Multi-scale simulations with complex automata: In-stent restenosis and suspension flow

Lorenz, E.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction .. 9
 1.1 Distinct Entities 9
 1.2 Distinct Scales 10
 1.3 Interaction between Scales 11
 1.4 Multiple Scales 12
 1.5 Outline of this Thesis 14

2 Complex Automata for multi-scale modeling 17
 2.1 Multi-scale Modeling 17
 2.1.1 Introduction 17
 2.2 Complex Automata 19
 2.2.1 A definition 19
 2.2.2 The Scale Separation Map 20
 2.2.3 The Sub-Model Execution Loop 23
 2.2.4 CxA Multi-Scale Coupling 24
 2.2.5 Multi-scale modeling strategies 26
 2.2.6 Execution Model 28
 CxA components 28
 CxA Communication 29
 CxA Initialization and start 30
 CxA Synchronization 30
 CxA Termination 30
 Parallelization 33
 MUSCLE Library 33
 2.2.7 Formalism 33
 2.2.8 Scale-splitting error 37
 2.3 Example: Reaction Diffusion 37
 2.4 Conclusion 42

3 In-stent Restenosis 43
 3.1 In-stent Restenosis 43
 3.2 Multi-scale Model of In-stent Restenosis 44
 3.2.1 Single Scale Models and Coupling Templates .. 46
 Bulk Flow Solver (BF) 46
 Smooth Muscle Cells Dynamics (SMC) 47
 Drug Diffusion in Cellular Tissue 48
3.2.2 The In-stent Restenosis CxA: Kernels, Connection Scheme and Conduits ... 49
3.3 Simulation Results ... 50
 3.3.1 Benchmark Geometry and Initial Conditions 50
 3.3.2 Qualitative assessment of simulation results 51
 3.3.3 Sensitivity Analysis ... 52
3.4 3D CxA .. 53
 3.4.1 Single-scale model for thrombus formation (TF) 53
 Platelet Thrombus Formation 53
 Thrombus Modeling ... 55
 The "Blob" model ... 56
 3.4.2 3D Results .. 60
3.5 Conclusions .. 61

4 Suspension Flow ... 63
 4.1 Rheology of Hard-Sphere Suspensions 64
 4.2 HMM Modeling of Suspension Flow 67
 4.2.1 Description of the Problem 67
 4.2.2 The Heterogeneous Multi-scale Method 68
 4.2.3 Submodels and Coupling 69
 4.2.4 Scales of the Problem and their Separation 72
 4.2.5 More on Coupling ... 76
 4.3 Macroscopic Non-Newtonian Flow (MaF) 79
 4.3.1 Lattice-Boltzmann Method 79
 4.3.2 Coupling ... 82
 4.4 Fully Resolved Suspension Flow (MiS) 83
 4.4.1 Direct Simulation of Suspended Particles 83
 Fluid-particles forces .. 84
 4.4.2 Lees-Edwards Boundary Conditions 88
 Implementation ... 90
 Numerical results .. 92
 4.4.3 Corrected Momentum Exchange 96
 Asymptotic Analysis .. 97
 Numerical tests ... 98
 Galilean invariant force computations 102
 Initialization of new fluid nodes 105
 Numerical Results .. 106
 4.4.4 Initial Conditions and Observables 106
 4.5 Shear-induced Diffusion ... 108
 4.5.1 Diffusivity Measurements on the Micro-Scale 110
 4.5.2 Anisotropic Advection-Diffusion (MaS/LPAD) 112
 Mapping Macro Lattice Fields → LPAD: Interpolation 113
 Mapping LPAD → Macro Lattice Fields: Kernel Estimator 116
 Flow aligned Diffusivity Tensor 117
 4.6 A Database coupled in .. 118
 4.6.1 Serial vs. concurrent coupling 118
 4.6.2 A Hybrid: Database filled on-the-fly 120
 Extra- and Interpolation 120
5 Particle Clustering in Shear-Thickening Hard-Sphere Suspensions

5.1 Microstructure of Sheared Suspensions
- 5.1.1 Simulations
- 5.1.2 Geometrical properties of Particle Clusters
- Cluster Pair Distribution Function
- Fractal Dimension of Particle Clusters
- Cluster Size Distribution and Typical Cluster Size

5.2 2-Particle Collision Model
- 5.2.1 Trajectories
- 5.2.2 Two-Particle Sticking Probability
- Cluster Condition, Sticking Time
- Number Density of Collision Partners as Function of \(d \)
- Sticking Probability

5.3 Statistical Clustering Model
- 5.3.1 Elementary Processes
- Merging of smaller clusters
- Breaking of larger clusters
- Absorption into larger cluster
- Dissolving into smaller clusters
- 5.3.2 Master Equation for \(p_c(N) \)
- Results and Discussion

5.4 Discussion

6 Summary and Conclusions

Bibliography

Samenvatting

Acknowledgements

Publications