Molecules in motion: a theoretical study of noise in gene expression and cell signaling
Dobrzynski, M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 1
 1.1 Stochasticity fundamentals .. 4
 1.2 First example ... 11
 1.2.1 Physiological implications of bursts 13
 1.3 Timing of biochemical reactions .. 17
 1.3.1 Sequential processes .. 17
 1.3.2 Diffusion-limited reactions .. 20
 1.4 Organization of the thesis .. 21

2 Bursty transcription and translation 25
 2.1 Abstract ... 25
 2.2 Introduction ... 26
 2.3 Results ... 27
 2.3.1 Analytical expression of the waiting time distribution 27
 2.3.2 Measures for characterization of bursts 29
 2.3.3 Motor-protein traffic jams along biopolymer chains 31
 2.3.4 Pausing of motor proteins can generate bursts 33
 2.3.5 Aggregative behavior of multiple burst-generators 35
 2.4 Discussion ... 36
 2.5 Materials and methods ... 38
 2.5.1 Statistics of the arrival process 38
 2.5.2 The limit of a large time scale separation 40
 2.5.3 Moments of the first-passage time pdf 40
 2.5.4 Quantitative characterization of bursts 41
 2.5.5 Non-exponential waiting time distribution for the switch 46
 2.5.6 Interarrival time CDF in a pool of unsynchronized IPPs 48
 2.5.7 Progression of motor proteins along the polymer 48

3 Swift and robust response in two-component signaling 53
 3.1 Abstract ... 54
 3.2 Introduction ... 54
 3.3 Results ... 55
 3.3.1 Approximating the search of a single sensor by a first-order process 55
 3.3.2 The promoter search can be approximated by a first-order process too .. 57
 3.3.3 Clustering of sensors affects the search time for sensors 58
 3.3.4 Two-component signaling-induced gene activation proves swift, robust and efficient .. 59
 3.3.5 Contribution of diffusion and molecule copy number noise to noise in response time ... 60
 3.3.6 Demand for fast and robust signaling can constrain operon organization .. 62
B Basics of diffusion-limited reactions 117
 B.1 Theory: single molecule .. 117
 B.1.1 Incorporating reactions through boundary conditions 117
 B.1.2 Solution for the spherically symmetric system 118
 B.1.3 First-passage time .. 119
 B.1.4 First-passage related to flux 119
 B.1.5 Evaluation for 1D .. 120

C Mesoscopic models and computational methods 121
 C.1 Mesoscopic models ... 121
 C.2 Computational methods .. 125

Bibliography 131
Summary 147
Samenvatting 151
Dla laików 155