Knowing one's limits: logical analysis of inductive inference

Gierasimczuk, N.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Acknowledgments ix

I Setting and Motivation 1
 1 Introduction 3
 2 Mathematical Prerequisites 11
 2.1 Learning Theory 11
 2.1.1 Finite Identification 13
 2.1.2 Identification in the Limit 14
 2.1.3 Other Paradigms 16
 2.2 Logics of Knowledge and Belief 18
 2.2.1 Epistemic Logic 18
 2.2.2 Doxastic Logic 23

II Learning and Definability 39
 4 Learning and Belief Revision 41
 4.1 Iterated Belief Revision 45
 4.2 Iterated DEL-AGM Belief Revision 49
4.2.1 Conditioning 50
4.2.2 Lexicographic Revision 51
4.2.3 Minimal Revision 53
4.3 Learning Methods 54
4.4 Belief-Revision-Based Learning Methods 56
4.5 Convergence 59
4.6 Learning from Positive and Negative Data 67
4.6.1 Erroneous Information 68
4.7 Conclusions and Perspectives 71

5 Epistemic Characterizations of Identifiability 73
5.1 Learning and Dynamic Epistemic Logic 74
5.1.1 Dynamic Epistemic Learning Scenarios 74
5.1.2 Finite Identification in DEL 75
5.1.3 Identification in the Limit and DDL 78
5.2 Learning and Temporal Logic 78
5.2.1 Event Models and Product Update 79
5.2.2 Dynamic Epistemic Logic Protocols 80
5.2.3 Dynamic Epistemic and Epistemic Temporal Logic . 80
5.2.4 Learning in a Temporal Perspective 83
5.2.5 Finite Identifiability in ETL 85
5.2.6 Identification in the Limit and DETL 87
5.2.7 Further Questions on Protocols 89
5.3 Conclusions and Perspectives 90

III Learning and Computation 93

6 On the Complexity of Conclusive Update 95
6.1 Basic Definitions and Characterization 97
6.2 Preset Learning 100
6.3 Eliminative Power and Complexity 104
6.3.1 The Complexity of Finite Identifiability Checking . 105
6.3.2 Minimal Definite Finite Tell-Tale 105
6.3.3 Minimal-Size Definite Finite Tell-Tale 108
6.4 Preset Learning and Fastest Learning 110
6.4.1 Strict Preset Learning 113
6.4.2 Finite Learning and Fastest Learning 115
6.5 Conclusions and Perspectives 117

7 Supervision and Learning Attitudes 119
7.1 Sabotage Games 120
7.2 Sabotage Modal Logic 124
7.3 Sabotage Learning Games ... 125
 7.3.1 Three Variations ... 125
 7.3.2 Sabotage Learning Games in Sabotage Modal Logic 126
 7.3.3 Complexity of Sabotage Learning Games 129
7.4 Relaxing Strict Alternation ... 133
7.5 Conclusions and Perspectives 136

8 The Muddy Scientists .. 139
 8.1 The Muddy Children Puzzle .. 140
 8.2 Muddy Children Generalized 141
 8.2.1 Generalized Quantifiers 142
 8.3 Quantifiers as Background Assumptions 146
 8.3.1 Increasing Quantifiers 146
 8.3.2 Decreasing Quantifiers 147
 8.3.3 Cardinal and Parity Quantifiers 148
 8.3.4 Proportional Quantifiers 150
 8.4 Iterated Epistemic Reasoning 151
 8.4.1 An Epistemic Model Based on the Number Triangle 154
 8.5 Muddy Children Solvability .. 156
 8.6 Discussion .. 158
 8.7 Conclusions and Perspectives 161

IV Conclusions ... 163

9 Conclusions and Outlook ... 165

Bibliography ... 169

Index .. 179

Abstract ... 181

Samenvatting ... 183