviance (i.e., a better fit) than
the PVL-Delta model for five out of seven data sets.

Ability to generate

Figure 5.6 illustrates how the three models perform on the simulation method with respect to the
two stylized data sets. The first column presents the observed choice proportions from each deck
as a function of 10 bins (i.e., identical to the first column of Figure 5.4); the second, third, and
fourth column present the probabilities of choosing each deck on each trial as generated with the
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Figure 5.5: Post hoc absolute fit performance of the three RL models with respect to the five
complete data sets. The first column presents the observed mean proportions of choices from each
deck within 10 blocks. Each block contains 10 trials, except the last block of Fridberg et al. (2010,
5-trials). The second, third, and fourth column present the mean probabilities of choosing each
deck on each trial as calculated with the EV, PVL, and PVL-Delta model, respectively.
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Table 5.4: Deviance measures provided by WinBUGS of all models and data sets. For each data
set, we printed in bold the lowest deviance value to identify the model with the best fit.

Data set EV PVL PVL-Delta
Good decks 5,905 4,667 5,213
Infrequent losses 6,823 5,450 5,757

Fridberg et al. (2010) 3,545 3,368 3,356
Horstmann 37,210 33,510 32,830
Kjome et al. (2010) 4,597 4,010 4,258
Premkumar et al. (2008) 5,915 5,223 5,653
Wood et al. (2005) 38,390 34,690 35,820

EV, PVL, and PVL-Delta models, respectively. From the figure it is evident that neither the EV
nor the PVL model succeeds to generate both observed choice patterns. Specifically, the EV model
fails to generate a choice pattern featuring a pronounced preference for the decks with infrequent
losses (second stylized data set), whereas the PVL model fails to generate a choice pattern featuring
a pronounced preference for the good decks (first stylized data set).

In the case of the first stylized data set, the EV model correctly generates the empirical rank
order of the decks. However, the model strongly overestimates the mean choice proportions from
deck C. In addition, the EV model predicts that the probability of choosing deck D increases until
trial 50, but then decreases to chance level—a prediction that is not in line with the data; the
observed choice proportions from deck D are above chance level across all trials. The PVL model,
on the other hand, performs acceptably on the simulation method in the case of the second stylized
data set; it correctly generates that the decks with infrequent losses are preferred over the decks
with frequent losses, but it fails to generate that deck D is on average preferred over deck B.

The PVL-Delta model, on the other hand, is the only model considered in this article that
adequately generates the qualitative choice patterns of both stylized data sets. Yet, a few
discrepancies exist between the observed and generated choice patterns: In the case of the first
stylized data set, the PVL-Delta model slightly underestimates the mean choice proportions from
deck D, and slightly overestimates the mean choice proportions from deck B. Just as the EV model,
the PVL-Delta model predicts that the mean probability of choosing deck D increases until trial
50 and then decreases, even though the observed data do not show this decrease. In the case of
the second stylized data set, the PVL-Delta model –just as the PVL model– fails to generate that
deck D is on average preferred over deck B.

To ascertain that our results generalize to other data sets, Figure 5.7 shows how the three
models perform on the simulation method with respect to the five complete data sets. The first
column presents the observed choice proportions from each deck as a function of 10 bins (i.e.,
identical to the first column of Figure 5.5); the second, third, and fourth column present the
probabilities of choosing each deck on each trial as generated with the EV, PVL, and PVL-Delta
models, respectively.

It is evident that Figure 5.7 corroborates the conclusions from Figure 5.6: The EV model fails to
generate choice patterns featuring a preference for the decks with infrequent losses as shown by four
data sets; for these data sets the EV model makes almost random predictions. Interestingly, the
EV model makes very similar predictions for the data sets of Fridberg et al. (2010) and Horstmann,
and the data sets of Kjome et al. (2010) and Wood et al. (2005), even though there are pronounced
differences in the choice patterns at the behavioral level. In the case of the choice pattern featuring
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Figure 5.6: Simulation performance of the three RL models with respect to the two stylized data
sets. The first column presents the observed mean proportions of choices from each deck within
10 blocks. Each block contains 10 trials. The second, third, and fourth column present the mean
probabilities of choosing each deck on each trial as generated with the EV, PVL, and PVL-Delta
model, respectively.

a preference for the good decks as shown by the data set of Premkumar et al. (2008), the EV
model correctly predicts a preference for the good decks over the bad decks, but –as in the case
of the stylized data set with a preference for the good decks– the EV model underestimates the
preference for deck D and overestimates the preference for deck A.

As already suggested by Figure 5.6, Figure 5.7 underscores that the PVL model fails to generate
a choice pattern featuring a preference for the good decks (i.e., as present in the data set of
Premkumar et al., 2008). However, the PVL model makes acceptable predictions for the four data
sets with a frequency-of-losses effect; for all four data sets the PVL model correctly generates that
the decks with infrequent losses are preferred over the decks with frequent losses. Yet, it is evident
that, for the data sets of Fridberg et al. (2010) and Wood et al. (2005), the PVL model fails to
generate that deck D is on average preferred over deck B—a discrepancy between the data and
the predictions that was already apparent in Figure 5.6. In addition, both Figures 5.6 and 5.7
illustrate that the PVL model generates learning curves that are relatively flat.

Moreover, as already suggested by Figure 5.6, the PVL-Delta model demonstrates adequate
simulation performance: Figure 5.7 illustrates that the PVL-Delta model correctly generates the
choice patterns shown by most data sets. Only in the case of the data set of Fridberg et al. (2010)
does the PVL-Delta model slightly underestimate the mean choice proportions from deck D and
slightly overestimate the choice proportions from deck C.

Overall, the results of this section showed that the simulation method –in contrast to the post
hoc absolute fit method– allows for a good discrimination between the models. In addition, a
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Figure 5.7: Simulation performance of the three RL models with respect to the two stylized data
sets. The first column presents the observed mean proportions of choices from each deck within
10 blocks. Each block contains 10 trials, except the last block of Fridberg et al. (2010, 5-trials).
The second, third, and fourth column present the mean probabilities of choosing each deck on each
trial as generated with the EV, PVL, and PVL-Delta model, respectively.
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comparison of the two methods resulted in conflicting findings: Even though all models provided
an adequate fit to the observed choice patterns, only the PVL-Delta model was able to also generate
these choice patterns.

5.3 General Discussion

In this article, we compared two methods that assess absolute model performance: the post hoc
absolute fit method and the simulation method. We used these methods to investigate whether
three RL models of the IGT –the popular EV and PVL models, and a hybrid version of both
models, the PVL-Delta model– can fit and generate choice patterns present in two stylized and
five complete data sets.

Our results showed that all models provided an acceptable fit to all data sets and that only
small differences existed in the models’ ability to fit the different choice patterns. Thus, our results
suggest that the post hoc absolute fit method allows for limited qualitative discrimination between
the models. The simulation method, on the other hand, revealed important performance differences
between the models: When provided with no intermediate feedback on the observed choices and
payoffs, the EV model failed to generate a choice pattern featuring a preference for the decks with
infrequent losses, whereas the PVL model failed to generate a choice pattern featuring a preference
for the good decks. Only the PVL-Delta model adequately generated the choice patterns shown
by the two stylized and five complete data sets.

Our results clearly illustrate that a model’s ability to fit a particular choice pattern does not
guarantee that the model is also able to generate that same choice pattern. This conflicting finding
is supported by findings from previous model comparison studies (e.g., Ahn et al., 2008; Yechiam
& Ert, 2007; Yechiam & Busemeyer, 2008, see Lewandowsky, 1995, for a similar phenomenon).
Specifically, Yechiam and Ert (2007) and Yechiam and Busemeyer (2008) compared two RL models
that only differed in the learning rule (i.e., either the Delta learning rule or the Decay learning
rule) using post hoc relative fit, a long-term generalization test, and a parameter consistency test.
In both studies, the model with the Decay learning rule had a better post hoc relative fit, but
the model with the Delta learning rule performed better on the latter two tests. The authors
explain these conflicting findings by arguing that the Decay learning rule produces a better post
hoc relative fit because it relies more on past choices (i.e., mimicry of past choices), whereas the
Delta learning rule relies more on past payoffs. According to these authors, the increased reliance
on past payoffs explains why the Delta learning rule is superior in producing predictions that
generalize to other tasks, and parameters that are consistent across different tasks. These results
relate to ours because post hoc relative fit and post hoc absolute fit share the same foundation;
both methods assess the accuracy of an RL model for the exact sequences of observed choices and
payoffs. The only difference is that the post hoc relative fit compares the model’s accuracy to
that of a baseline model, whereas the post hoc absolute fit features an absolute comparison to the
observed choice proportions from each deck.

However, in contrast to earlier work (Yechiam & Ert, 2007; Yechiam & Busemeyer, 2008), our
results suggest that a model’s generalizability is determined not only by the learning rule but rather
by the combination of different model equations. In particular, even though both the EV and the
PVL-Delta model use the Delta learning rule, only the PVL-Delta model adequately generated all
choice patterns considered in this article (see Fridberg et al., 2010; Yechiam & Busemeyer, 2005;
Worthy, Hawthorne, & Otto, 2013, for studies that also report poor simulation performance of the
EV model).

It should be noted that, in this article, we did not rule out the possibility that other parameter
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combinations may result in better simulation performance: to assess simulation performance,
we used parameter values that were obtained with a likelihood-based estimation procedure that
optimizes the fit for the exact sequences of observed choices and payoffs. Nevertheless, at least
in the case of the EV model, we can be certain that no matter which parameter combination
we choose the EV model will never generate a frequency of losses effect (see the PSP study of
Steingroever, Wetzels, & Wagenmakers, 2013a, and the simulation performance of the EV model
reported by Fridberg et al., 2010, Worthy, Hawthorne, & Otto, 2013, and Yechiam & Busemeyer,
2005). However, instead of searching a model’s entire parameter space for those parameter values
that produce the best simulation performance, it is conventional to assess simulation performance
with parameter values obtained from a likelihood-based estimation procedure because researchers
typically base their inferences on these parameter values when they wish to draw conclusions about
psychological processes underlying performance on the IGT.

Our results suggest that, among the two methods compared in this article, the simulation
method is more indicative of whether or not a model captures psychological processes underlying
the IGT: “the goal of model selection is to choose the model that generalizes best across all
samples, because the one that does has probably captured the cognitive process of interest, and
not the random fluctuations (i.e., error) that any one sample will exhibit. This is the essence of
generalizability, and a model should be judged on its ability to generalize correctly, not on its
adeptness (i.e., flexibility) in fitting only the data in hand.” (Pitt et al., 2003, p. 31). Thus, the
risk is that a good descriptive adequacy (i.e., a good post hoc absolute fit) is caused by choice
mimicry; it is possible that a model strongly relies on past choices instead of past payoffs when
making one-step-ahead predictions. Thus, our results suggest that models can fine-tune their
parameters to obtain an accurate fit for the exact sequences of observed payoffs and choices, but a
model’s ability to make accurate one-step-ahead predictions cannot be taken as sufficient evidence
to decide whether or not the model has successfully estimated psychological processes that drive
performance on the IGT—an ambition that applied studies typically have. This also means that
the conventional BIC or G2 fit index is insufficient to decide whether model parameters are a valid
reflection of psychological processes (see also Laud & Ibrahim, 1995).

Instead of using the conventional fit index as the standard measure of model performance
in applied studies, our results suggest that applied researchers should carefully assess absolute
model performance to avoid premature conclusions about the psychological processes that drive
performance on the IGT. In particular, the simulation method seems to represent a more stringent
and challenging test of absolute model performance than the post hoc absolute fit method because
the simulation method relies on predicting the entire sequence of choices for another payoff sequence
that could have been observed. Since one assumes that participants show a similar choice pattern
on the IGT independently of the exact ordering of the payoffs, a model for the IGT should be
able to make accurate predictions for a new payoff sequence, especially because the changes in the
payoff sequence are trivial (i.e., the underlying payoff structure remains the same, but the exact
ordering of immediate wins and losses differs): “It seems clear that good models, among those
under consideration, should make predictions close to what has been observed for an identical
experiment.” (Laud & Ibrahim, 1995, p. 249). A requirement for accurate predictions is that the
model is sensitive to the payoff—not to previous choices. Our advice for future applications of
RL models to IGT data is therefore that both proposed tests should pass a minimum threshold of
adequacy.

It stands to reason that model performance cannot be summarized with only one measure.
Previous model comparison studies proposed other sophisticated and sound methods to assess
model performance; in particular, to investigate whether a given model captures the underlying
decision-making processes (e.g., parameter consistency, generalization to another task, test of
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specific influence; see for example Ahn et al., 2008; Wetzels, Vandekerckhove, et al., 2010; Yechiam
& Ert, 2007; Yechiam & Busemeyer, 2008). Even though we support these additional methods,
they require data from another task and hence it may be not be realistic to advocate their use in
applied work. Thus, we recommend applied researchers to choose a model based on results from
previous model comparison studies that used these tests, and then to use the post hoc absolute
fit method and the simulation method to assess absolute model performance. If both methods
pass a minimum threshold of adequacy, we can be relatively confident that conclusions from model
parameters are trustworthy.

Our results suggest that in future applications of the RL models to IGT data, researchers
should carefully assess absolute model performance using the post hoc absolute fit method and
especially the simulation method. Only a careful assessment of absolute model performance will
help prevent applied researchers from drawing conclusions that may be unwarranted and premature.
Our results also suggest that future studies should consider applying the PVL-Delta model instead
of the popular EV and PVL models.
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