Effect of dental caries and treatment strategies on oral and general health in children
van Gemert-Schriks, M.C.M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The effect of different dental treatment strategies on the oral health of children: a longitudinal randomized controlled trial
Abstract

The aim of the present study is to verify which strategy is the most effective in the treatment of dental decay of the deciduous dentition in a moderate to high caries child population under remote field conditions.

Materials and methods:
This study was carried out in the rainforest of Suriname. Three hundred and eighty schoolchildren, mean age 6.1 years (±0.5, range 5.1–7.1 years), were randomly assigned to four different groups: full dental treatment, only extractions, only restorations (ART) and no treatment. Parameters for oral health were defined as caries prevalence, caries incidence, sequel to dental caries, and dental pain.

Results:
Restorative dental care of the primary dentition, by means of ART, resulted in an increase in dmft. Extensive dental treatment, performing only extractions or no treatment did not render significant changes in the caries prevalence of children.

Conclusion:
Full dental treatment should be the strategy of choice whenever oral health care programmes are developed. However, when priorities are required due to situational, practical or economical reasons, extraction of severely decayed teeth is an effective treatment strategy.
Introduction

Despite great improvements in the global oral health status, dental caries still remains one of the most prevalent diseases [3, 26, 32, 33, 35, 47]. Although dental caries is seldom life threatening, its detrimental effects adversely influence people’s quality of life and therefore active caries receives adequate treatment [12]. Several strategies for the management of dental caries in the primary dentition have been proposed.

Extraction is the most basic way of managing dental caries. However, among other possible side effects, extraction of teeth might induce space problems by drifting of other primary or permanent teeth [12, 30]. Another approach is conventional restoration of all cavities [9, 12, 24], although this treatment option is currently under debate and there seems to be an unmistakable tendency to minimize the invasive approach of carious lesions to a preventive non-operative treatment [10, 21, 22, 24, 29, 37, 40]. The use of fluorides is an effective measure in the prevention of dental decay [4, 5, 46]. However, studies have shown that, in the absence of fluorides, dental decay could also be adequately prevented by means of oral hygiene instruction and frequently repeated professional tooth cleanings [1, 2]. Unfortunately, preventive strategies on their own are rarely sufficient to re-establish oral health and function in children with active caries and must often be supplemented with curative oral care [12].

To summarize, there is no consensus on what strategy is preferred to treat the diseased deciduous dentition adequately. Treatment decisions are not only guided by clinical considerations but also by attendance patterns, parent’s wishes and socio-economic background [19, 20, 36-41]. Furthermore, and this accounts especially for disadvantaged countries and communities, treatment decisions often depend on available budgets, adequate material and trained personnel. Although oral diseases are qualified as a major public health problem in these countries, oral health care is often highly underrepresented within a total health care system [14, 44]. The scarcely available funds must be utilized efficiently and priorities for an acceptable level of oral care must be established.

Appropriate oral health care should comprise the prevention of new dental decay, arrestment of existing carious lesions, prevention of pain and discomfort for children, and prevention of early loss of deciduous teeth. The aim of the present study is to verify which of several dental treatment strategies is the most efficient and effective with regard to the above mentioned clinical objectives, in the treatment of dental decay of the deciduous dentition in a moderate or high carious child population under remote field conditions.
Materials and methods

Study population
This study basically followed the CONSORT guidelines of a randomized controlled trial. The study was carried out in the rainforest of Suriname, a former Dutch colony located at the Northern coast of South America. It is divided into urban, rural and the interior areas, in terms of population and economic activity. The interior rain forested area, comprising about 80% of the country, is sparsely populated by tribal communities (12% of the total Surinam population), mainly Creole Bushnegroes (80%) and Amerindians (20%). The rainforest lacks an adequate infrastructure, electricity and running water [31]. Epidemiological data regarding the caries prevalence in this area have been reported in a separate study [42]. The target population was 400 6-year old school children with untreated dental decay and a non-contributory medical history. A power analysis indicated that with 80% power, 5% significance level and at least a medium effect size ($W=0.30$ or $f=0.20$) 100 patients per group were sufficient [7]. Seventeen schools, located in two different regions of the rainforest and selected from the database of the Medical Mission, participated in the study. Ethical clearance was obtained from the Director of the Surinam Ministry of Health. All schools were informed about the study and the objectives. The teachers were obligated to inform the parents. The parents or the teacher, in case the parents were illiterate, gave their approval for participation of a child by signing an informed consent letter. Without this approval, children were excluded from the study.

Oral examination and oral health parameters
Oral examination, using a headlamp, mouth mirror and dental probe, took place in the classroom whilst the child was lying on a table. Parameters for oral health were defined as caries prevalence, caries incidence, sequela to dental caries and the presence of dental pain. The criteria of the World Health Organisation (WHO) were used for the assessment of caries in the deciduous dentition [45]. To ensure that criteria were followed, all children were examined by one of the authors (MGS) who was calibrated with a gold standard (kappa 0.89). This gold standard was developed by consensus between two experienced investigators, using the WHO criteria, for 25 pictures of (pre)molars with and without dentine carious lesions. Caries prevalence was measured using the decayed, missing and filled teeth–index (dmft) [45]. In case a carious lesion had progressed into the dental pulp, or when pulpal exposure could rationally be expected following total excavation, the tooth was marked on the dental chart as "pulp". Abscesses and/or fistulas (AbFi) as a result of this dentogenic infection were indicated, as was the presence of root remnants (RR). Dental pain was assessed by self report.

Randomisation and treatment groups
The children were collected from their classroom by one of the participating health care workers (HCW’s) who was not familiar with the sequence of group allocation of the children. Upon entrance, the children received a number which corresponded with a specific group number on a computerized
random list that was in the possession of the dentist who performed the oral examination of the children (MGS). In this way, all children were randomly assigned to four different treatment groups. Children in group 1 received full dental treatment of their primary dentition: all cavities that did not show signs of dentogenic infection nor give rise to any pain complaints were restored according to the Atraumatic Restorative Treatment (ART) approach [13]. Teeth with deep carious lesions, where pulpal exposure was likely to be expected in case of total excavation, were extracted. Children in group 2 did not receive any restorative care. Only carious primary teeth with pulpal involvement were extracted. Children in group 3 only received ART restorative care of cavities that did not show pulpal involvement while deep caries lesions were left untreated. Children in group 4 received neither restorative treatment nor extraction of any of their carious primary teeth. In all groups, cavities in permanent molars were restored according to the ART approach. When a child reported dental pain and the perpetrating tooth was not involved in the initial treatment plan, they were treated by extraction, irrespective the treatment group.

Dental treatment
Treatment plans were made by the dentist who performed the initial oral examination (MGS). Thereafter the children were allocated sequentially to one of the four other dentists who performed the prescribed dental treatments. These Dutch dentists were extensively trained in ART prior to the study. Six Surinam medical health care workers (HCW’s), selected by the Medical Mission of Surinam, assisted the dentists during the treatment. These HCW’s graduated an ART Master class prior to the initiation of the project. Dental treatments were carried out in an unoccupied classroom.

Evaluation
Six months (T1), one (T2), two (T3) and three years (T4) after their initial visit and dental treatment, the children were evaluated. During these evaluations, the same examiner (MGS) recorded the dental status of the children as described earlier. Dental treatments were performed by other dentists immediately after the evaluations according to the allocated group. Children that were absent at an evaluation could reappear on the next evaluation and were not regarded as lost to follow-up. When a child had missed three or more evaluation visits, he or she was excluded from the study. From the first evaluation, all children received classical oral health instructions and dietary advices. These instructions were given by the HCW’s and repeated on every evaluation visit. Teachers were stimulated to repeat the classical oral health instructions during their daily classes.

Statistical analysis
Statistical analyses were performed using SPSS for Windows, version 12.0.1. All significant differences were detected at a 95% confidence level.
Results

Study population
The study started in February 2001. The original sample consisted of 490 children (mean age 6.1 years, ±0.5, range 5.1–7.1). The flowchart in the Appendix (page 145) represents details about the enrolment and allocation of the children. At the enrolment, 76 children were excluded because they appeared to be free of dental decay. Thirty four children were excluded from the study after the group allocation; two because they showed a contributory medical history and 32 because they had received dental treatment before. The remaining 380 children showed an equal distribution of males (192) and females (188) over the four treatment groups ($X^2=4.21, df=3, p=0.24$) and no differences in mean age amongst the groups were seen ($F_{(3,376)}=0.43, p=0.73$). The demographic characteristics of the sample are presented in table 1.

During the course of the study an increasing drop out was seen, though equally distributed among the different groups at each evaluation as proven by non significant Chi-square tests.

A total of 25 children (6.6%) did not show up at three or more evaluations and they were considered lost-to-follow-up. The main reasons for absence were illness, moving to another district, or work of the parents in the fields.

Table 1 Demographic characteristics and caries prevalence at baseline

<table>
<thead>
<tr>
<th>Group</th>
<th>1 Full treatment</th>
<th>2 Extraction</th>
<th>3 ART</th>
<th>4 No treatment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>All combined (n)</td>
<td>96</td>
<td>91</td>
<td>96</td>
<td>97</td>
<td>380</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n Male (%)</td>
<td>53 (55.2)</td>
<td>50 (54.9)</td>
<td>48 (50)</td>
<td>41 (42.3)</td>
<td>192 (48.6)</td>
</tr>
<tr>
<td>n Female (%)</td>
<td>43 (44.8)</td>
<td>41 (45.1)</td>
<td>48 (50)</td>
<td>56 (57.7)</td>
<td>188 (51.4)</td>
</tr>
<tr>
<td>Mean Age</td>
<td>6.11</td>
<td>6.15</td>
<td>6.07</td>
<td>6.11</td>
<td>6.09</td>
</tr>
<tr>
<td>(SD, range)</td>
<td>(0.51, 5.12-7.06)</td>
<td>(0.48, 5.12-7.05)</td>
<td>(0.45, 5.15-7.09)</td>
<td>(0.48, 5.11-7.05)</td>
<td>(0.48, 5.11-7.09)</td>
</tr>
<tr>
<td>Mean dmft</td>
<td>6.42</td>
<td>6.30</td>
<td>5.48</td>
<td>6.86</td>
<td>6.26</td>
</tr>
<tr>
<td>(SD, range)</td>
<td>(3.76, 1-17)</td>
<td>(3.23, 1-17)</td>
<td>(3.20, 0-16)</td>
<td>(3.37, 1-18)</td>
<td>(3.42, 0-18)</td>
</tr>
</tbody>
</table>

Caries prevalence
The caries prevalence in the deciduous dentition of the children is presented in table 1. Because dmft showed a skewed distribution it was regarded as a non parametric variable. None of the participating children received any form of dental treatment prior to this study, the baseline-dmft consisted of the decayed factor only. A Kruskall Wallis (KW) test showed a statistically significant difference in caries prevalence in the primary dentition between the four treatment groups at baseline ($p_{dmft}=0.024$). Post hoc Mann Whitney U (MWU) tests showed that children in group 3 had a significantly lower dmft than children in group 4 ($p=0.002$).
The effect of dental treatment on the oral health of children

CHAPTER 4

Figure 1 Caries prevalence trend primary dentition
- = full treatment (gr. 1) ▼ = extraction (gr. 2) △ = ART (gr. 3)
● = no treatment (gr. 4)

Through the course of the study, the caries experience in the primary dentition in the four treatment groups showed various trends (Figure 1). Separate Friedman tests indicated that within each group, the dmft-scores differed significantly between all time points, except in group 1 (\(p_{(\text{group2})} = 0.001, p_{(\text{group3})} = 0.013, p_{(\text{group4})} < 0.001 \)). Post hoc Wilcoxon Signed Ranks (WSR) tests were performed to describe the dmft changes between all time points separately for all four groups. Table 2 shows the statistically significant p-values. Attention should be paid to the overall drop in dmft that was observed between T3 and T4. Given the fact that Negro children show an earlier eruption pattern than Caucasians [28], exfoliation is very likely to have accounted for this pattern. To correct for possible bias, the authors choose to take T3 as the last evaluation time point instead of T4. Between T0 and T3, an increase in dmft is observed in group 3 (\(p < 0.001 \)).

Table 2: Statistically significant p-values caries incidence

<table>
<thead>
<tr>
<th>Group</th>
<th>T0-T1</th>
<th>T1-T2</th>
<th>T2-T3</th>
<th>T3-T4</th>
<th>T0-T3</th>
<th>T0-T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>dmft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>n.s.</td>
<td>0.023↓</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>2</td>
<td>n.s.</td>
<td>n.s.</td>
<td><0.01↓</td>
<td>n.s.</td>
<td>0.012↓</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.001↑</td>
<td>n.s.</td>
<td>0.018↑</td>
<td>n.s.</td>
<td><0.001↑</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
<td><0.001↓</td>
<td>n.s.</td>
<td><0.001↓</td>
</tr>
</tbody>
</table>

n.s. = not statistically significant, ↑ = increase in dmft, ↓ = decrease in dmft

Dentogenic infections

The presence of dentogenic infections at T0 and T3 is presented in table 3. KW test showed significant differences between the four treatment groups regarding the mean number of carious teeth with "pulp" at baseline (\(p = 0.044 \)). Post hoc MWU tests showed that children in group 3 presented less "pulp" compared to children in group 1 (\(p = 0.047 \)) and children in group 2 (\(p = 0.005 \)). WSR tests showed that
from T0 to T3, the mean number of carious teeth with suspected pulp involvement decreased significantly in group 1 and 2 (p<0.001). An increase was seen in group 4 (p=0.002).

The presence of root remnants (RR) and abscesses and/or fistulas (AbFi) showed a skewed distribution and therefore, these variables were dichotomised into “not present” or “one or more present”. At T0, 67.1% of the children (255) had one or more carious lesions which had advanced into the dental pulp. From these 255 children, 77 (30.2%) had one or more AbFi and 30 (11.8%) had one or more RR. Pearson Chi-square tests showed no significant differences between the four treatment groups regarding the presence or absence of RR ($X^2 = 6.61, df=3, p=0.086$) or AbFi ($X^2 = 6.68, df=3, p=0.083$) at baseline. McNemar tests showed that during the course of the study (T0-T3), the number of children that had one or more AbFi decreased in groups 1 and 2 ($p_{(group1)}=0.021$, $p_{(group2)}<0.001$) whereas an increase was observed in group 4 ($p =0.031$). The number of children that had one or more RR decreased in groups 1 and 2 ($p_{(group1)}=0.004$, $p_{(group2)}=0.006$) and increased in groups 3 and 4 ($p_{(groups3,4)}<0.001$).

Table 3 Overview of pulpal lesions (pulp) occurring in the study population, subdivided into present abscesses and/or fistulas (AbFi) and root remnants (RR)

<table>
<thead>
<tr>
<th>Group</th>
<th>1 Full treatment</th>
<th>2 Extraction</th>
<th>3 ART</th>
<th>4 No treatment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 N (total population)</td>
<td>96</td>
<td>91</td>
<td>96</td>
<td>97</td>
<td>380</td>
</tr>
<tr>
<td>Mean number of pulp (SD, range)</td>
<td>2.40 (2.56, 0-11)</td>
<td>2.59* (2.49, 0-10)</td>
<td>1.74* (2.23, 0-11)</td>
<td>2.21 (2.51, 0-10)</td>
<td>2.23 (2.46, 0-11)</td>
</tr>
<tr>
<td>N (children with pulp>0)</td>
<td>68</td>
<td>68</td>
<td>57</td>
<td>62</td>
<td>255</td>
</tr>
<tr>
<td>N 1/more Ab/Fi present (% from children with pulp>0)</td>
<td>17 (25)</td>
<td>25 (36.8)</td>
<td>22 (38.6)</td>
<td>13 (21)</td>
<td>77 (30.2)</td>
</tr>
<tr>
<td>N 1/more RR present (% from children with pulp>0)</td>
<td>9 (13.2)</td>
<td>13 (19.1)</td>
<td>4 (7)</td>
<td>4 (6.5)</td>
<td>30 (11.8)</td>
</tr>
<tr>
<td>T3 N (total population)</td>
<td>80</td>
<td>73</td>
<td>82</td>
<td>88</td>
<td>323</td>
</tr>
<tr>
<td>Mean number of pulp (SD, range)</td>
<td>0.18 (0.38, 0-1)</td>
<td>0.29 (0.70, 0-4)</td>
<td>1.84 (2.02, 0-10)</td>
<td>3.14 (2.41, 0-10)</td>
<td>1.43 (2.07, 0-10)</td>
</tr>
<tr>
<td>N (children with pulp>0)</td>
<td>14</td>
<td>14</td>
<td>55</td>
<td>73</td>
<td>156</td>
</tr>
<tr>
<td>N 1/more Ab/Fi present (% from children with pulp>0)</td>
<td>4 (28.6)</td>
<td>1 (7.1)</td>
<td>17 (31.5)</td>
<td>25 (34.2)</td>
<td>48 (30.2)</td>
</tr>
<tr>
<td>N 1/more RR present (% from children with pulp>0)</td>
<td>0</td>
<td>1 (7.1)</td>
<td>23 (42.6)</td>
<td>19 (26)</td>
<td>43 (27)</td>
</tr>
</tbody>
</table>

* statistically significant difference between groups at baseline (p<0.05)

Discussion

This study indicated that when only ART is performed in the primary dentition, an increase in caries prevalence is seen. Full dental treatment, performing only extractions or no treatment, did not bring about significant changes in the caries prevalence of children.
In this study, caries prevalence (dmft) showed a skewed distribution and was regarded as a non-parametric variable. Consequently, only a comparison of variables between different groups at one time point or a comparison of the variables at different time points within one group was possible. For the purpose of this study, the latter was preferred.

During the course of the study, only 25 children (6.6%) were lost to follow-up. This percentage is very low regarding the field conditions and the effect on the power of the study is considered negligible.

Regarding the caries prevalence in the primary dentition at baseline, significant differences between the four treatment groups were observed that were regarded as a consequence of the randomisation. All children vary in their caries risk profile, not only based on different dietary habits or former caries experience, but also due to a genetic variance in susceptibility to develop dental decay [6, 34]. Although a baseline disproportion of caries prevalence between groups is undesirable in a randomized controlled trial [18], in the current study it is considered to have had no or negligible influence on the results whereas the trends in caries prevalence are described and evaluated per group separately and no statistical comparisons between the groups were made, as stated in paragraph 2 of this discussion.

The current study lacks a true double-blind evaluation whereas the same examiner performed the randomisation and the evaluations. Although the treatment group was not visible on the dental chart of the patient, any examiner could have identified the child’s allocated group due to the treatment of the dentition. The examiner was not aware of information upon which dentist had performed the treatment.

As stated in the introduction, appropriate oral health care should comprise the prevention of new dental decay, the prevention of progression of carious lesions, the prevention of pain and discomfort for children, and the prevention of early loss of deciduous teeth. When the treatment strategies from this study are evaluated in the light of these clinical measures one might conclude that both full treatment and performing only extractions fulfil three of the four objectives and can thus be regarded as the most effective treatment strategies with regard to oral health. In both treatment groups, no significant changes in caries prevalence were observed and the number of dentogenic infections decreased significantly which indicates that progression of lesions was controlled adequately. Moreover, pain and discomfort as a consequence of dental decay were prevented.

The fourth objective, the prevention of early loss of deciduous teeth, could not be met in either of these two strategies. In this study, extraction was indicated when a carious lesion had progressed onto the dental pulp. The diagnosis of existing or suspected dentogenic infection is difficult to assess based upon the clinical aspect of the lesion alone. The use of intra oral radiographs is advisable, but unfortunately these were not available in the current study given the field conditions. In advanced general practices, various restorative options for the treatment of deep dental decay are advised [11, 15-18, 27, 28], which could not be performed under remote field circumstances.
Many controversies exist regarding extraction of primary teeth. Premature loss of primary molars can cause space problems such as tipping of the first permanent molars, crowding in the dental arch and impaction of the permanent predecessor [8, 30]. In the current study, no effect of the various dental treatments could be found on the dental arch measures (data not shown), but further investigation upon this subject is required.

In this study, children in the ART group showed an increase in caries prevalence. Restorative treatment leaves the risk for new decay, either secondary caries along the margins of a restoration or new decay on originally sound tooth surfaces. Moreover, caries can develop on adjacent surfaces that were damaged during preparation [23]. In this study, only 4% of the ART restorations in the primary dentition failed due to secondary caries [25] which suggests that the greater part of the increase in caries prevalence is probably due to new dental decay.

The clinical relevance of the results of this study goes beyond the interests of this specific Surinam population. In fact, it should be considered in any other situation where due to situational, economical, psychological or practical circumstances, choices have to be made regarding the most suitable treatment option with the most optimal prognosis under the given conditions.

Conclusion

Full dental treatment might be the treatment strategy of choice whenever uniform oral health care programmes are developed. However, when priorities have to be established due to situational, practical or economical reasons, extraction of severely decayed teeth appears to be an effective treatment strategy.

Acknowledgments

This study was supported by the Netherlands Institute of Dental Sciences (IOT), the Netherlands Foundation for the advancement of Tropical Research (WOTRO), the Foundation “De Drie Lichten” in The Netherlands and 3M-ESPE. The authors would like to thank the director of the Surinam Ministry of Health and the Medical Mission of Surinam for the intensive and enthusiastic cooperation, the provision of all facilities and the inspiring input.
References

