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Appendix F

Appendix to Chapter 8: “A Tutorial on
Bridge Sampling”

F.1 The Bridge Sampling Estimator as a General Case of
Methods 1 – 3

In this section we show that the naive Monte Carlo, the importance sampling, and the generalized
harmonic mean estimators are special cases of the bridge sampling estimator under specific choices
of the bridge function h(θ) and the proposal distribution g(θ).1 An overview is provided in
Table F.1.

To prove that the bridge sampling estimator reduces to the naive Monte Carlo estimator,
consider bridge sampling, choose the prior distribution as the proposal distribution (i.e., g(θ) =
p(θ)), and specify the bridge function as h(θ) = 1/g(θ). Inserting these specifications into
Equation 8.12 yields:

p̂4
(
y | h(θ) =

1
g(θ), g(θ) = p(θ)

)
=

1
N2

∑N2
i=1

1
p(θ̃i)

p(y | θ̃i) p(θ̃i)

1
N1

∑N1
j=1

1
p(θ∗j )

p(θ∗j )
, θ̃i ∼ p(θ), θ∗j ∼ p(θ | y)

=
1
N2

∑N2
i=1 p(y | θ̃i)

1
N1
N1

= 1
N2

N2∑
i=1

p(y | θ̃i) , θ̃i ∼ p(θ),

which is equivalent to the naive Monte Carlo estimator shown in Equation 8.6.
To prove that the bridge sampling estimator reduces to the importance sampling estimator,

consider bridge sampling, choose the importance density as the proposal distribution (i.e., g(θ) =

1Note that bridge sampling is also a general case of the Chib and Jeliazkov (2001) method of estimating the
marginal likelihood using the Metropolis-Hastings acceptance probability (Meng & Schilling, 2002; Mira & Nicholls,
2004).
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F. Appendix to Chapter 8: “A Tutorial on Bridge Sampling”

Table F.1: Summary of the Bridge Sampling Estimators for the Marginal Likelihood, and Its Special
Cases: the Naive Monte Carlo, Importance Sampling, and Generalized Harmonic Mean Estimator

Method Estimator Samples Bridge Function h(θ)

Bridge
sampling

1
N2

∑N2
i=1 p(y | θ̃i) p(θ̃i) h(θ̃i)

1
N1

∑N1
j=1 h(θ∗

j ) g(θ∗
j )

θ̃i ∼ g(θ)
C

N1
N2+N1

p(y | θ)p(θ) + N2
N2+N1

p(y)g(θ)
θ∗
j ∼ p(θ | y)

Naive Monte
Carlo

1
N

∑N
i=1 p(y | θ̃i) θ̃i ∼ p(θ)

1
g(θ) and g(θ) = p(θ)

Importance
sampling

1
N

∑N
i=1

p(y | θ̃i) p(θ̃i)
gIS(θ̃i)

θ̃i ∼ gIS(θ)
1

gIS(θ) and g(θ) = gIS(θ)

Generalized
harmonic
mean

(
1
N

∑N
i=1

gIS(θ∗
i )

p(y | θ∗
i ) p(θ∗

i )

)−1

θ∗
i ∼ p(θ | y)

1
p(y | θ)p(θ) and g(θ) = gIS(θ)

Note. p(θ) is the prior distribution, gIS(θ) is the importance density, p(θ|y) is the posterior distribution,
g(θ) is the proposal distribution, h(θ) is the bridge function, and C is a constant. The last column shows
the bridge function needed to obtain the special cases.

gIS(θ)), and specify the bridge function as h(θ) = 1/gIS(θ) . Inserting these specifications into
Equation 8.12 yields:

p̂4
(
y | h(θ) =

1
gIS(θ), g(θ) = gIS(θ)

)
=

1
N2

∑N2
i=1

1
gIS(θ̃i)

p(y | θ̃i) p(θ̃i)

1
N1

∑N1
j=1

1
gIS(θ∗j )

gIS(θ∗j )
, θ̃i ∼ gIS(θ), θ∗j ∼ p(θ | y)

=

1
N2

∑N2
i=1

p(y | θ̃i) p(θ̃i)
gIS(θ̃i)

1
N1
N1

= 1
N2

N2∑
i=1

p(y | θ̃i) p(θ̃i)
gIS(θ̃i)

, θ̃i ∼ gIS(θ),

which is equivalent to the importance sampling estimator shown in Equation 8.7.

To prove that the bridge sampling estimator reduces to the generalized harmonic mean
estimator, consider bridge sampling, choose the importance density as the proposal distribution
(i.e., g(θ) = gIS(θ)), and specify the bridge function as h(θ) = 1/(p(y | θ) p(θ)). Inserting these
specifications into Equation 8.12 yields:
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F.2. Bridge Sampling Implementation: Avoiding Numerical Issues

p̂4
(
y | h(θ) =

1
p(y | θ) p(θ), g(θ) = gIS(θ)

)

=

1
N2

∑N2
i=1

1
p(y | θ̃i) p(θ̃i)

p(θ̃i) p(y | θ̃i)

1
N1

∑N1
j=1

1
p(y | θ∗j ) p(θ∗j )

gIS(θ∗j )
, θ̃i ∼ g(θ), θ∗j ∼ p(θ | y)

=
1
N2

∑N2
i=1 1

1
N1

∑N1
j=1

gIS(θ∗j )
p(y | θ∗j ) p(θ∗j )

=

 1
N1

N1∑
j=1

gIS(θ∗j )
p(y | θ∗j ) p(θ∗j )

−1

, θ∗j ∼ p(θ | y),

which is equivalent to the generalized harmonic mean estimator shown in Equation 8.8.

F.2 Bridge Sampling Implementation: Avoiding Numerical
Issues

In order to avoid numerical issues, we can rewrite Equation 8.15 in the following way:

p̂4(y)(t+1) =
1
N2

N2∑
i=1

l2,i

s1 l2,i+s2 p̂4(y)(t)

1
N1

N1∑
j=1

1
s1 l1,j+s2 p̂4(y)(t)

=

1
N2

N2∑
i=1

exp
(

log(l2,i)
)

s1 exp
(

log(l2,i)
)
+s2p̂4(y)(t)

1
N1

N1∑
j=1

1
s1 exp

(
log(l1,j)

)
+s2p̂4(y)(t)

=

1
N2

N2∑
i=1

exp
(

log(l2,i)
)

exp
(
−l∗
)

s1 exp
(

log(l2,i)
)

exp
(
−l∗
)
+s2p̂4(y)(t) exp

(
−l∗
)

1
N1

N1∑
j=1

exp
(
−l∗
)

s1 exp
(

log(l1,j)
)

exp
(
−l∗
)
+s2p̂4(y)(t) exp

(
−l∗
)

= 1
exp

(
− l∗

)
1
N2

N2∑
i=1

exp
(

log(l2,i)−l∗
)

s1 exp
(

log(l2,i)−l∗
)
+s2p̂4(y)(t) exp

(
−l∗
)

1
N1

N1∑
j=1

1
s1 exp

(
log(l1,j)−l∗

)
+s2p̂4(y)(t) exp

(
−l∗
)
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F. Appendix to Chapter 8: “A Tutorial on Bridge Sampling”

= exp
(
l∗
) 1
N2

N2∑
i=1

exp
(

log(l2,i)−l∗
)

s1 exp
(

log(l2,i)−l∗
)
+s2p̂4(y)(t) exp

(
−l∗
)

1
N1

N1∑
j=1

1
s1 exp

(
log(l1,j)−l∗

)
+s2p̂4(y)(t) exp

(
−l∗
) .

l∗ is a constant which we can choose in a way that keeps the terms in the sums manageable. We
used l∗ = median(log(l1,j)). Let

r̂(t) = p̂4(y)(t) exp
(
− l∗

)
,

so that
p̂4(y)(t) = r̂(t) exp

(
l∗
)
.

Then we obtain

p̂4(y)(t+1) = exp
(
l∗
) 1
N2

N2∑
i=1

exp
(

log(l2,i)−l∗
)

s1 exp
(

log(l2,i)−l∗
)
+s2r̂(t)

1
N1

N1∑
j=1

1
s1 exp

(
log(l1,j)−l∗

)
+s2r̂(t)

p̂4(y)(t+1) exp
(
− l∗

)
=

1
N2

N2∑
i=1

exp
(

log(l2,i)−l∗
)

s1 exp
(

log(l2,i)−l∗
)
+s2r̂(t)

1
N1

N1∑
j=1

1
s1 exp

(
log(l1,j)−l∗

)
+s2r̂(t)

r̂(t+1) =

1
N2

N2∑
i=1

exp
(

log(l2,i)−l∗
)

s1 exp
(

log(l2,i)−l∗
)
+s2r̂(t)

1
N1

N1∑
j=1

1
s1 exp

(
log(l1,j)−l∗

)
+s2r̂(t)

.

Hence, we can run the iterative scheme with respect to r̂ which is more convenient because it keeps
the terms in the sums manageable and multiply the result by exp

(
l∗
)
to obtain the estimate of the

marginal likelihood or, equivalently, we can take the logarithm of the result and add l∗ to obtain
an estimate of the logarithm of the marginal likelihood.

F.3 Correction for the Probit Transformation

In this section we describe how the probit transformation affects our expression of the generalized
harmonic mean estimator (Equation 8.8) to yield Equation 8.9. Recall that we derived the
generalized harmonic mean estimator using the following equality:

1
p(y) =

∫
gIS(θ)

p(y | θ)p(θ) p(θ | y) dθ. (F.1)

For practical reasons, in the running example, we used a normal distribution on ξ as importance
density. ξ was obtained by probit-transforming θ (i.e., ξ = Φ−1(θ)). In particular, the normal
importance density was given by 1

σ̂φ
(
ξ−µ̂
σ̂

)
. Note that this importance density is a function of ξ,
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F.4. Details on the Application of Bridge Sampling to the Individual-Level EV Model

whereas the general importance density gIS in Equation F.1 is specified in terms of θ. Therefore,
to include our specific importance density to Equation F.1, we need to write it in terms of θ. This
yields 1

σ̂φ
(

Φ−1(θ)−µ̂
σ̂

)
1

φ(Φ−1(θ)) , where the latter factor comes from applying the change-of-variable
method. Replacing gIS(θ) in Equation F.1 by this expression, results in:

1
p(y) =

∫ 1
σ̂φ
(

Φ−1(θ)−µ̂
σ̂

)
1

φ(Φ−1(θ))

p(y | θ)p(θ) p(θ | y) dθ

= Epost

 1
σ̂φ
(

Φ−1(θ)−µ̂
σ̂

)
1

φ(Φ−1(θ))

p(y | θ) p(θ)

 .
(F.2)

Rewriting results in:

p(y) =

Epost

 1
σ̂φ
(

Φ−1(θ)−µ̂
σ̂

)
1

φ(Φ−1(θ))

p(y | θ) p(θ)

−1

,

which can be approximated as:

p̂3(y) =


1
N

N∑
j=1

importance density︷ ︸︸ ︷
1
σ̂
φ

(
Φ−1(θ∗j )− µ̂

σ̂

)
1

φ
(
Φ−1(θ∗j )

)
p(y | θ∗j )︸ ︷︷ ︸
likelihood

p(θ∗j )︸ ︷︷ ︸
prior



−1

, θ∗j ∼ p(θ | y) .︸ ︷︷ ︸
samples from the

posterior distribution

=


1
N

N∑
j=1

importance density︷ ︸︸ ︷
1
σ̂
φ

(
ξ∗j − µ̂
σ̂

)
p
(
y | Φ

(
ξ∗j

))
︸ ︷︷ ︸

likelihood

p
(
Φ
(
ξ∗j

))
φ
(
ξ∗j

)
︸ ︷︷ ︸

prior



−1

, ξ∗j = Φ−1(θ∗j ) and θ∗j ∼ p(θ | y) ,︸ ︷︷ ︸
probit-transformed samples

from the posterior distribution

(F.3)

which shows that the generalized harmonic estimate can be obtained using the samples from the
posterior distribution, or the probit-transformed ones. In the online-provided code, we use the
latter approach (see also Overstall & Forster, 2010).

F.4 Details on the Application of Bridge Sampling to the
Individual-Level EV Model

In this section, we provide more details on how we obtained the unnormalized marginal likelihood
for a specific participant s, s ∈ {1, 2, . . . , 30}, with choices Chs(T ) and corresponding payoffs
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F. Appendix to Chapter 8: “A Tutorial on Bridge Sampling”

Xs(T ). Since we focus on one specific participant, we drop the subscript s in the remainder of
this section. As explained in Appendix F.2, we run the iterative scheme with respect to r̂ to avoid
numerical issues. Consequently, we have to compute log(l1,j) and log(l2,i). Using κ̃i = (ω̃i, α̃i, γ̃i)
for the ith sample from the proposal distribution, we get for log(l2,i) (log(l1,j) works analogously):

log(l2,i) = log
(
p(Ch(T ) | Φ(κ̃i), X(T )) p(Φ(κ̃i)) φ(κ̃i)

g(κ̃i)

)
.

Therefore, instead of computing the unnormalized posterior distribution directly, we compute
the logarithm of the unnormalized posterior distribution:

log(p(Ch(T ) | Φ(κ̃i), X(T )) p(Φ(κ̃i)) φ(κ̃i)) = log(p(Ch(T ) | Φ(κ̃i), X(T )))+
log(φ(ω̃i)) + log(φ(α̃i)) + log(φ(γ̃i)),

because we assumed independent priors on each model parameter w, a, c. log(p(Φ(κ̃i))) = 0 because
p refers to the uniform prior on [0, 1].

F.5 Details on the Application of Bridge Sampling to the
Hierarchical EV Model

Analogous to the last section, we explain here how we obtained the logarithm of the unnormalized
posterior for the hierarchical implementation of the EV model. Using Chs(T ) to refer to all
choices of subject s, Xs(T ) for the corresponding net outcomes, κ̃s,i = (ω̃s,i, α̃s,i, γ̃s,i) for the
ith sample from the proposal distribution for the individual-level parameters of subject s, and
ζ̃i for the ith sample from the proposal distribution for all group-level parameters (e.g., ζ̃i =
(µ̃ω,i, τ̃ω,i, µ̃α,i, τ̃α,i, µ̃γ,i, τ̃γ,i)), we get:

log
(( 30∏

s=1
p(Chs(T ) | Φ(κ̃s,i), Xs(T )) p(κ̃s,i | ζ̃i)

)
p(ζ̃i)

)

=
N∑
s=1

[log(p(Chs(T ) | Φ(κ̃s,i), Xs(T )))+

log
(

1
1.5Φ(τ̃ω,i)

φ

(
ω̃s,i − µ̃ω,i
1.5Φ(τ̃ω,i)

))
+ log

(
1

1.5Φ(τ̃α,i)
φ

(
α̃s,i − µ̃α,i
1.5Φ(τ̃α,i)

))
+

log
(

1
1.5Φ(τ̃γ,i)

φ

(
γ̃s,i − µ̃γ,i
1.5Φ(τ̃γ,i)

))]
+

log (φ(µ̃ω,i)) + log (φ(µ̃α,i)) + log (φ(µ̃γ,i)) +

log (φ(τ̃ω,i)) + log (φ(τ̃α,i)) + log (φ(τ̃γ,i)) .
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