On the compilation of a parallel language targeting the self-adaptive virtual processor
Bernard, T.A.M.

Citation for published version (APA):
Enschede: Print partners Ipskamp

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction

1.1 Classical microprocessor improvements ... 2
1.2 Multicore architectures .. 2
1.3 Exploiting concurrency as a solution .. 3
1.4 Impact of concurrency on software systems ... 9
1.5 Contribution of this thesis .. 12
1.6 Overview of this thesis ... 12

1 Foundations

2 Background in parallel computing systems ... 15

2.1 Approaches in concurrent execution models .. 18
2.2 Relevant parallel architectures .. 22
2.3 Modeling concurrency in compilers ... 24
2.4 Requirements for a concurrent execution model 25

3 SVP Execution Model and its Implementations

3.1 Our approach to multicore programming .. 27
3.2 Presentation of the SVP execution model .. 28
3.3 Hardware implementation: Microgrid .. 29
3.4 Software implementation: μTC language ... 36
3.5 SVP system performance .. 44
3.6 Discussion and conclusion .. 49
II Compilation for Parallel Computing Systems

4 From basics to advanced SVP compilation

4.1 Basics in compiler transformations

4.2 SVP compilation schemes

4.3 Under the hood of SVP compilation

4.4 Conclusion

5 On the challenges of optimizations

5.1 Hazards with optimizations

5.2 Investigating some optimizations

5.3 Discussion and conclusion

6 Implementing the SVP compiler

6.1 Role of the compiler

6.2 Compiler design decisions

6.3 Compilation challenges

6.4 Discussion and conclusion

7 SVP evaluation

7.1 Evaluation of SVP compilation

7.2 Evaluation of SVP computing system

7.3 Discussion and conclusion

III Discussion and conclusion

8 Discussion and conclusion

8.1 Thesis overview

8.2 Limitations

8.3 Future work

8.4 Conclusions

A μTC language syntax summary

Summary

Samenvatting
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgements</td>
<td>165</td>
</tr>
<tr>
<td>Publications</td>
<td>167</td>
</tr>
<tr>
<td>Bibliography</td>
<td>174</td>
</tr>
<tr>
<td>Index</td>
<td>175</td>
</tr>
</tbody>
</table>