On semi-automated matching and integration of database schemas

Ünal Karakaş, Ö.
Contents

1 INTRODUCTION 1
1.1 Motivation and Requirements Analysis 1
1.2 Addressed Research Questions 7
1.3 Objectives and Contributions of the Thesis 9
1.4 Scope of the Research 10
1.5 Research Method 11
1.6 Outline of the Dissertation 12

2 INTERLINKING AND INTEGRATING SCHEMAS - BACKGROUND 15
2.1 Related Concepts 15
2.2 Multidatabase Classification Based on Schema Coupling 20
2.3 Schema Matching and Schema Integration 21
2.4 Conclusion 27

3 HETEROGENEITY 29
3.1 Related Concepts 29
3.2 Taxonomy of Heterogeneity Resulted Conflicts 30
3.3 Challenges for Schema Matching 35
3.4 Conclusion 39

4 SASMINT APPROACH 41
4.1 Related Research Approaches 41
4.2 Proposed Approach: SASMINT 53
4.3 Conclusion 92

5 SASMINT DEVELOPMENT ARCHITECTURE 95
5.1 Processing Steps of SASMINT 95
5.2 Technologies Applied 95
5.3 Main Components of the System 97
5.4 How does the System Work? 97
5.5 Conclusions 105
6 EMPIRICAL VALIDATION OF SASMINT 107
 6.1 Schema Matching Evaluations in Related Research 107
 6.2 Quality Measures Used for Evaluating SASMINT 108
 6.3 Test Schemas 112
 6.4 Setup for the Experimental Evaluation 115
 6.5 Evaluation of Schema Matching–For "select all above threshold" strategy 116
 6.6 Evaluation of Schema Matching with Sampler 119
 6.7 Evaluation of Schema Integration Performance 125
 6.8 Conclusions 129

7 THESIS CONCLUSIONS AND FUTURE WORK 133
 7.1 Summary of General Approach 133
 7.2 Reflections on the Research Questions 134
 7.3 Future Work 136

A LIST OF AUTHOR’S PUBLICATIONS 139

B XSD FOR SDML 141

C CLASS DIAGRAM FOR SDML 145

D TEST SCHEMAS 149

E EVALUATION OF SCHEMA MATCHING – FOR "SELECT MAX ABOVE THRESHOLD" STRATEGY 159

F EVALUATION OF SCHEMA INTEGRATION-DETAILS OF STEPS 163

BIBLIOGRAPHY 167

SUMMARY 175

SAMENVATTING 177

ACKNOWLEDGMENTS 181