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The advancement of ischaemic stroke treatment relies on resource-intensive
experiments andclinical trials. Inorder to improve ischaemic stroke treatments,
such as thrombolysis and thrombectomy,we target the development of compu-
tational tools for in silico trials which can partially replace these animal and
human experiments with fast simulations. This study proposes a model that
will serve as part of a predictive unit within an in silico clinical trial estimating
patient outcome as a function of treatment. In particular, the presentwork aims
at the development and evaluation of an organ-scalemicrocirculationmodel of
the humanbrain for perfusionprediction. Themodel relies on a three-compart-
ment porous continuum approach. Firstly, a fast and robust method is
established to compute the anisotropic permeability tensors representing arter-
ioles and venules. Secondly, vessel encoded arterial spin labelling magnetic
resonance imaging and clustering are employed to create an anatomicallyaccu-
rate mapping between the microcirculation and large arteries by identifying
superficial perfusion territories. Thirdly, the parameter space of the problem
is reduced by analysing the governing equations and experimental data.
Fourthly, a parameter optimization is conducted. Finally, simulations are per-
formed with the tuned model to obtain perfusion maps corresponding to an
open and an occluded (ischaemic stroke) scenario. The perfusion map in the
occluded vessel scenario shows promising qualitative agreement with com-
puted tomography images of a patient with ischaemic stroke caused by large
vessel occlusion. The results highlight that in the case of vessel occlusion (i)
identifying perfusion territories is essential to capture the location and extent
of underperfused regions and (ii) anisotropic permeability tensors are required
to give quantitatively realistic estimation of perfusion change. In the future, the
model will be thoroughly validated against experiments.

1. Introduction
In recent decades, ischaemic stroke treatment has been revolutionized by
thrombolysis (the dissolving of blood clot) [1] and thrombectomy (the mechan-
ical removal of clot) [2,3]. Consequently, the functional outcome and survival
rate of ischaemic stroke patients has increased [4,5]. When successful, both
thrombolysis and thrombectomy restore blood flow in the previously blocked
vessels (recanalization). However, it has been reported that even after recanali-
zation, blood flow to the tissue downstream to the occluded artery (perfusion)
is often not or only partially recovered and hence brain tissue loss continues
[1,6]. The post-treatment mortality rate of patients who suffered from an ischae-
mic stroke is still relatively high [7]. In addition, a substantial proportion of the
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survivors (25–74%) suffer from a severe loss of congnitive
function [8]. Taking care of functionally dependent patients
imposes a heavy burden on society, both economically and
mentally [7].

Regarding the poor outcome of ischaemic stroke patients,
it is recognized that certain mechanisms can limit perfusion
restoration. For instance, recanalization techniques are
accompanied by the risk of thrombus fragmentation leading
to downstream occlsusions [9]. It has been hypothesized that
when emboli reach the microcirculation, they cause micro-
occlusions, and hence prevent reperfusion [10]. Another
important mechanism is cerebral oedema, during which swel-
ling of the brain deforms the tissue and alters blood pressure
[11]. In order to maximize the positive outcome of treatments,
such hypotheses have to be carefully investigated and counter-
acting interventions have to be worked out. The advancement
and further development of related drugs and devices rely on
resource-intensive and time-consuming pre-clinical animal
experiments and clinical studies. Unfortunately, the success
rate of treatment that passes pre-clinical testing is low because
the human brain behaves very differently from cell cultures or
animal brains [12].

The INSIST (IN Silico clinical trials for treatment of acute
Ischaemic STroke) consortium (https://www.insist-h2020.
eu) set out to accelerate the advancement of human ischaemic
stroke treatments by introducing in silico clinical trials which
mitigate the need for resource-intensive experiments [13].
INSIST promotes the application of computational methods
for pharmacology and medical device development, which
aligns with the ambitions of the virtual physiological human
(VPH) initiative [14]. This study contributes to INSIST and
the VPH by developing a cerebral microcirculation model
for the entire human brain, which is capable of predicting per-
fusion before and after an ischaemic stroke. This model will be
coupled to a one-dimensional blood flow simulator governing
blood flow in arteries supplying blood to the pial surface
[15,16]. The role of the resulting organ-scale cerebral blood
flow model in the in silico clinical trial will be to evaluate the
impact of stroke treatment (thrombectomy or thrombolysis)
on tissue perfusion. Furthermore, the model will provide
input to other models which describe oxygen transport and
infarct progression in the brain. The envisioned software
suite will predict the outcome of ischaemic stroke treatment
on a population level, provide guidance for objective clinical

decision making, and lead to further drug and medical
device development.

Progress in the mathematical and computational
modelling of the cerebral circulation is complicated by the
multi-scale nature of the flow and related transport processes.
The diameter of blood vessels stretches from approximately
5mm to 5 μm, being characteristic of the internal carotid
artery and the capillaries, depicted in figure 1a,b, respectively.
Cortical columns (with volumes of a few cubic millimetres)
have been modelled by treating the capillary bed as a porous
medium [19] and representing the connecting arterioles and
venules as a one-dimensional vessel network [20,21]. Scaling
such models to the entire brain is computationally resource
intensive, because it requires capturing the flow in the
corresponding large networks of arterioles and venules.
Nevertheless, with simplifications regarding the vessel
networks, this approach has been successfully employed to
investigate the temperature regulation of the human brain
[22]. To overcome difficulties originating from the large
networks, a two-compartment porous continuum model has
been implemented for the human brain [23] where the arter-
iole and venule compartments include the majority of the
small vessels. These models are reminiscent of heart
perfusion models [24–26].

The present study sets out to investigate the capabilities of
porous continuummodels in terms of estimating the perfusion
changes in various brain territories as a result of a large intra-
cranial vessel occlusion. To this end, we aim to improve the
recently introduced organ-scale cerebral microcirculation
models [22,23]. As shown in figure 1a,b, the descending arter-
ioles (and ascending venules) originating from the pial vessels
are oriented perpendicularly to the cortical surface. The conti-
nuum representation of such networks requires anisotropic
permeability fields [24–26] which have been disregarded in
previous studies for simplicity [22,23,27]. It has been demon-
strated that capturing such spatial variation in the properties
of the continuum models plays an important role in the
description of organ-scale physiological processes [28,29].

Firstly, a robust algorithm will be presented which
accounts for the anisotropy of the human microcirculation
due to penetrating vessels. Thanks to brain atlases [30] and
medical imaging technologies, such as vessel encoded arterial
spin labelling magnetic resonance imaging (VE-ASL MRI)
[31,32], it is now well known that large vessels supply specific
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Figure 1. Structure of the brain vasculature: (a) schematic drawing of the large arteries including the internal carotid artery (ICA) and the middle cerebral artery
(MCA). Adapted from the work of Iadecola [17]. (b) structure of the human cerebral mircovasculature visualized with india ink under confocal laser microscopy.
Modified with permission from Iadecola [17] (a) and Cassot et al. [18] (b). The reference coordinate system (ξ, η, ζ) is shown in (b).
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brain regions.Modelling the connections between large vessels
and their corresponding territories is crucial to predict the
brain regions that are influenced by large vessel occlusion.
In former studies [22,23], the volume sources that coupled
the one-dimensional networks and the porous continuum
were not designed to incorporate these features. Secondly, a
mapping will be introduced between the micro and macro
scales based on VE-ASL MRI. Thirdly, we will parametrize
the resulting porous continuum model and conduct optimiz-
ation to determine the unknown parameters. Finally, for the
first time, simulations will be reported which are capable of
producing realistic perfusion maps in healthy and occluded
(ischaemic stroke) scenarios.

2. Methods
When considering organ-scale perfusion models, it is becoming
common practice to use one-dimensional network models (e.g. [33–
37]) for large arteries and multi-compartment porous continuum
models for the microcirculation [22–26]. The microcirculation
model proposed here builds on the same principles.

2.1. Computational domain and mesh
The computational domain (Ω) is a patient-specific human
brain used in multiple recent studies [29,38,39]. The bounding
surface regions (∂Ω) include a transverse cut-plane of the
brainstem ΓBS, the ventricles ΓV and the pial surface ΓP so that
@V ¼ GBS < GV < GP. These surface regions are depicted in
figure 2a,b. Grey matter (ΩG) and white matter (ΩW) are visible
along a transverse, a coronal and a sagittal plane in figure 2c.

Our investigations are restricted to these two subdomains, there-
fore V ¼ VG <VW . The geometry is discretized on a tetrahedral
mesh using Tetgen [40]. The mesh depicted in figure 2 includes
1 042 301 elements.

The boundary region associated with the pial surface
(figure 2a) is subdivided into eight perfusion territories corre-
sponding to major feeding arteries which have been identified
with VE-ASL MRI [31,32,41–43]. To this end, the same clustering
algorithm is used as in our preliminary study [44] as detailed in
[15,16]. In the future, subdividing the pial surface into more sec-
tions will enable us to establish a feedback between the porous
microcirculation model and a one-dimensional network model
[15,16] by the repeated refreshment of the boundary conditions.
Each perfusion territory corresponds to a major feeding artery of
the brain. These territories are identified based on VE-ASL MRI
images [43]. Thereafter, the surface region that is perfused, for
instance, by the right middle cerebral artery (R-MCA) is denoted
as ΓR-MCA. This approach leads to an anatomically accurate coup-
ling by ensuring that blood arrives to the brain tissue through
specific cortical surface regions as shown in figure 3a–c.

2.2. Governing equations and boundary conditions
The governing equations describing three porous compartments
[24–26] are

r � (Karpa)� bac(pa � pc) ¼ 0; (2:1a)
r � (Kcrpc)þ bac(pa � pc)� bcv(pc � pv) ¼ 0; (2:1b)

r � (Kvrpv)þ bcv(pc � pv) ¼ 0: (2:1c)

Here, pa, pc and pv are the Darcy pressures corresponding to the
arteriole, capillary and venule compartments, respectively. Ki is
the permeability tensor of compartment i, whereas βij denotes

(a) (b) (c)

Figure 2. Computational domain and mesh: (a) the pial surface; (b) ventricles (red) and the cut-plane of the brainstem (green); (c) subdomains including grey and
white matters visualized along a coronal, a sagittal and a transverse plane.
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Figure 3. Superficial perfusion territories of large arteries projected onto the brain surface using the algorithm presented in [15,16] and VE-ASL MRI images [43]:
(a) transverse view; (b) sagittal view; (c) coronal view. Territories corresponding to the left and right (L and R) hemispheres are labelled separately. Surface regions
are coloured based on the feeding arteries using the following acronyms: anterior cerebral artery (ACA), middle cerebral artery (MCA), posterior cerebral artery (PCA).

royalsocietypublishing.org/journal/rsfs
Interface

Focus
11:20190127

3

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 J

an
ua

ry
 2

02
3 



the coupling coefficients between compartments i and j. It is
worth mentioning that a similar two-compartment (arteriole
and venule) brain perfusion model has been reported recently
[23]. Here, a three-compartment model is proposed because
some relevant physiological and biochemical processes are
restricted to certain length scales. For instance, oxygen exchange
through the blood brain barrier is most intensive in the capillary
compartment. Furthermore, cerebral autoregulation mechanisms
are different in arterioles and capillaries and seem to be absent in
venules [45–47].

The boundary conditions imposed with equation (2.1) are as
follows. Flow through the transverse cut-plane of the brainstem
and the ventricles is zero in every compartment. Using n as the
outward-pointing normal unit vector corresponding to the
boundary surface, this Neumann boundary condition reads as

Kirpi � n ¼ 0 on GBS and GV : (2:2)

Flow through the pial surface in the capillary compartment is
zero

Kcrpc � n ¼ 0 on GP: (2:3)

The zero level of pressure can be selected freely because of the
incompressible fluid flow model. By setting the zero level of
pressure on the pial surface in the venous compartment, the
value of the venous pressure is eliminated from the model

pv ¼ 0 on GP: (2:4)

In the healthy scenario, the pressure on the pial surface in the
arteriole compartment is the diastolic pressure (pdia)

pa ¼ pdia on GP: (2:5)

To account for totally occluded scenarios, blood flow through the
perfusion territory of an occluded vessel is set to zero whereas
surface pressure is assumed to remain constant in other regions.
Accordingly, the mixed boundary conditions corresponding, for
instance, to a R-MCA occlusion become

@pa
@n

¼ 0 on GR-MCA (2:6a)

and

pa ¼ pdia on GPnGR-MCA: (2:6b)

2.3. Model parameters
Thehaemodynamicsmodel governed byequation (2.1) includes 31
parameters: the coupling coefficients in grey (bG

ac and bG
cv) and

white matters (bW
ac and bW

cv), and the 27 components of the
permeability tensors of each compartment (Ka, Kc, Kv). The per-
meability tensors and the coupling coefficients of the porous
model need to represent the complex structure of the micro-
vasculture with strong preferences regarding arteriole and venule
vessel orientation as shown in figure 1. Therefore, the components
ofKa andKv are space-dependent functions.However, as the struc-
ture of themicrovasculature in the mammalian brain changes with
increasing cortical depth [48] and it is likely to exhibit territorial
dependence, these properties are neglected here due to the lack of
data. Characterizing such spatial variations remains an outstand-
ing challenge for themodelling and the experimental communities.

Penetrating vessels, including descending arterioles (DAs) and
ascending veins (AVs), in the cortex tend to be aligned normal to
the pial surface. Consequently, the permeability tensors of the arter-
iole and venule compartments are similar but anisotropic and
inhomogeneous. On the contrary, it has been reported that the per-
meability tensor of the capillary compartment is approximately
isotropic [19,49,50]. Based on statistically accurate capillary network
simulations [19,51], the capillary permeability in the greymatter can

be described by a single scalar: kc = 4.28 × 10−4 [mm3 s kg−1]. For
simplicity, we use some assumptions first proposed by [23]: (i) the
permeabilities are the same in grey and white matters and (ii)
Kv= 2Ka. In addition, (iii) the ratio of the grey and white matter
coupling coefficients is assumed to be constant

Cb ¼ bG

bW ¼ bG
ac

bW
ac

¼ bG
cv

bW
cv
: (2:7)

Thereafter, the model is determined by twelve parameters: bG
ac, b

G
cv,

Cb and Ka.

2.3.1. Permeability tensors
Permeabilities are characterized in a reference Cartesian coordi-
nate system defined by ξ, η, ζ corresponding to a cortical
column as shown in figure 1b. The eref = [0, 0, 1] unit vector
defined in the reference coordinate system is parallel to the
axes of the penetrating vessels (figure 1b). The arteriole and the
venule compartments encapsulate the zeroth-order penetrating
vessel branches. These major penetrating branches in a cortical
column can be imagined as a ‘vessel bundle’ supporting flow
only in the ζ direction. For this reason, we assume that the arter-
iole and venule permeabilities in the reference coordinate system
are

Kref
a ¼

0 0 0
0 0 0
0 0 ka

2
4

3
5 and Kref

v ¼
0 0 0
0 0 0
0 0 kv

2
4

3
5: (2:8)

In this formulation, every higher order arteriole and venule side
branch is lumped into a conductance represented by the coupling
coefficients.

This approach includes numerous simplifications but it has
three advantages. Firstly, the permeability of a ‘vessel bundle’
with laminar flow within (kvb) can be estimated as

ka � kvb ¼ nvD4p

128mbAref
: (2:9)

Here, D is the characteristic diameter of the vessels and nv is the
number of vessels corresponding to a reference cortical surface
area Aref. The in vitro dynamic viscosity of blood (μb) depends
on the diameter and the haematocrit as described in [52]. Assum-
ing a constant discharge haematocrit of 45%, a mean diameter in
the range of D ¼ 50� 90mm [49,53] with nv = 8 pial arteries per
Aref = 1 mm2 [20,54], the arterial permeability can be estimated
from equation (2.9) resulting in ka/kc = 1000−10 000. The final
value of ka is optimized with an initial guess within this range.
This optimization is presented in §3.1.

Secondly, in the reference coordinate system the arteriole and
venule permeability tensors have only one constant non-zero
element (instead of space-dependent functions). Thirdly, once a
permeability tensor is determined in a reference coordinate
system (Ki

ref ) with a given reference direction (eref ), the permea-
bility tensor (function) Ki can be computed. The corresponding
transformationdetailed in appendixA requires a unit vector repre-
senting the local characteristic direction (e local). To date, studies on
porousmodelling of the human brain [22,23,27] assumed isotropic
and homogeneous permeabilities because e local could not be
obtained. To overcome this problem, a computational approach
is proposed that relies solely on the geometry of the domain
of interest.

The local brain tissue thickness is the length of a curve con-
necting a point on the ventricular surface (ΓV) to a point on the
pial surface (ΓP). The normalized thickness (t) increases from
zero to one as a point moves from ΓV to ΓP along the curve defin-
ing the thickness. The normalized thickness can be computed by
solving the Poisson equation

r2t ¼ 0, (2:10)
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with t = 0 on ΓV, t = 1 on ΓP and rt � n ¼ 0 on ΓBS. Assuming that
penetrating vessels grow from the pial surface by following
the fastest descent thorough the brain tissue, the unit vector
corresponding to their local characteristic direction is given as

elocal ¼ rt
jrtj : (2:11)

In figure 4a, the e local vector field is visualized by the correspond-
ing tangent lines equivalent of the curves defining brain tissue
thickness. It is hypothesized that vessels follow these curves
which highlight the least resistant path through the brain tissue
without being entangled. This assumption overlaps with micro-
scopical observations of the human microcirculation about
arterioles and venules penetrating perpendicularly to the cortical
surface [18,49]. The permeability tensors of the arteriole and
venule compartments are rotated to support blood flow only
parallel to elocal. The first diagonal component of the normalized
arteriole permeability tensor is depicted in figure 4b. High values
of K11 indicate regions where blood flow in the arterioles and
the venules is supported primarily in the lateral direction.
Where K11 is relatively low, blood flow occurs mostly along the
distal–proximal and the anterior–posterior directions.

2.3.2. Coupling coefficients
The coupling coefficients are tuned to account for the side
branches of the penetrating arterioles and venules. These side
branches are referred to as PreCapillaries (PrC) and PostCapil-
laries (PoC) associated with βac and βcv, respectively. In order to
estimate these parameters, the volume-averaged pressure fields
are linked to the coupling coefficients.

Integrating equations (2.1a)–(2.1c) over ΩG, applying the
divergence theorem, and dividing by the total volume of the
grey matter (VG) leads to the following algebraic equation set:

�QG
a

VG
� bG

ac(hpaiG � hpciG) ¼ 0; (2:12a)

�QG
c

VG
þ bG

ac(hpaiG � hpciG)� bG
cv(hpciG � hpviG) ¼ 0; (2:12b)

�QG
v

VG
þ bG

cv(hpci � hpviG) ¼ 0: (2:12c)

Here, the angle brackets denote volume-averaged quantities so
that 〈pi〉

G is the average Darcy pressures in the grey matter in
compartment i. Furthermore, QG

i is the volumetric flow rate
through the surface bounding the grey matter in compartment
i, defined as

QG
i ¼ �

ðð
GG

Kirpi � dA: (2:13)

In the above expression ΓG and A symbolize the surface bounding
the grey matter and the corresponding area vector, respectively.

Given that ka=kc ¼ 1000�10 000, as estimated in §2.3.1,
QG

c =VG is negligible compared to QG
a =VG and QG

v =VG. According
to the imposed boundary conditions, equations (2.2) and (2.3),
QG

c =VG � 0 can be assumed which indicates that blood flow in
the capillaries through the interface of grey and white matter is
comparatively low. This assumption has been used previously
in blood flow simulations of cortical columns [19,21]. Based on
equation (2.12), it thus follows that grey matter perfusion is

FG ¼ �QG
a

VG
¼ bG

ac(hpaiG � hpciG) ¼ bG
cv(hpciG � hpviG): (2:14)

In addition, it can be concluded that the ratio of the arteriole–
capillary (βac) and the capillary–venule (βcv) coupling coefficients
is related to the volume-averaged pressure drops as

bG
ac

bG
cv

¼ hpciG � hpviG
hpaiG � hpciG

: (2:15)

Therefore, the average perfusion and inter-compartment pressure
drops in the grey matter uniquely determine the coupling
coefficients bG

ac and bG
cv.

In order to calculate the coupling coefficient in the grey
matter, perfusion is calculated from cerebral blood flow set to
Qbrain = 600 [ml min−1] [55]. The total volume of the brain
model is Vbrain = 1390 [ml] which leads to a physiologically rea-
listic brain perfusion Fbrain≈ 43 [(ml blood) min−1 (100ml
tissue)−1]. The mean ratio of grey and white matter perfusion is
FG/FW = 2.7 [56]. With the grey and white matter volumes
given (VG = 894 and VW = 496 [ml]), grey and white matter per-
fusion values are FG≈ 56 and FW≈ 21 [ml min−1 (100 ml)−1]
respectively. The brain volume [57] and perfusion values
[32,42,56] are in good agreement with the literature.

Pressure measurements in the human microcirculation are
not available but experiments have been reported in the rat
brain [58,59]. Based on the summary of these experiments pro-
vided by Schmid et al. [48], some normalized experimental
results are shown in figure 5a. βcv/βac = 3.5 is inferred from the
ratio of the average pressure drop in each compartment of the
rat brain. It is worth mentioning that simulations of the rat
brain indicate significant variation of the pressure ratios in differ-
ent cortical layers [48]. Finally, the diastolic pressure in the
human brain is set to pdia = 75 mmHg≈ 104 Pa. (This value is
relative to the venous pressure selected as the zero level of the
pressure.) According to the calculated grey matter perfusion,
the pressure ratios visualized in figure 5a and the diastolic
pressure value, the coupling coefficients in grey matter are

0 0.2 0.4 0.6

normalized K11

0.8 1.0

(a) (b)

Figure 4. Tangent lines of the e local vector field representing the local characteristic direction of the penetrating vessels (a). The first diagonal component of the
arteriole or the venule permeability tensor adjusted using the e local field (b).
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bG
ac ¼ 1:326�10�6 and bG

cv ¼ 4:641� 10�6 [Pa�1 s�1]. Figure 5b
demonstrates that with these coupling coefficients, the normal-
ized inter-compartment pressure drop of the human brain
model is similar to that of the rat brain. Finally, Cb ¼ bG=bW

can be estimated analytically by rewriting equation (2.14) for
the white matter and assuming that the inter-compartment
pressure drop in white matter is the same as in grey matter:
FG/FW = βG/βW = 2.7.

2.4. Numerical procedure
It has been demonstrated that the finite-element method can be
used efficiently to model complex physical problems in human
organs [28,60–64], including fluid flow and solid deformation in
the human brain [11]. For this reason, the governing partial differ-
ential equations are solved numerically using Python with a high-
performance open source finite-element library, FEniCS [65,66].
The weak form of equation (2.1) is available in [24] and in appen-
dix B. The equation set is solved in a mixed space covering the full
system. The pressure in each compartment (pi) is discretized using
piecewise linear Lagrange (P1) elements. (The ‘periodic table’ of
finite elements can be found in [67].) The permeabilities (Ki) and
the coupling coefficients (βij) are represented in (discontinuous)
piecewise constant (dP0) tensor and scalar function spaces,
respectively. This helps to capture the sharp change in the
model parameters between the grey and white matters.

The a scalar in the Poisson equation (2.10) is stored in second-
order piecewise polynomial Lagrange (P2) elements. Therefore,
elocal in equation (2.11) has to be projected from P1 to dP0

elements before it is used for the coordinate transformation of
Ki

ref. Finally, tissue perfusion F = βac( pa− pc) is computed in
dP0 elements. The resulting linear equation systems are solved
iteratively using the biconjugate gradient stabilized method
[68]. Pressure field computation is speeded up with an algebraic
multigrid preconditioner [69]. Adjusting the permeability field
and computing the pressure and perfusion fields for the healthy
and occluded scenarios take approximately 5 min using a single
core on a modern desktop equipped with an Intel Xeon E-2146G
processor. Exploiting the native message passing interface
implementation of FEniCS and running the simulations with
two and four cores reduce the wall time to approximately 3
and 2 min, respectively.

3. Results and discussion
3.1. Parameter optimization
It turns out that without the simplifications listed in §2, it
is challenging to pose an optimization problem with well-
distinguished global or local minimum for the complete
set of 31 parameters. For this reason, the parameter space
of the imposed problem is reduced significantly according
to §§2.3.1 and 2.3.2 and the remaining parameters are
optimized.

The optimization goal is to obtain physiologically accu-
rate average perfusion values for the grey and white
matters, hence the cost function (J) to be minimized is

J ¼ (FG � FGtarget)
2 þ (FW � FWtarget)

2 þ Jpenalty: (3:1)

The target values are calculated as detailed in §2.3.2 and set to
FGtarget � 56 and FWtarget � 21 [(ml blood)min�1ð100ml tissueÞ�1].
Furthermore, a penalty term (Jpenalty) has been added to restrict
the minimum andmaximum perfusion values

Jpenalty ¼ H(Fmin,target � Fmin) � (Fmin � Fmin,target)
2

þH(Fmax � Fmax,target) � (Fmax � Fmax,target)
2: (3:2)

Here, H is the Heaviside function resulting in a non-zero
Jpenalty only if the extrema are out of the Fmin,target = 10 and
the Fmax,target = 80 [(ml blood) min−1 (100 ml tissue)−1] range.

The two remaining parameters are defined as

ka
kc

¼ 10p and Cb ¼ bG

bW ¼ 10q, (3:3)

to restrict the search for positive values. Finally, the two-
dimensional optimization problem can be phrased as

min[J(p, q)] in p [ [�1, 1] and q [ [�1, 1]: (3:4)

The parameters are initialized randomly within the p∈ [3, 4]
and q∈ [0, 1] intervals. The bounding values are estimated
according to §§2.3.1 and 2.3.2. To find the global minimum
of J, the BFGS [70] and the Nelder–Mead [71] methods are
employed. Whereas the BFGS method relies on computing
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Figure 5. Normalized pressure as a function of the vessel diameter in the grey matter of the rat brain (a). The diastolic pressure is used for normalization. The
dotted lines represent theoretical boundaries between the pial arteries (PA), descending arterioles (DA), precapillaries (PrC), capillaries (C), post capillaries (PoC),
ascending venules (AV) and pial veins (PV). The dashed lines represent the hypothetical average pressure values in each compartment. Average pressure in the
arteriole, capillary and the venule compartments in the grey matter of the rat brain and the present virtual human brain (b).
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the derivatives of the cost function, the Nelder–Mead
algorithm is gradient-free.

Both algorithms are run three times so that the optimization
problem is solved six times in total to ensure that the obtained
parameters are independent of the initial guesses. Every run
leads to the same values (with a relatively small tolerance) inde-
pendently from the initialization. The cost function and the
perfusion values during typical executions are shown in
figure6a–c.Themethodsconverge to J≈ 0.2within60simulations
with the minimum, maximum and mean perfusion values
reasonably close to the target values. The history of parameters
throughout the optimization can be seen in figure 7. The final
values of the simulation parameters are summarized in table 1.

3.2. Pressure and perfusion field analysis
Simulations are next performed to model a healthy scenario
and a R-MCA occlusion. In order to evaluate the effects of ani-
sotropic arterial and venule permeabilities, simulations are
conducted for isotropic and anisotropic cases. The isotropic
permeability tensors are set so that their Frobenius norms
are equal to the norms of the anisotropic tensors resulting
from the optimization described in §3.1. The pressure field
corresponding to the healthy anisotropic scenario is displayed
in figure 8. A high pressure drop can be observed in the vicin-
ity of the cortical surface in the arteriole compartment which
decreases rapidly as white matter is reached. The majority of
the pressure drop takes place in the arteriole compartment
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and between the arteriole and the capillary compartments.
The pressure changes within the capillary and the venule
compartments are relatively small. The volume-averaged
pressure values listed in table 2 suggest that the pressure
fields predicted by simulations with isotropic and anisotropic
permeabilities are statistically similar.

The volume-averaged perfusion values are listed in
table 2. Thanks to the optimization, the basic statistics
extracted from the obtained perfusion field are in good agree-
ment with ASL MRI data [32,56]. Since it has been recognized
that obtaining the absolute value of perfusion from ASL MRI
is cumbersome, we also considered positron emission tom-
ography measurements [42]. Perfusion values in the healthy
scenario are relatively low and hence the simulation is repre-
sentative of an elderly male patient. Table 2 suggests that the
proposed optimization method is suitable to determine
model parameters so that the resulting perfusion is physio-
logically realistic compared to measurements in the healthy
human brain. The simulation with isotropic permeability
fields is statistically very similar to the anisotropic case.

The perfusion distribution within the brain in the healthy
anisotropic scenario is visualized in figure 9. Perfusion
distributions within the grey and white matters are approxi-
mately uniform as indicated by the standard deviation values
in table 2. The standard deviation of perfusion within the
brain is somewhat higher than the reference values. The differ-
ence is probably due to the fact that the simulation values

correspond to a spatial integration whereas the standard devi-
ations of experimental values quantify the difference between
patients. It is important to emphasize that the model is steady
state. For this reason, spatial variations typical of the grey
matter due to time-dependent activations are not visible.

Tissue perfusion is analysed following the occlusion of
the M1-segment of the right middle cerebral artery because
it accounts for more than 60% of ischaemic stroke cases
[3,72]. Perfusion change is defined as

perfusion change ¼ 100%
Foccluded � Fhealthy

Fhealty

� �
, (3:5)

so that 0% stands for unchanged perfusion and −100% high-
lights regions with zero perfusion. Recently, computed
tomography perfusion imaging has been used to estimate
ischaemic regions based on a perfusion change threshold of
−70% [73,74]. (It is worth noting that it has been reported
that this approach overestimates the ischaemic region com-
pared to diffusion-weighted magnetic resonance imaging
[75].) The occluded scenario is modelled by setting blood
flow to zero through the pial surface region corresponding
to the right middle cerebral artery (∂pa/∂n = 0 at ΓR-MCA).

 45 50 55 60 65 70 75 17 18 19 20 21 0 2 4 6 8 10 12 14

pa (mmHg) pc (mmHg) pv (mmHg)

(a) (b) (c)

Figure 8. Pressure distribution corresponding to simulation with anisotropic permeabilities along the coronal plane shown in figure 2c: (a) arteriole, (b) capillary,
(c) venule compartment.

Table 1. List of the model parameters.

parameter value unit

ka 1.234 mm3 s kg−1

kc [19] 4.28 × 10−4 mm3 s kg−1

kv 2.468 mm3 s kg−1

bG
ac 1.326 × 10−6 Pa−1 s−1

bG
cv 4.641 × 10−6 Pa−1 s−1

bW
ac 5.22 × 10−7 Pa−1 s−1

bW
cv 1.828 × 10−6 Pa−1 s−1

pv 0 Pa

pdia 104 (75) Pa (mmHg)

Table 2. Comparison of integral variables with literature data in the healthy
scenario. The units of pressure and perfusion values are Pa and (ml blood)
min−1 (100 ml tissue)−1, respectively. Reference pressure is calculated from
experimental data on the rat brain as presented in figure 5. Perfusion is listed
as mean ± s.d. Standard deviations computed for the simulations describe
spatial variation within the virtual brain. The standard deviations corresponding
to the reference values represent variations between individuals.

healthy healthy reference

variable isotropic anisotropic female male

〈pa〉 9035 9242 6335 [59]

〈pc〉 2383 2348 1564 [58]

〈pv〉 483 379 179 [58]

Fbrain 42 ± 18 43 ± 18 62 ± 7 [56] 53 ± 10 [56]

FG 55 ± 7 56 ± 7 68 ± 10 [56] 58 ± 13 [56]

FW 19 ± 2 21 ± 3 25 ± 5 [56] 23 ± 3 [56]
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The modified boundary conditions are governed by equation
(2.6). In order to evaluate the effects of anisotropic per-
meability fields, simulations have been conducted with
isotropic and anisotropic permeabilities.

An underperfused region predicted by the isotropic and
anisotropic models covering a significant part of the right
hemisphere can be seen in figure 10a–c and 10d–f, respectively.
The perfusion lesion in both cases diffuses towards deeper
cerebral regions from ΓR-MCA because blood flow rate is set
to zero through this territory. This feature underlines the
importance of perfusion territory mapping based on VE ASL
MRI and the role of model parameter optimization, which
uniquely determine the origin and the extent of the lesion,
respectively. Blood flows in the left hemisphere and the cer-
ebellum are not influenced because these regions are
perfused by different arteries. Although the human vascula-
ture has compensatory mechanisms and structures to
improve survival chance in the case of stroke, for example col-
lateral arteries, it should be noted that these are not included in
themodel. Therefore, the simulations are capable of predicting
only worse case scenarios for now. Collateral flow is often
associated with leptomeningeal arteries with relatively large
diameters; therefore, this feature could be included in the net-
work model encapsulating the large arteries [15,16], even
though the details of these vessels remain to be explored.

Comparing figure 10a–c to 10d–f leads to the conclusion
that using isotropic permeabilities underestimates perfusion
drop caused by a major cerebral artery occlusion. The results
summarized in table 3 further emphasize the differences
between simulations with isotropic and anisotropic per-
meability fields even though the two cases lead to
statistically similar results in the healthy case (table 2). The
isotropic model predicts that treatment is not required
based on the −70% perfusion change threshold [73,74]
because the isotropic permeability fields redistribute blood
from other areas. By comparison, the same threshold leads
to a lesion with significantly lower perfusion when anisotro-
pic permeabilities are used. The anisotropic result suggests
that the strongly interconnected capillary vessels cannot bal-
ance such a drastic loss of blood inflow due to their high
resistance. Therefore, a relatively larger pressure drop is
measured in the arteriole compartment of the anisotropic
model as shown in tables 2 and 3. Since perfusion is F = βac-
( pa− pc), this lower arterial pressure directly leads to
decreased perfusion.

In figure 10g–i, follow-up non-contrast computed tom-
ography (CT) scan images of a 76-year-old-male patient are
presented one week after MCA stroke treatment. This
patients have been selected for a brief, demonstrative vali-
dation because the noise level of the CT scan is low and
hence a severe hypodensity of the right MCA territory associ-
ated with an acute infarct is clearly visible. Due to the late
treatment resulting in poor recanalization (details in appen-
dix C), it is reasonable to assume that the location and the
extent of the infarct correlate well with the initial perfusion
lesion. For simplicity, we follow the idea of perfusion-based
ischaemic region estimation [73,74] and approximate the
infarcted volume from simulations as the region where per-
fusion change is below −70%. Bearing in mind that this is a
preliminary solution applicable only for virtual patients with-
out or with unsuccessful treatment, the infarcted volume can
be computed from figure 10d–f and figure 10d–f and 10g–i can
be compared.

Non-contrast CT scans similar to figure 10g–i are used regu-
larly to estimate the infarcted volume as an indicator of
treatment outcome [76]. The infarcted volume measured for
this patient is 309ml. Themodelwith anisotropic permeabilities
predicts an infarcted volume of 238ml based on the perfusion
lesion. The simulation result is comparable to 134 ± 93 ml [77]
and 138 ± 106 ml [76] measured in acute ischaemic stroke
patients. The hypodense region in figure 10g–i is in satisfac-
tory qualitative agreement with the low perfusion regions
in figure 10d–f. The results suggest that produced virtual
perfusion maps are qualitatively and quantitatively realistic.
Even though the formation and expansion of an infarction
core are clearly linked to the lack of perfusion, necrosis is
driven by the lack of nutritions in general. Tissue metabolism
relies on oxygen and glucose; therefore, it is essential to capture
the advective–diffusive transport of these substances when it
comes to the accurate prediction of the infarct volume. In
order to provide estimation of ischaemic and infarcted regions,
simulations similar to the ones presented herein will be fed
into oxygen-transport [78] and metabolism [79,80] models
predicting permanent tissue damage.

3.3. Limitations
This subsection aims to summarize some factors which have
been overlooked in the present study. Firstly, fast, reliable
and accurate automatized patient-specific mesh generation

0 10 20 30 40 50 60 70

perfusion (ml min−1 (100 ml)−1)

(a) (b) (c)

Figure 9. Perfusion distribution corresponding to simulation with anisotropic permeabilities along the transverse (a), sagittal (b) and coronal (c) planes shown in
figure 2c. The solid lines show the location of the slices.
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remains amajor challenge. For this reason, the present study is
limited to a single patient-specific geometry. Organ-scale
models have a great potential to ease clinical decision
making and improve treatment but user-friendly and automa-
tized pipelines need to be implemented. One of the major
stumbling blocks of automatization is patient-specific mesh
generation based on medical images.

Secondly, the presented multi-compartment porous
model relies on multiple scale separation. It has been pointed
out that the vessel diameter in the vasculature changes
continuously therefore the applicability of scale separation is
questionable [21]. The present study demonstrated promising
but solely qualitative validation of this approach using medi-
cal images. The next stage of validation is to conduct a large set

of simulations and evaluate the accuracy of predictions in
comparison to medical images.

Thirdly, estimating the parameters of human physiological
models has always been a difficult task because of the lack of
sufficient data. The present optimization relies on numerous
simplifications listed in §2. These assumptions have been
used previously [23] and are sufficient to test models but
they have not been thoroughly justified. Providing amore care-
ful evaluation of the permeabilies and coupling coefficients in
the grey matter based on statistically accurate network models
of the microcirculation [19,51,53] is work in progress.

Finally, the following features have been neglected: cerebral
autoregulation [47], cerebral oedema [11], emboli advection
and blockage of the microcirculation [9,10], spreading of

–100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0

perfusion change (%)

–100 –90 –80 –70 –60 –50 –40 –30 –20 –10 0

perfusion change (%)

(a) (b) (c)

(d) (e) (f)

(g)

(h) (i)

Figure 10. Relative change of perfusion as a result of a total blockage of the right middle cerebral artery (R-MCA) based on simulations with isotropic (a–c) and
anisotropic (d–f ) permeability fields. The grey solid lines show the location of the slices. The white isolines in (d–f ) correspond to −70% perfusion change. (g–i)
Non-contrast CT images of a patient showing an infarct caused by R-MCA occlusion. Transverse (a,d,g), sagittal (b,e,h) and coronal (c,f,i) planes.
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ischaemic tissue damage [79,80] etc. These phenomena are
time-dependent and often rely on nonlinear processes. Model-
ling these features and capturing their interaction could
provide valuable new insights but due to their extreme com-
plexity their description is beyond the scope of the present
study. Nevertheless, it is worth recognizing that all of these fea-
tures have a strong connection to cerebral blood flow.
Therefore, the authors hope that the work presented herein
will become a useful element of a comprehensive in silico
human brain model that incorporates these neglected
mechanisms.

4. Conclusion
This study has investigated the capabilities of a three-compart-
ment porous microcirculation model for perfusion predictions
in healthy humans as well as in ischaemic stroke patients.
The governing equations have been discretized and solved
using an open source finite-element library, FEniCS [65,66].
Inspired by advances in organ-scale human heart [28,60–62]
and lung modelling [63,64], we aimed to lay down the funda-
mentals of a software suite which will facilitate a model
environment for multi-scale and multi-physics simulations
of the human brain.

An anatomically accurate mapping between large arteries
and microvessels has been introduced. We have used VE-ASL
MRI data and a novel clustering algorithm previously devel-
oped in our group to identify superficial cortical perfusion
territories. A robust approach has been proposed to account
for anisotropy in the microcirculation of the human brain
using permeability tensors. To obtain the resulting parame-
ters, optimization has been combined with parameter space
reduction based on the analysis of the governing equations
and experimental data.

For the first time, simulations have been conducted to pre-
dict perfusion in both healthy and occluded scenarios. A
right middle cerebral artery occlusion has been implemented
for which CT images of a patient with a proximal right MCA
occlusion have also been presented. A satisfactory qualitative
agreement has been found between the infarcted region
visible in the CT images and the low perfusion region

predicted by the simulations. Furthermore, the simulated per-
fusion lesion volume is comparable to clinical infarcted
volume measurements. Identifying perfusion territories and
obtaining anisotropic permeability fields appear to be crucial
to provide such realistic predictions. In summary, porous
microcirculation models are promising candidates to quantify
the effects of stroke treatments on tissue perfusion and, with
further extensions, on tissue health.

In the future, the model will be coupled to a one-
dimensional network model of the large arteries [15,16] to
create a complete in silico cerebral circulation model. There-
after, the model will be validated using a large set of clinical
data, such as CT perfusion images, which will also help to
tune model parameters and improve accuracy. In order to pre-
dict infarct formation and propagation during ischaemic
stroke, metabolism-based dynamic models will be developed.
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Appendix A. Transformation matrix calculation
The permeability Ka

ref is given in the reference coordinate
system defined by eref as detailed in §2.3.1. Furthermore,
elocal is a vector field computed according to equations
(2.11) and (2.10). The local permeability tensor is obtained
from Ki =RKi

refRT. Here, R is the transformation tensor
which can be calculated as follows [81]. The unit vector
defining the axis of rotation is

erot ¼ eref � elocal
jeref � elocalj : (A 1)

The rotation angle θ can be calculated as cos −1(eref · elocal) and
the cross product matrix of erot is defined as

[erot]� ¼
0 �erot,3 erot,2

erot,3 0 �erot,1
�erot,2 erot,1 0

2
4

3
5: (A 2)

Here, erot,i is the ith component of erot. Finally, the transform-
ation matrix can be expressed as

R ¼ cos (u)I þ sin (u)[erot]� þ [1� cos (u)](erot � erot), (A 3)

where I denotes the identity matrix.

Table 3. Comparison of integral variables obtained with isotropic and
anisotropic permeabilities in the case of R-MCA occlusion. The units of
pressure and perfusion values are Pa and (ml blood) min−1 (100 ml tissue)−1,
respectively. Standard deviations computed for the simulations describe spatial
variation within the virtual brain.

R-MCA occlusion

variable isotropic anisotropic

〈pa〉 8263 7505

〈pc〉 2180 1907

〈pv〉 442 307

Fbrain 39 ± 18 35 ± 22

FG 50 ± 11 46 ± 21

FW 18 ± 4 17 ± 8
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Appendix B. Weak form of the governing
equations
The governing equation set and the imposed boundary con-
ditions are equations (2.1) and (2.2)–(2.6), respectively. The
weak form can be derived by taking the volume integral of
equations (2.1a)–(2.1b). Thereafter, integration by parts and
the application of the divergence theorem result in

ð
V

(Ka � rpa) � (rva) dV ¼ �
ð
V

bac(pa � pc)va dV; (B 1a)
ð
V

(Kc � rpc) � (rvc) dV ¼
ð
V

bac(pa � pc)vc dV

�
ð
V

bcv(pc � pv)vc dV; (B 1b)
ð
V

(Kv � rpv) � (rvv)dV ¼
ð
V

bcv(pc � pv)vv dV: (B 1c)

In the above expression, vi denotes the test function of
compartment i.

Appendix C. The selected patient’s case
description
The patient arrived at the hospital four hours after stroke
symptom onset. The CT angiography on hospital admission
showed a proximal occlusion of the right M1-segment
(mother branch) of the MCA and poor collaterals (only very
few vessels visible in the occluded vascular territory compared
to the asymptomatic contralateral hemisphere). The patient
was diagnosed with a severe stroke-related neurologic deficit
according to the National Institutes of Health Stroke scale.
After diagnostic workup, the patient arrived at the angiosuite
for thrombectomy approximately five hours after stroke
onset. The treatment resulted in poor recanalization with
modified thrombolysis in cerebral infarction (mTICI) score 1
meaning visible blood flow past the initial occlusion but no
distal filling of the MCA territory. The mTICI score ranges
from 0 (no recanalization) to 3 (complete recanalization) and
successful treatment is usually defined as mTICI≥ 2B [82].
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