Phosphacycle containing ligands: metal complexes and catalysis

Doro, F.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
P-Chirogenic Benzo-Fused Phenoxaphosphane: Synthesis, Resolution and Study of the Stereochemical Properties of the Corresponding Palladium Complexes

Abstract

The synthesis and resolution of chiral phenoxaphosphane 3, with the stereogenic center at the phosphorus atom, is described. Compound 3 has been synthesized following a well-known procedure for trapping a phosphorus atom within a six-membered ring. The resolution of the racemic mixture of 3 was achieved through separation of its diastereomeric palladacycle derivatives 7a,b and 9a,b. The absolute configuration of enantiopure phosphanes 3a,b was assigned unequivocally by means of X-ray crystal structure determination for complex 9a and by combination of NOE(1H–1H)/COSY(1H,1H) spectroscopy and DFT calculations for complexes 7a,b, which in both cases led to identical results.
Introduction

Chiral phosphacyclic compounds are currently attracting the interest of the homogeneous catalysis community after having been neglected for many decades.[1][2] This attention for these P-heterocycles can be ascribed to the incessant search for novel structures, suitable as chiral ligands in asymmetric catalysis, pursued by researchers involved in the field of ligand development. In this regard, chiral phosphacycle-based ligands, which as a consequence of their ring constraints bear unique steric and electronic properties often remarkably different from their acyclic counterparts, are a new intriguing class of enantio-inductors for asymmetric transformations.[3] The first major breakthrough in the application of phosphacyclic ligands in asymmetric catalysis is represented indubitably by the five-membered DuPhos ligands.[4a,b] An increasing variety of chiral phosphacycles of different ring extensions, ranging from four to seven units, have since then been prepared and applied successfully in asymmetric catalysis.[2][3][5][6]

Benzo-fused phenoxaphosphanes, a class of conjugated phosphorus based heterocycles, were initially introduced by Mann and Millar in the late ’50s and since then have found applications mostly in the development of new polymeric materials.[7][8] The potential of these cyclic analogues of triphenylphosphane in catalysis has remained hitherto unexpressed as is demonstrated by the very few articles regarding the applications of these compounds.[9][10] Despite the scarce interest for this class of phosphanes, our group has extensively worked with phenoxaphosphane based systems and in particular with phenoxaphosphanyl-substituted Xantphos ligands which have been successfully applied in metal catalyzed reactions, such as hydroformylation of internal alkenes, outperforming their diphenylphosphane counterparts.[10]

In this context, the synthesis of chiral benzo-fused phenoxaphosphane compounds represents the next step due to the high degree of enantio-discrimination chiral phosphacycles can induce in asymmetric metal-catalyzed reactions.[1][2][3][4][5][6] In this work we describe the synthesis and optical resolution of the first benzo-fused phenoxaphosphane 3 in which a hydroxyl moiety, amenable to further functionalization, is attached to the rigid phenoxaphospanyl skeleton. Moreover, given the influence exerted by the ligand/metal stereo-electronic interactions in controlling a catalytic process and in view of the employment of chiral phenoxaphosphane based
ligands in asymmetric catalysis we carried out an in-depth investigation of the stereochemical properties of \(\text{3} \) and derivatives thereof.

Results and Discussion

Racemic \(\text{3} \) was prepared starting from m-phenoxyphenol, successively protected as 1-(1-ethoxyethoxy)-3-phenoxybenzene \(\text{1} \). Metallation of \(\text{1} \) with n-butyllithium, in the presence of TMEDA, followed by internal ring closure with dichlorophenylphosphane gives \(\text{2} \), which after deprotection affords the racemic mixture \(\text{3} \), scheme 1.\(^{[11]}\)

\[
\begin{align*}
\text{OEV} & \quad \text{OEV} \\
\text{OH} & \quad \text{PPh} \\
\text{Ph} & \quad \text{Ph} \\
\text{P} & \quad \text{P} \\
\text{O} & \quad \text{O} \\
\text{R} & \quad \text{R} \\
\text{S} & \quad \text{S}
\end{align*}
\]

Scheme 1. Synthesis of chiral phosphane \(\text{3} \). i) 2 eq. TMEDA, 2 eq. BuLi, Et\(_2\)O/hexane, 0 °C to r.t., overnight; ii) 1.1 eq. PhPCl\(_2\), –70 °C, 3 h; iii) PPTS, ethanol/CH\(_2\)Cl\(_2\), reflux. Overall yield: 32%.

Resolution of racemic phosphanes based on the transformation of both enantiomers into a pair of diastereoisomers is common practice.\(^{[12]}\) In our particular case, we envisaged that derivatization of the hydroxyl group in \(\text{3} \) to a chiral menthyl carbonate would be exploitable for the separation of the resultant diastereomeric mixture. Functionalization of phosphane \(\text{3} \) was successfully accomplished to yield the mixture of diastereoisomers \(\text{4a,b} \), but all attempts towards resolution failed.\(^{[13]}\)

\[
\begin{align*}
\text{Ph} & \quad \text{O} \\
\text{O} & \quad \text{O} \\
\text{R} & \quad \text{R} \\
\text{S} & \quad \text{S}
\end{align*}
\]

Alternatively, it was considered to employ chiral metal complexes as resolving agents. Thus ortho-palladated derivatives of \((S)\)-dimethyl(1-phenylethyl)amine \((S)\)-5 and \((S)\)-dimethyl(1-naphthylethyl)amine \((S)\)-6, which have demonstrated their effectiveness towards a wide range of racemic phosphanes, were chosen, figure 1.\(^{[14]}\)[15][16]
Figure 1. Chiral palladacycles.

The diastereomeric mixture of 7a,b was prepared by reaction of the racemate of 3 with palladate complex (S)-5 in CH₂Cl₂ in the presence of triethylamine. The ³¹P NMR spectrum of compounds 7a,b showed a set of two well resolved singlets of equal intensity at –5.76 ppm and –4.97 ppm. Compounds (S,Sa)-7a and (R,Sa)-7b were successfully separated by careful radial chromatography and characterized by IR, mass analysis, ¹H, ³¹P, and ¹³C NMR spectroscopy. Moreover, it was possible to determine the absolute configurations at the phosphorus atom and assign the λ/δ conformations of the organometallic five-membered Pd–C–N ring in the same complexes, see below. Enantiopure phosphanes 3a and 3b were obtained by decomplexation from their corresponding diastereomeric palladium complexes, respectively 7b and 7a, using 1,2-bis(diphenylphosphane)ethane (dppe) in the presence of an excess of ammonium chloride as proton source, scheme 2.[¹⁴]

Scheme 2. Chiral resolution of phosphane 3. i) 0.5 eq. of (S)-5, NEt₃, CH₂Cl₂, r.t., 30 min; ii) dppe, NH₄Cl, CH₂Cl₂, r.t. 1 h.

Isolation of adequate amounts of enantiopure 3a,b, which might be required at a later stage for purposes such as ligand screening for homogeneous catalysis, is an essential
prerequisite of any considered chiral resolution technique. Consequently, the scale up of the aforementioned chromatography separation was investigated, but led only to the recovery of diastereomerically enriched mixtures. Clearly the structures of complexes 7a,b do not differ sufficiently for being optimally separated. In order to enhance the structural differences between 3a,b derivatives we turned our attention towards the more conformationally rigid palladacycle (S)-6 and for this purpose the synthesis of compound 8 was undertaken and successfully accomplished, following the same procedure reported for 7. Disappointingly, the chromatographic separation of the diastereomeric mixture of 8, despite the large array of solvents employed as eluents was fruitless and at best, afforded only diastereomerically enriched mixtures and decomposed material.

![Diagram of compound 8](image)

The Pd–C–N ring of palladacycle (S)-6 is known to adopt a \(\lambda \) conformation, with the Me\(_\alpha\) taking up the axial position, which is normally retained in its derivatives in order to avoid the steric congestion that would be present otherwise between H\(_\gamma\) and an equatorial Me\(_\alpha\) in a conformation of type \(\delta \).[17] Indeed, the \(^1\)H NMR spectrum of the diastereomeric mixture of complex 8 shows, for H\(_\alpha\), two peaks partially overlapping with chemical shifts in the range 4.3–4.6 ppm, in agreement with a conformation type \(\lambda \) for both diastereoisomers. Much to our dismay, the strain caused by both the Pd–C–N ring and the heterobidentate phosphane in 8 is not beneficial, in contrast with previous reports, for the resolution of this diastereomeric mixture and furthermore is at the origin of the instability of these highly strained complexes.[17]
Thus, the resolution route employing directly P,O-phosphane 3 was discarded and another route, employing protected phosphane 4a,b, was considered instead. This resolution method consists as a first step in reacting diastereomeric mixture 4a,b, which as such could not be resolved, to palladacycle (S)-6. The resultant diastereomeric mixture 9a,b was successfully resolved by chromatography into its two components 9a and 9b with high yields, scheme 3. Most importantly, employing this route we could scale up the separation of these diastereoisomers by at least one order of magnitude compared to the separation of diastereoisomers 7a,b. Diastereopure phosphanes 4a,b were obtained by decomplexation from their corresponding diastereomeric palladium complexes using dppe. Hydrolysis of the carbonate group of 4a and 4b affords enantiopure 3a and 3b respectively. The enantiopure ligands were isolated in good yields and found to be configurationally stable after refluxing in water/ethanol overnight. This was confirmed by preparing compound 4 and checking the diastereopurity by ¹H and ³¹P NMR.
Chapter 2

Figure 2. Displacement ellipsoid plot of the structure of 9a in the crystal (50% probability level). Hydrogen atoms and disordered solvent molecules are omitted for clarity. Only the major disordered component of the menthyl moiety is shown (58.3% occupancy).

Table 1. Selected bond lengths (Å) and angles(°) for 9a.

<table>
<thead>
<tr>
<th>Bond/Distance</th>
<th>Length/Å</th>
<th>Bond/Angle/°</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1–Pd1</td>
<td>2.2405(8)</td>
<td>C26–P1–C15</td>
</tr>
<tr>
<td>P1–C15</td>
<td>1.807(3)</td>
<td>P1–C26–C21</td>
</tr>
<tr>
<td>P1–C26</td>
<td>1.808(3)</td>
<td>P1–C15–C20</td>
</tr>
<tr>
<td>P1–C27</td>
<td>1.826(3)</td>
<td>C26–C21–O1</td>
</tr>
<tr>
<td>Pd1–Cl1</td>
<td>2.4019(9)</td>
<td>O1–C20–C15</td>
</tr>
<tr>
<td>N1–Pd1</td>
<td>2.123(3)</td>
<td>P1–C15–C20</td>
</tr>
<tr>
<td>Pd1–C1</td>
<td>2.009(3)</td>
<td>C15–P1–C27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C26–P1–C27</td>
</tr>
</tbody>
</table>
Yellow crystals of 9a, suitable for X-ray diffraction, were obtained by slow diffusion of hexane into a solution of 9a in dichloromethane. Due to the disorder of the menthyl group the geometrical parameters of this group have large standard uncertainties. However, this does not affect the Flack parameter\(^{29}\) for the determination of the absolute configuration, which is established to be \(S\) at the phosphorus atom, figure 2. Selected bond lengths and bond angles of structure 9a are given in table 1.

![Structure 9a](image)

As expected, the tertiary phosphane is coordinated trans to the NMe\(_2\) group of the naphthyl amine.\(^{14}\) The palladium-phosphorus distance of this structure is very similar to those observed in related complexes such as (S)-6-(PPh\(_3\)), containing an unstrained triphenylphosphane. The sum of the three C–P–C angles of 9a (307.5°) is smaller than that of (S)-6-(PPh\(_3\)) (310.9°) hence confirming that the phosphorus atom is slightly pyramidalized owing to its incorporation in a six-membered ring.\(^{18}\)[20] As a consequence, the P-lone pair of 3 has a greater s-character compared to its analogue PPh\(_3\). This is further confirmed by the enhancement of the \(\pi\)-acceptor properties of phenoxaphosphane-based ligands compared to strainless analogues, which was established previously by high pressure FT-IR studies of the stretching frequencies of CO, in phenoxaphosphane based ligand/rhodium carbonyl complexes.\(^{19}\)[20]

Assignment of the absolute stereochemistry in 7: Compound 7 represents one of the few examples of neutral chiral palladacycles containing a hetero-bidentate phosphane and the only known example with a \(P,O\) hetero-bidentate phosphane reported to date. Such a low level of diversity, amid this class of complexes, finds its rationalization in that chiral organopalladium complexes, such as 5–6, have been mainly used as resolving agents for monophosphanes.\(^{14a}\)[21][22] Consequently, the uniform, large body of data regarding their structural and spectroscopic features, available in literature, turned out to be particularly useful for investigating stereochemical properties of chiral phosphanes.\(^{23}\)

The absolute configuration of the phosphorus atom, in compounds 7a,b, has been unambiguously assigned by complementing the study of the NOE(\(^{1}\)H–\(^{1}\)H) contacts and
the NMR chemical shift regularities with DFT calculations performed using SPARTAN. The assignment of all the resonances from 1H NMR spectra of complexes 7a,b was accomplished by analyzing the COSY(1H, 1H) spectra and NOE(1H–1H) interactions. In the case of complex 7a, the NOE(1H–1H) signals of the contacts between Me17 and H19 and between H22 and H3 permitted the full characterization, by COSY(1H, 1H), respectively of the metallated phenyl ring and the adjacent benzo-fused phenyl ring of the phosphacycle. The resonance of H11 is determined by analysis of the COSY(1H, 1H) spectrum, which shows interactions with both upfield H10 and H12 protons. The signals of the protons P$^{\text{ortho}}$, P$^{\text{meta}}$ and P$^{\text{piso}}$ of the uncondensed phenyl group of the phosphacycle were assigned by analysis of the COSY(1H, 1H) spectrum. The spatial disposition of the Me groups was established by NOE (1H–1H) experiments. The 1H NMR spectrum of 7a is shown below along with the enlargement of the aromatic region of the corresponding COSY(1H, 1H) spectrum and the complete list of NOE(1H–1H) contacts. Complex 7b was fully characterized in a similar manner.

Figure 3. Cosy(1H, 1H) spectrum of the aromatic region of 7a.
Table 2. Selected 1D 1H NMR NOE Data for 7a.

<table>
<thead>
<tr>
<th>Bond</th>
<th>NMR Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeN1 (3.11) – H17 (4.56) (m)</td>
<td>H22 (7.2) – H3 (7.8) (s), H21 (6.87) (s)</td>
</tr>
<tr>
<td>Me17 (1.46) – H17 (4.56) (m), H19 (6.95) (m)</td>
<td>H3 (7.8) – H22 (7.2) (s)</td>
</tr>
<tr>
<td>MeN2 (2.69) – MeN1 (3.11) (w), Me17 (1.46) (w)</td>
<td>H20 (7.07) – H19 (6.96) (s), H21 (6.87) (s)</td>
</tr>
<tr>
<td>H19 (6.96) – H20 (7.07) (s), H17 (4.56) (m), Me17 (1.46) (s)</td>
<td>H21 (6.87) – H20 (7.07) (s), H22 (7.2) (s)</td>
</tr>
<tr>
<td>H17 (4.56) – H19 (6.96) (m), MeN1 (3.11) (s), Me17 (1.46) (s)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. 1H NMR of 7a. The symbol Δ refers to H$_2$O.

Figure 5. Newman projections for the λ and δ conformations of the palladacycle ring in 7.
The 1D 1H NMR NOE data for structure 7a clearly show a strong interaction between MeN1 and H17 while they do not show any interaction between MeN2 and H17. The Newman projection of this structure is in agreement with a conformation type δ where H17 is axial and MeN1 and MeN2 correspond to Me(eq) and Me(ax) respectively. On the contrary, for complex 7b it was possible to see a NOE(1H–1H) signal for the interaction between H17 with both MeN1,N2, albeit weak, in agreement with a conformation type λ with Me17 axial, figure 5. Irradiation of Me17 for both complexes 7a,b did not show any appreciable NOE(1H–1H) interaction with MeN1,N2. Furthermore, the 1H NMR spectra of both complexes 7a and 7b show for H17 a chemical shift difference of ca 1 ppm, pointing out a totally different magnetic field experienced by this proton in the δ–λ conformations of the Pd–C–N ring.$^{[17]}$

![Structures of the four most stable conformers calculated at the HF-DFT SDF level of theory.](image)

Calculations at the HF-DFT SDF level of theory, using RB3LYP as method and LACVP* as basis set, have been carried out for the four most stable conformers 7,
namely the structures containing the combination of the two different absolute configurations at the phosphorus atom R/S with the two possible conformations δ–λ of the palladacycles, figure 6. The distance between H³–H²² in complex (S)-δ-7 (I) is 2.08 Å while in (S)-λ-7 (II) it is 2.58 Å. Clearly, the second structure experiences a higher steric relief compared to the former, which results in an energy difference of 2.92 Kcal/mol. This value indicates the presence of only one of the two possible structures I–II in solution thus suggesting that 7b corresponds to (S)-δ-7 (II). The determination of the absolute configuration at the phosphorus atom was applied likewise for (R)-7- (III–IV) complexes. In this case, the distance between H³–H²² in complex (R)-δ-5 (III) is 2.01 Å while in (R)-δ-7 (IV) it is 2.46 Å hence favouring the formation of the latter by 2.17 Kcal/mol. These results are consistent with 7a corresponding to structure (R)-δ-7 (IV). The modelled structures reported in figure 6 show that steric relief is indeed achieved when the Pd–C–N ring flips in response to the tension caused by the rigid P-O ligand. Enantiopure phosphanes 3a,b have been freed from complexes 7a,b and further reacted with (–)-menthyl chloroformate to give rise to compounds 4a,b of which the ¹H, ³¹P NMR spectra corroborated the correct assignment of the absolute configuration at the phosphorus atom.

In summary, we have synthesized the first chiral benzo-fused phenoxaphosphane 3 and determined the absolute configuration at the phosphorus atom in its metal complexes. DFT calculations underpin structural features of the molecules determined spectroscopically and give more insight into structural preferences in solution.

Experimental part

All chemical manipulations were carried out under argon atmosphere using standard Schlenk techniques. Solvents were dried by standard procedures and freshly distilled under nitrogen atmosphere. NMR spectra were recorded at 295 K on a Varian Gemini 300 spectrometer operating at 300.07 MHz (¹H), 121.47 MHz (³¹P) and 75.46 MHz (¹³C) unless otherwise stated; NOESY, COSY and NOE were recorded at 499.79 MHz (¹H) on a Varian Gemini 500 spectrometer using CDCl₃ as solvent. Chemical shifts are quoted with reference to Me₄Si (¹H) and 85% H₃PO₄ (³¹P). The optical rotations were measured using a Perkin Elmer 241-MC polarimeter. Infrared spectra were recorded as KBr pallets on a Nicolet Nexus 670-FT-IR spectrometer and processed with the
OMNIC software. High resolution mass spectra were measured on a JEOL IMS-SX/SX102A. Elemental analyses were performed at the H. Kolbe Mikroanalytisches Laboratorium in Mülheim (Germany). Chiral compounds 7a,b were obtained in pure form by preparative thin layer radial chromatography (Chromatotron®, Harrison Research, model 7924T) employing silica gel 60 PF254 containing gypsum. The resolving agents di-μ-chlorobis[(S)-dimethyl(1-phenylethyl)aminato-C2,N]dipalladium(II) (S)-5 and di-μ-chlorobis[(S)-dimethyl(1-naphtylethyl)aminato-C2,N]dipalladium(II) (S)-6 were prepared according to literature procedure.[14][15]

All the calculations were performed with the Spartan ‘04 1.0.0 (Sep 17, 2003) suite of program.

1-(1-ethoxyethoxy)-3-phenoxybenzene (1)[25]: To a solution of 3-phenoxyphenol (15.4 g, 83 mmol) in dichloromethane (250 mL) was added (pyridinium p-toluensulfonate) PPTS (2.08 g, 8.3 mmol) at room temperature. The resultant mixture was cooled to 0 °C and subsequently ethyl vinyl ether (132.8 mmol) was added dropwise. The mixture was allowed to stir overnight at room temperature. The resultant solution was washed with brine (20 mL) and the phases were subsequently separated. The organic layer was washed twice with 1M NaOHaq solution (20 mL) and dried over MgSO4. The solvent and all volatiles were removed under vacuum. The crude of reaction is a yellow oil which after filtration over silica (eluent: CH2Cl2) yielded a colorless oil (20.12 g, 78 mmol, 94%). 1H NMR (CDCl3): δ = 1.19 (t, 3J = 7.1 Hz, 3 H), 1.48 (d, 3J = 5.3 Hz, 3 H), 3.50 (m, 1 H), 3.70 (m, 1 H), 5.35 (q, 3J = 5.3 Hz, 1 H), 6.64 (dd, 3J = 8.10 Hz, 1 H), 6.68 (t, 3J = 2.3 Hz, 1 H), 6.76 (dd, 3J = 8.2 Hz, 1 H), 7.03 (d, 3J = 7.6 Hz, 2 H), 7.10 (t, 3J = 7.3 Hz, 1 H), 7.20 (t, 3J = 8.2 Hz, 1 H), 7.34 (t, 3J = 7.6 Hz, 2 H) ppm. EI-MS (70 eV): 258, 213, 186, 73, 45.

(+/-)-1-(1-Ethoxyethoxy)-10-phenyl-10H-phenoxaphosphane (2): To a solution of 3-phenoxyphenol-EVE (4.4 g, 17.0 mmol) and TMEDA (35.90 mmol, 3.5 mL) in 300 mL of diethyl ether/hexane (1/2) was added dropwise a solution of n-butyllitium in hexane (2.5 M, 36 mmol, 14.4 mL) at 0 °C and the reaction mixture was allowed to stir overnight at room temperature. The resultant orange solution was cooled to –60 °C and subsequently a solution of Cl2PPh, (19.30 mmol, 2.7 mL) in 5 mL of hexane, was slowly added. The reaction mixture was slowly warmed to room temperature and allowed to stir 5 h. The color of the solution changed from orange to colorless with the
formation of a precipitate (LiCl). The solution was cannulated into another Schlenk tube and the solvent was removed under vacuum. The crude of reaction was dissolved in CH₂Cl₂ and washed with a deoxygenated 0.1 M HCl solution. The crude product is a yellow oil which after filtration over silica (eluent: CH₂Cl₂) and removal of the solvent under vacuum is obtained as colorless oil (2.6 g, 7.14 mmol, 42%). ³¹P NMR (CDCl₃): δ = –63.8, –64.8 ppm. ¹H NMR (CDCl₃): δ = 0.90 (t, J = 7.2 Hz, 3 H), 1.12 (t, J = 7.2 Hz, 3 H), 1.27 (d, J = 5.1 Hz, 3 H), 1.32 (d, J = 5.1 Hz, 3 H), 2.95 (m, 1 H), 3.20 δ (m, 1 H), 3.50 (m, 1 H), 3.72 (m, 1 H), 5.35 (m, 2 H), 6.60–7.50 (m, J = 7.3 Hz, 12 H) ppm. EI-MS (70 eV): 364, 335, 320, 282, 215.

(+/-)-10-Phenyl-10H-phenoxaphosphanyl-1-ol (3): 1-(1-Ethoxyethoxy)-10-phenyl-10H-phenoxaphosphane (2.6 g, 7.14 mmol) was dissolved in a 3/1 mixture of degassed ethanol and dichloromethane (80 mL). PPTS (0.07 mmol) was added and the solution was heated to 65 °C and stirred overnight. The mixture was allowed to cool down and subsequently the solvent and all volatiles were evaporated under vacuum to leave a white viscous oil. The product is filtered over silica (eluent: CH₂Cl₂) after that the solvent was removed under vacuum to yield a white solid (1.7 g, 5.8 mmol, 81%). ³¹P NMR (CDCl₃): δ = –72.8 ppm. ¹³C NMR (75.4 MHz; CDCl₃): δ = 105.83, 110.18, 110.56, 116.93, 118.22, 124.03–124.19, 128.80, 128.88–129.04, 131.63–131.76, 131.83–132.02, 135.21, 135.71, 139.09–139.33, 155.59, 156.43, 158.31, 158.53 ppm. ¹H NMR (CDCl₃): δ = 6.10 (s, 1 H, OH), 6.70 (m, 1 H), 6.82 (d, J = 8.2 Hz, 1 H), 7.10–7.35 (m, 8 H), 7.40 (m, 1 H), 7.60 (m, 1 H) ppm. (HRMS, FAB+): m/z: calcd for C₁₈H₁₃O₂P: 292.0653; found: 293.0730 [M + H]⁺. C₁₈H₁₃O₂P (292.07): calcd. C 73.97, H 4.48; found: C 73.82, H 4.41.

(1R)-(−)-Menthy 10-Phenyl-10H-phenoxaphosphanyl-1-yl carbonate (4a,b): To a solution of 10-phenyl-10H-phenoxaphosphanyl-1-ol (100 mg, 0.342 mmol) in dichloromethane (5 mL) was added NEt₃ (0.1 mL) and the resultant mixture was allowed to stir for 30 min at room temperature. Subsequently (−) menthyl chloroformate (1 eq) was added and the solution was stirred for an additional 2 h at r.t. The solvent and all the volatiles were removed under vacuum and the product obtained was dissolved again in toluene (1 mL) and filtered over a short silica column (eluent: toluene). The evaporation of the volatiles yields the product as a white oil (138 mg,
0.29 mmol, 86%). 31P NMR (CDCl$_3$): $\delta = -66.36, -65.54$ ppm. (HRMS, FAB+): m/z: calcd for C$_{29}$H$_{31}$O$_4$P: 474.1960; found: 475.2038 [M + H]$^+$.

Compound 7: To a solution of 3 (25 mg, 0.086 mmol) in dichloromethane (5 mL) was added triethylamine (1.1 eq) and the solution was stirred for 30 min. At this point (S)-5 (25 mg, 0.043 mmol) was added and the solution was stirred for an additional hour. The solution was filtered over a short pad of silica (eluent: CH$_2$Cl$_2$), next the solvent was evaporated off to give rise to the diastereomeric mixture of compounds 7a,b as a yellow solid (36 mg, 0.066 mmol, 72%). Subsequently the diastereoisomers were separated by radial chromatography (eluent: CH$_2$Cl$_2$/hexane = 20/1). 31P NMR (CDCl$_3$): $\delta = -5.8, -5.0$ ppm. (HRMS, FAB+): m/z: calcd for C$_{28}$H$_{26}$NO$_2$PPd: 545.0736; found: 545.0747. C$_{28}$H$_{26}$NO$_2$PPd (545.074): calcd. C 61.60, H 4.80; found: C 61.55, H 4.76.

Compound (R)-P-7a: First diastereoisomer eluted (21 mg, 84%). 31P NMR (121.5 MHz; CDCl$_3$): $\delta = -5.8$ ppm. 13C NMR (125.7 MHz; CDCl$_3$): $\delta = 10.59, 42.07$–$42.10, 47.63–47.65, 72.14–72.16, 101.95–101.98, 106.13, 106.57, 112.98, 113.42, 113.93–114.00, 119.50, 124.27–124.49, 126.32–126.36, 128.97–129.06, 130.89–130.91, 132.44–132.56, 132.78, 133.42–133.53, 134.21–134.57, 140.32–140.41, 148.65–148.68, 152.94–152.96, 157.88–157.89, 158.54–158.56, 175.37–175.47 ppm. 1H NMR (499.8 MHz; CDCl$_3$): $\delta = 1.46$ (d, 3J = 6.6 Hz, 3 H, Me17), 2.70 (d, 3J = 1.8 Hz, 3 H, MeN2), 3.10 (d, 3J = 1.8 Hz, 3 H, MeN1), 4.50 (q, 1 H, H17), 6.30 (dd, 1 H, H10), 6.55 (dd, 1 H, H12), 6.88 (t, 3J = 7.5 Hz, 1 H, H21), 6.96 (d, 3J = 7.8 Hz, 1 H, H19), 7.08 (t, 3J = 7.5 Hz, 1 H, H20), 7.10–7.20 (m, 2 H, H11, H3), 7.20–7.25 (m, 1 H, H22), 7.30 (m, 2 H, Phm), 7.34 (m, 1 H, Phi), 7.40 (m, 1 H, H6), 7.53 (t, 3J = 8.7 Hz, 1 H, H7), 7.66 (m, 2 H, Pho), 7.80 (m, 1 H, H3) ppm.

![Diagram](image-url)
[α]_{25}^{D} = +46.6 (c = 0.42, CHCl₃). ν_{max} (KBr): cm⁻¹ 1588 (s), 1541 (m), 1447(s), 1429 (m), 1312(m), 1218(m). (HRMS, FAB+): m/z: calcd for C_{28}H_{26}NO_{2}PPd: 545.0736; found: 545.0747.

Compound (S)-P-7b: Second diastereoisomer eluted (7 mg, 29%). 31P NMR (121.5 MHz; CDCl₃): δ = 5.0 ppm. 13C NMR (126.7 MHz; CDCl₃): δ = 25.22, 46.19–46.21, 51.41–51.44, 75.40–75.43, 101.97–102.00, 106.22, 106.65, 113.17, 113.61, 113.97–114.03, 119.51–119.54, 123.32, 124.47, 124.57, 125.81–125.85, 128.95–129.04, 130.88–130.90, 132.41–132.52, 132.74–132.75, 133.41–133.53, 134.15–134.51, 140.51–140.85, 145.02–145.06, 156.53–156.55, 157.93–157.95, 158.55–158.57, 175.55–175.65 ppm. 1H NMR (499.8 MHz; CDCl₃): δ = 1.70 (d, $^3J = 6.3$ Hz, 3 H, Me^{17}), 2.87 (d, $^3J = 3.3$ Hz, 3 H, Me^{N}), 2.92 (d, $^3J = 1.8$ Hz, 3 H, Me^{N}), 3.70 (m, 1 H, H^{17}), 6.30 (dd, 1 H, H^{10}), 6.53 (dd, 1 H, H^{15}), 6.83 (t, $^3J = 7.2$ Hz, 1 H, H^{21}), 7.02 (t, $^3J = 7.5$ Hz, 1 H, H^{20}), 7.10 (d, $^3J = 8.4$ Hz, 1 H, H^{19}), 7.10–7.30 (m, 3 H), 7.3 (m, 2 H, Ph^{m}), 7.35 (m, 1 H, Ph^{i}), 7.40 (m, 1 H, H^{6}), 7.52 (t, $^3J = 7.5$ Hz, 1 H, H^{5}), 7.66 (m, 2 H, Ph^{s}), 7.80 (m, 1 H, H^{3}) ppm.

[α]_{25}^{D} = –33.9 (c = 0.24, CHCl₃). ν_{max} (KBr): cm⁻¹ 1588 (s), 1535 (m), 1452(s), 1429 (m), 1312(m), 1218(m). (HRMS, FAB+): m/z: calcd for C_{28}H_{26}NO_{2}PPd: 545.0736; found: 545.0747.

Compound 8: Experimental procedure as reported for 7. (Yield: 63%). 31P NMR (121.5 MHz; CDCl₃): δ = –5.4 ppm. 1H NMR (300.1 MHz; CDCl₃): δ = 1.80 (m, 6 H), 2.8–3.1 (m, 12 H), 4.30–4.60 (m, 2 H), 6.20–6.50 (m, 2 H), 6.60–6.80 (m, 2 H), 7.00–8.20 (m, 32 H) ppm. (HRMS, FAB+): m/z: calcd for C_{32}H_{28}NO_{2}PPd: 595.0892; found: 595.0927.
Compounds 9a,b: Compound 4a,b (498 mg, 0.975 mmol) and (S)-6 (333 mg, 0.427 mmol) were placed in a Shlenk tube and subsequently solubilized in dichloromethane (20 mL). The resultant solution was allowed to stir for 30 min. Next, the solvent was evaporated off to give rise to the diastereomeric mixture of compounds 9a,b as a yellow solid. Subsequently the diastereoisomers were separated by chromatography (eluent: CH2Cl2). 31P NMR: δ = –8.2, –12.7 ppm.

Compounds (S)-P-9a: First diastereoisomer eluted (300 mg, 86%). 31P NMR (121.5 MHz; CDCl3): δ = –12.7 ppm. 13C NMR (75.4 MHz; CDCl3): δ = 15.89, 21.17, 22.27, 22.90–22.95, 25.71, 31.58, 31.83, 34.14, 41.18, 47.44, 48.50, 51.5, 73.67, 79.83, 107.08, 107.76, 110.20, 110.85, 114.70, 117.40–117.45, 117.75, 123.54, 124.01, 124.64–124.73, 124.73–125.00, 125.65, 128.11, 128.25, 128.83, 130.50, 131.23, 132.34, 133.12, 133.40, 133.60, 134.11, 134.59, 134.75, 137.00, 137.23, 148.78–148.81, 151.53, 151.90, 151.95, 153.53, 154.36 ppm. 1H NMR (300.1 MHz; CDCl3): δ = 0.65 (d, J = 6.6 Hz, 3 H), 0.80–2.00 (m, 15 H), 2.16 (d, J = 6.6 Hz, 3 H), 2.59 (s, 3 H), 3.03 (d, J = 3.6 Hz, 3 H), 4.20–4.50 (m, 2 H), 6.60 (m, 2 H), 6.90 (d, J = 8.7 Hz, 1 H), 7.10 (d, J = 8.4 Hz, 1 H), 7.20–7.80 (m, 13 H), 8.60 (m, 1 H) ppm. [α]25D = +107 (c = 0.42, CHCl3). νmax (KBr): cm –1 1753 (s) (C=O), 1588 (m), 1453 (s), 1218 (s). (HRMS, FAB+): m/z: calcd for C43H47ClNO4PPd: 813.1966; found: 813.1967. C43H47ClNO4PPd (813.20): calcd. C 63.39, H 5.81; found: C 63.42, H 5.93.

Compounds (R)-P-9b: Second diastereoisomer eluted (250 mg, 72%). 31P NMR (121.5 MHz; CDCl3): δ = –8.2 ppm. 13C NMR (75.4 MHz; CDCl3): δ = 16.32, 20.72, 22.24, 23.11, 24.29, 25.83, 31.68, 34.32, 40.96, 46.98, 48.88, 51.79–51.81, 73.45–73.48, 80.38, 109.88, 109.24, 110.93, 111.34, 115.18–115.21, 116.73–116.77, 118.23–118.26, 123.60, 124.24, 124.45–124.50, 124.68–124.79, 125.81, 128.30–128.39, 128.85, 129.12, 130.49–130.50, 131.41, 131.91, 132.78–133.13, 133.35, 136.41, 136.57–136.59, 136.69, 149.82, 150.00–150.02, 152.27–152.34, 153.79–153.81, 154.80 ppm. 1H NMR (300.1 MHz; CDCl3): δ = 0.46 (d, J = 6.6 Hz, 3 H), 0.80–2.00 (m, 15 H), 2.14 (d, J = 6.6 Hz, 3 H), 2.74 (s, 3 H), 2.95 (d, J = 3.6 Hz, 3 H), 4.20 (m, 1 H), 4.60 (m, 1 H), 6.70 (m, 2 H), 6.90 (d, 1 H), 7.00–7.80 (m, 14 H), 8.20 (m, 1 H) ppm. [α]25D = –85 (c = 0.78, CHCl3). νmax (KBr): cm –1 1753 (s) (C=O), 1588 (m), 1453 (m), 1429 (s), 1218 (s). (HRMS, FAB+): m/z: calcd for C43H47ClNO4PPd: 813.1966; found: 813.1967. C43H47ClNO4PPd (813.20): calcd. C 63.39, H 5.81; found: C 63.78, H 6.01.
(--)-(1R)-Menthyl 10-Phenyl-10H-(R)-P-phenoxaphosphan-1-yl carbonate (4a): Compound 9a (30.0 mg) and 1,2-bis(diphenylphosphane)ethane (14.7 mg) were placed in a Shlenk tube and dissolved in dichloromethane (3 mL). The resultant light yellow solution was stirred for 30 min at room temperature and subsequently the volume of solvent was reduced to about half mL. The solution was filtered over a short pad of silica (eluent: CH₂Cl₂) and the organic solvent removed under vacuum to give a colorless oil (17 mg, yield: 97%). ³¹P NMR (121.4 MHz; CDCl₃): δ = –65.60 ppm. ¹³C NMR (75.4 MHz; CDCl₃): δ = 16.70, 21.02, 22.23, 23.54, 26.33, 31.60, 34.27, 40.69, 47.23, 79.95, 115.89, 117.01, 117.27, 117.95, 124.05–124.19, 128.69–129.09, 131.05, 131.29, 132.31, 132.59, 135.09, 135.60, 139.38, 139.67, 153.03, 153.24–153.45, 154.70, 155.61 ppm. ¹H NMR (300 MHz; CDCl₃): δ = 0.80–1.20 (m, 12 H), 1.51 (m, 2 H), 1.70 (m, 2 H), 1.96 (m, 1 H), 2.22 (m, 1 H), 4.60 (m, 1 H), 6.90–7.00 (m, 1 H), 7.00–7.50 (m, 11 H) ppm. [α]₂⁵D = –110 (c = 0.21, CHCl₃). ν max (KBr): cm⁻¹ 2953 (s), 2879 (m), 1759 (s) (C=O), 1453 (m), 1429 (s), 1259 (s), 1212 (s).

(+)-(1R)-Menthyl 10-Phenyl-10H-(S)-P phenoxaphosphan-1-yl carbonate (4b): The same procedure described for 4a was followed to obtain (+)-(1R)-Menthyl 10-phenyl-10H-(S)-P phenoxaphosphan-1-yl carbonate (4b). ³¹P NMR (121.4 MHz; CDCl₃): δ = –66.4 ppm. ¹³C NMR (75.4 MHz; CDCl₃): δ = 16.40, 21.02, 22.25, 23.42, 26.23, 31.65, 34.27, 40.76, 47.13, 79.97, 115.89, 116.83, 117.36, 117.98, 124.22–124.06, 128.66–128.90, 131.13, 131.41, 131.96, 132.22, 135.22, 135.73, 139.27, 139.56, 153.00, 153.47–153.70, 155.06, 155.91 ppm. ¹H NMR (300 MHz; CDCl₃): δ = 0.60–1.80 (m, 16 H), 1.98 (m, 1 H), 2.20 (m, 1 H), 4.60 (m, 1 H), 7.02 (m, 1 H), 7.06–7.45 (m, 10 H), 7.53 (t, 1 H) ppm. [α]₂⁵D = +44 (c = 0.39, CHCl₃). ν max (KBr): cm⁻¹ 2953 (s), 2879 (m), 1759(s) (C=O), 1588 (m), 1453 (m), 1429 (s), 1250 (s), 1212 (s).

(--)-(R)-10-Phenyl-10H-phenoxaphosphanyl-1-ol (3a): Method A. 4a (151.6 mg, 0.32 mmol) was dissolved in a very little volume of THF (1 mL). To this solution was added a degassed KOH ethanolic solution (600 mg KOH, 20 mL H₂O, 20 mL EtOH) and subsequently the reaction mixture was set to the temperature of 85 °C and vigorously stirred for 2 h. The reaction mixture was cooled down and ethanol removed under vacuum. The aqueous solution was extracted several times with dichloromethane, next the organic solution was dried over magnesium sulfate and the solvent evaporated off. The residue was filtered over a short pad of silica using as
eluent CH₂Cl₂ and subsequently the solvent was evaporated off to yield a white solid (73 mg, 0.25 mmol, 78%); Method B. 7b (30.2 mg, 0.055 mmol), 1,2-bis(diphenylphosphane)ethane (22 mg, 0.055 mmol) and ammonium chloride (100 mg) were dissolved in dichloromethane (3 mL). The heterogeneous solution was stirred for 30 min at r.t. and subsequently the solution was filtered over a short pad of silica. The organic solvent was removed under vacuum to give a white solid (4 mg, 25%). ¹H NMR, ³¹P NMR, ¹³C NMR and HRMS, FAB+ are in agreement with the data of the racemic mixture (+/−)-3, [α]²⁵_D = −59 (c = 0.26, CHCl₃). 98.5% e.e; chiral HPLC, Chiracel AD-H column (hexane/2-propanol= 90:10), 0.5 mL/min, wavelength: 230 nm, t₃a = 10.12 min, t₃b = 16.65 min.

(+)-(S)-10-Phenyl-10H-phenoxaphosphanyl-1-ol (3b): (S)-10-Phenyl-10H-phenoxaphosphinin-1-ol (3b) was obtained from 4b (method A) and from 7a (method B) using the procedures reported above for 3a. [α]²⁵_D = +61 (c = 0.5, CHCl₃).

X-ray crystal structure determination of 9a

C₄₃H₄₇ClNO₄PPd + disordered solvent, Fw = 814.64[30], yellow plate, 0.36 x 0.33 x 0.03 mm³, monoclinic, C2 (no. 5), a = 22.4031(4), b = 9.6277(3), c = 19.5494(3) Å, β = 97.813(1)°, V = 4177.49(15) Å³, Z = 4, Dₓ = 1.295 g/cm³[30], μ = 0.59 mm⁻¹[30]. 38633 Reflections were measured on a Nonius Kappa CCD diffractometer with rotating anode (graphite monochromator, λ = 0.71073 Å) at a temperature of 150 K up to a resolution of (sinθ/λ)max = 0.61 Å⁻¹. The reflections were corrected for absorption on the basis of multiple measured reflections (0.66–0.98 correction range). 7778 Reflections were unique (Rint = 0.0321). The structure was solved with the program DIRDIF-99[26] using automated Patterson Methods. The crystal structure contains voids (398 Å³/unit cell) filled with disordered solvent molecules. Their contribution to the structure factors was secured by back-Fourier transformation using the routine SQUEEZE of the program PLATON[27], resulting in 66 electrons/unit cell. The structure was refined with SHELXL-97[28] against F² of all reflections. Non hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were introduced in calculated positions and refined with a riding model. The menthyl moiety was refined with a disorder model. 533 Parameters were refined with 119 restraints. R1/wR2 [I > 2σ(I)]: 0.0301/0.0661. R1/wR2 [all refl.]: 0.0360/0.0682. S =
1.085. Flack x parameter: –0.07(3)\(^{29}\). Residual electron density between –0.37 and 0.53 e/Å\(^3\). Geometry calculations and checking for higher symmetry was performed with the PLATON program\(^{27}\).

CCDC 657165 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

[16] For recent articles on resolution of racemic phosphane employing chiral palladacycles see: a)
Chapter 2

[30] Derived parameters do not contain the contribution of the disordered solvent.