Search for single production of a vector-like quark via a heavy gluon in the 4b final state with the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV

ATLAS Collaboration

DOI
10.1016/j.physletb.2016.04.061

Publication date
2016

Document Version
Final published version

Published in
Physics Letters B

License
CC BY

Citation for published version (APA):
Search for single production of a vector-like quark via a heavy gluon in the $4b$ final state with the ATLAS detector in pp collisions at $\sqrt{s} = 8$ TeV

ATLAS Collaboration

A R T I C L E I N F O

Article history:
Received 22 February 2016
Received in revised form 14 April 2016
Accepted 29 April 2016
Available online 3 May 2016
Editor: W.-D. Schlatter

A B S T R A C T

A search is performed for the process $pp \rightarrow G^* \rightarrow B_Hb/\bar{B}_Hb \rightarrow Hbb \rightarrow bbb\bar{b}$, predicted in composite Higgs scenarios, where G^* is a heavy colour octet vector resonance and B_H a vector-like quark of charge $-1/3$. The data were obtained from pp collisions at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.5 fb$^{-1}$, recorded by the ATLAS detector at the LHC. The largest background, multijet production, is estimated using a data-driven method. No significant excess of events with respect to Standard Model predictions is observed, and upper limits on the production cross section times branching ratio are set. Comparisons to the predictions from a specific benchmark model are made, resulting in lower mass limits in the two-dimensional mass plane of m_{G^*} vs. m_{B_H}.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Composite Higgs [1–4] models interpret the Higgs boson discovered at the Large Hadron Collider (LHC) [5] as a pseudo-Goldstone boson resulting from spontaneous symmetry breaking in a new strongly coupled sector, thus addressing the naturalness problem, the extreme fine tuning required in the Standard Model (SM) to cancel quadratically divergent radiative corrections to the Higgs boson mass. A generic prediction of these models is the existence of massive vector-like quarks (VLQ). These VLQs are expected to mix mainly with the third family of quarks of the SM [6–8], leading to partial compositeness. Colour octet resonances (massive gluons) also occur naturally in these models [6,7,9,10].

Searches for vector-like quarks in the ATLAS and CMS experiments, in both the pair and single production processes [11–22], constrain their mass to be above 700–900 GeV. This analysis is a search for single production of a vector-like quark B_H of charge $-1/3$ via the s-channel exchange of a heavy colour octet vector resonance G^*, using data recorded by the ATLAS detector at the LHC. The search is performed for the process of Hbb production through $pp \rightarrow G^* \rightarrow B_Hb/\bar{B}_Hb \rightarrow Hbb \rightarrow bbb\bar{b}$ (see Fig. 1), based on Ref. [23] and using the benchmark model of Ref. [9]. This simplified minimal composite Higgs model has a composite sector with a global SU(3)$_c \times$ SU(2)$_L \times$ SU(2)$_R \times$ U(1)$_Y$ symmetry and an elementary sector which contains the SM particles but not the Higgs boson. Physical states of the composite sector include the heavy gluon G^*, a composite Higgs boson and heavy vector-like quarks of charge 5/3, 2/3, $-1/3$, and $-4/3$. Among these heavy quarks, there is one singlet of charge 2/3 which mixes with the right-handed top quark of the SM with an angle t_{h_3}, and similarly one singlet of charge $-1/3$ which mixes with the right-handed bottom quark of the SM with an angle $t_{h_{3b}}$. After mixing between the gluons from the elementary and composite sectors by an angle t_{h_3}, the physical state of the heavy gluon has a coupling $g_{L}\sin\theta_{h_3}$ to composite states, where $g_L = g_r / \sin\theta_{h_3}$ and g_r is the coupling of the SM gluon. The other parameters of the model are the composite fermion masses, assumed to be universal, the heavy gluon mass m_{G^*}, and two Yukawa couplings Y_T and Y_R. In a large part of the parameter space, the lightest of the new heavy quarks is B_{H_1}, of charge $-1/3$, and in this model it decays exclusively to Hb. In Ref. [23], the condition $m_{B_{H_1}} = m_{G^*}/2$ is applied, with the result that pair production of the heavy partners is kinematically forbidden and the width of G^* is consequently not too large. In the search presented here, the phase space is extended to $m_{B_{H_1}} \geq m_{G^*}/2$. When $m_{B_{H_1}} < m_{G^*}/2$, present results on pair produc-

* E-mail address: atlas.publications@cern.ch.

1 Charge conjugate states are implied in the following text.
tion of vector-like quarks can be recast in a model with a massive colour octet [24].

For high masses of the G^* and B_{H} resonances, the Higgs boson is highly boosted and the decay products are reconstructed in a single large-radius (large-R) jet in the detector, whereas for lower masses the four b-quarks are reconstructed as separate small-radius jets. The analysis uses two sets of selection criteria to target these two cases.

2. The ATLAS detector

The ATLAS detector, located at the LHC, is described in detail in Ref. [25]. It covers nearly the full solid angle around the collision point. The inner detector is surrounded by a solenoid that produces a 2 T axial magnetic field. The tracks of charged particles are reconstructed with a high-granularity silicon pixel and microstrip detector for $|\eta| < 2.5$. A straw-tube transition radiation detector extends the tracking to larger radii and provides electron/pion discrimination. The electromagnetic calorimeter consists of a barrel and end-cap lead/liquid-argon (LAr) sections with an accordion geometry covering $|\eta| < 3.2$, preceded by a thin presampler, covering $|\eta| < 1.8$, which allows corrections for fluctuations in upstream energy losses. A copper/LAr electromagnetic calorimeter covers the very forward angles. Hadronic calorimetry is installed in the barrel region, $|\eta| < 1.7$, using steel as the absorber and scintillator tiles as the active material. In the endcaps, copper/LAr calorimeters cover 1.5 $< |\eta| < 3.2$ followed by a forward calorimeter based on tungsten absorbers in LAr as sensitive medium, up to $|\eta| = 4.9$. Surrounding the hadronic calorimeters are large toroidal magnets whose magnetic fields deflect the trajectories of charged particles exiting the barrel and end-cap calorimeters. The muon spectrometer uses monitored drift tubes for tracking in $|\eta| < 2.7$ with cathode strip chambers in the innermost station for $|\eta| > 2.0$. A dedicated muon trigger is provided by resistive plate chambers in the barrel and thin-gap chambers in the end-cap, covering $|\eta| < 2.4$.

A three-level trigger system, consisting of a hardware Level-1 trigger and two software-based trigger levels reduce the event rate to be recorded to less than about 400 Hz.

3. Data and simulation

Data used in this analysis correspond to an integrated luminosity of 19.5 fb$^{-1}$ of pp collisions collected at the LHC at a centre-of-mass energy of $\sqrt{s} = 8$ TeV, with all the essential elements of the ATLAS detector fully operational and stable.

Simulated signal and background samples are produced by Monte Carlo (MC) event generators and passed through a GEANT4 [26] simulation of the ATLAS detector [27]. Additional events from the same and neighbouring bunch crossings (pile-up) are included by adding simulated diffractive and non-diffractive pp collisions to hard-scattering events. The pile-up rate is reweighted in accordance with the luminosity profile of the recorded data. All simulated events are then reconstructed using the same reconstruction software as the data.

Signal samples based on the model discussed in Ref. [23] are generated with MADGRAPH5_aMC@NLO [28], using CT10Q8L [29].

$\bar{q}q\to H + X$ events are generated in the narrowwidth approximation, at next-to-next-to-leading order in perturbative QCD, and for a Higgs boson mass of 125 GeV. The ATLAS detector is simulated with the fast simulation framework MadGraph 5_aMC@NLO [28], using PYTHIA 8 [30] to model the parton shower and showering and underlying event generation. The ATLAS detector and the full detector simulation are included in the matrix element calculation of the Higgs boson production cross section, and for each event, the Higgs boson is reconstructed using the nominal reconstruction chain.

The analysis is performed for the scalar mass of the Higgs boson in the range of 125 GeV in the jet mass spectrum, and the branching ratio BR$(H \to bb)$ is used to determine the Higgs boson mass.

The analysis is performed for the scalar mass of the Higgs boson in the range of 125 GeV in the jet mass spectrum, and the branching ratio BR$(H \to bb)$ is used to determine the Higgs boson mass.

The analysis is performed for the scalar mass of the Higgs boson in the range of 125 GeV in the jet mass spectrum, and the branching ratio BR$(H \to bb)$ is used to determine the Higgs boson mass.

The analysis is performed for the scalar mass of the Higgs boson in the range of 125 GeV in the jet mass spectrum, and the branching ratio BR$(H \to bb)$ is used to determine the Higgs boson mass.

The analysis is performed for the scalar mass of the Higgs boson in the range of 125 GeV in the jet mass spectrum, and the branching ratio BR$(H \to bb)$ is used to determine the Higgs boson mass.

The analysis is performed for the scalar mass of the Higgs boson in the range of 125 GeV in the jet mass spectrum, and the branching ratio BR$(H \to bb)$ is used to determine the Higgs boson mass.

The analysis is performed for the scalar mass of the Higgs boson in the range of 125 GeV in the jet mass spectrum, and the branching ratio BR$(H \to bb)$ is used to determine the Higgs boson mass.

The analysis is performed for the scalar mass of the Higgs boson in the range of 125 GeV in the jet mass spectrum, and the branching ratio BR$(H \to bb)$ is used to determine the Higgs boson mass.

The analysis is performed for the scalar mass of the Higgs boson in the range of 125 GeV in the jet mass spectrum, and the branching ratio BR$(H \to bb)$ is used to determine the Higgs boson mass.

The analysis is performed for the scalar mass of the Higgs boson in the range of 125 GeV in the jet mass spectrum, and the branching ratio BR$(H \to bb)$ is used to determine the Higgs boson mass.

The analysis is performed for the scalar mass of the Higgs boson in the range of 125 GeV in the jet mass spectrum, and the branching ratio BR$(H \to bb)$ is used to determine the Higgs boson mass.
Table 1
Signal region definitions: category 1 (2) refers to the case where the next-to-leading-\(p_T\) (leading-\(p_T\)) jet not associated with the Higgs boson is assumed to be from the \(B_H\) decay.

<table>
<thead>
<tr>
<th>Category 1</th>
<th>Category 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR1</td>
<td>(1.0, 0.5)</td>
</tr>
<tr>
<td>SR2</td>
<td>(1.3, 0.5)</td>
</tr>
<tr>
<td>SR3</td>
<td>(0.8, 0.5)</td>
</tr>
<tr>
<td>SR4</td>
<td>(1.5, 0.5)</td>
</tr>
<tr>
<td>SR5</td>
<td>(1.8, 1.0)</td>
</tr>
</tbody>
</table>

15% (14%) of the electron \(p_T (E_T)\). Muons with \(p_T > 7\) GeV and \(|\eta| < 2.4\) are reconstructed from matched tracks in the muon spectrometer and the inner detector. Quality criteria are applied, as described in Ref. [50], and an isolation requirement is applied: the scalar sum of the transverse momentum of tracks within a radius \(\Delta R = 0.2\) around the muon candidate has to be less than 10% of the muon \(p_T\).

5. Event selection

Because of the very high hadronic background at the LHC, it is not possible to have adequate Monte Carlo statistics for multi-jet events. The uncertainties in the quality of simulation of b-jets at high-\(p_T\) can also be large. For these reasons, for each mass pair \((m_{G^*}, m_{B_H})\) being tested, a data-driven technique was used to evaluate the expected background, as described in Section 6. The technique requires that we define control regions orthogonal to the signal regions. A blind analysis is performed, in which the background is first evaluated without initial knowledge of the data in the signal regions. In order to test the large number of mass pair hypotheses, all signal region cuts are applied except the Higgs mass window which is blinded when evaluating the background in the signal regions.

5.1. Event preselection

Events in the signal region are first preselected according to the following criteria (see section of End of Section 5.2 for the signal region definition).

- They satisfy a combination of six triggers requiring multiple jets and b-jets for various \(p_T\) thresholds, where b-jets are identified by a dedicated online b-tagging algorithm. This combination of triggers is >99% efficient for signal events passing the offline selection, across the \(B_H\) and \(G^*\) mass ranges considered in this analysis.
- They are vetoed if they contain reconstructed isolated leptons \((e\) or \(\mu)\) in order to reduce the contribution from \(W/Z +\) jets and \(t\bar{t}\) backgrounds.
- At least three small-\(R\) b-tagged jets must be present in the signal region.
- The invariant mass of the system composed of all selected \(R = 0.4\) jets is required to be greater than 600 GeV.

Two event topologies are considered for the signal, depending on the boost of the Higgs boson. Highly boosted Higgs bosons are reconstructed using large-\(R\) jets as described in Section 4 and this topology corresponds to the merged scenario (see Section 5.2). If no large-\(R\) jet is found, an attempt is made to reconstruct the Higgs boson from two small-\(R\) jets (see Section 5.3). The acceptance times reconstruction efficiency for the combined yields of the two topologies varies from 5% to 20% depending on the masses of the \(G^*\) and \(B_H\).

5.2. Merged selection

The signal region for the merged case consists of the following requirements.

- A large-\(R\) jet must be present with \(p_T > 300\) GeV and \(|\eta| < 2.0\) and mass in the range [90, 140] GeV. The mass window was optimised based on the signal sensitivity. If more than one such large-\(R\) jet is present, the Higgs candidate is chosen to be the one with mass closest to 126 GeV. At least one b-tagged jet must be matched to it within a distance \(\Delta R = 1.0\).
- There must be at least two additional b-tagged jets separated from the Higgs boson candidate, \(\Delta R (H, j) > 1.4\). The two with the highest \(p_T\) are used to reconstruct the \(G^*\) and \(B_H\) candidates.

Once the Higgs boson candidate has been identified as above, there remains an ambiguity in assigning the other jets to the vector-like quark \(B_H\). The four-momentum of the \(B_H\) candidate is reconstructed as the four-momentum sum of the Higgs boson candidate and either the next-to-leading-\(p_T\) (category 1) or the leading-\(p_T\) (category 2) b-jet away from it, depending on the assumed mass difference between \(G^*\) and \(B_H\). For large \(G^*\)–\(B_H\) mass difference, the \(B_H\) and \(b\)-quark from \(G^*\) splitting have high momentum and therefore the jet from the subsequent \(B_H\) decay is likely to be the next-to-leading jet. For a small mass difference the opposite is true since in this latter case the \(B_H\) decay products are more boosted than the \(G^*\) splitting products. For each \((m_{G^*}, m_{B_H})\) pair, the category which has the higher probability that the correct pairing is formed is chosen, based on the simulated signal events. Finally, the \(G^*\) four-momentum is reconstructed as the four-momentum sum of the Higgs boson jet and the two leading-\(p_T\) b-jets not matched to the Higgs boson candidate.

Different signal regions are defined for the different \((m_{G^*}, m_{B_H})\) mass pair hypotheses. They are characterised by the choice of category defined above as well as by lower cuts on the reconstructed masses of \(G^*\) and \(B_H\) candidates. Five inclusive signal regions were defined, with the minimum mass of the \(G^*\) candidate ranging from 0.8 to 1.8 TeV and of the \(B_H\) candidate from 0.5 to 1 TeV; these are shown in Table 1. No upper cut on the resonance masses was set since the multijet background distribution falls rapidly and the resonances that were larger for high masses. For each mass pair considered, the signal region that gives the maximum signal sensitivity, the ratio of the expected number of signal events to the square root of the number of background events, is chosen.

5.3. Resolved selection

Events in the resolved signal region are required to satisfy the following criteria.

- In order to be able to later combine the results with the merged channel, events are required to fail the merged selection criteria.
- Events are required to have exactly four small-\(R\) jets with \(p_T > 50\) GeV and \(|\eta| < 2.5\), with at least three of these jets being b-tagged. The Higgs boson candidate is reconstructed using the two jets with invariant mass nearest to 126 GeV. The invariant mass is required to be in the interval [90, 140] GeV and the transverse momentum of the dijet system \(p_T (jj) > 200\) GeV.

The four-momentum of the \(B_H\) candidate is reconstructed from the four-momentum sum of the Higgs candidate and either the
leading or the next-to-leading-\pt jet away from the Higgs boson jets, depending on the \(G^* - B_H\) mass splitting. As in the merged case, for each pair of masses considered the category is chosen to be the one with the lower mis-assignment rate of jets, based on samples of simulated signal events. Inclusive signal regions are defined by lower minimum mass values identical to the merged case, and shown in Table 1. Each mass pair is assigned to the same SR for the merged and resolved analysis. The four-momentum of the \(G^*\) candidate is reconstructed from the four-momentum sum of the four jets in the event.

6. Modelling of the multijet background

The ‘ABCD’ data-driven method is used to estimate the multijet background. For each of the ten signal regions, three control regions orthogonal to the signal region are defined: region B has all the signal region selection criteria mentioned in Section 5 applied, including the lepton vetoes and lower cuts on the masses of \(B_H\) and \(G^*\) candidates, but the Higgs boson candidate mass is required to be outside the interval [90, 140] GeV; region C has all the signal region selection requirements, but requires exactly two jets to be \(b\)-tagged; and region D has the Higgs boson candidate outside the Higgs boson mass window and exactly two \(b\)-tagged jets. In regions C and D, only one of the two jets not associated with the Higgs boson candidate is \(b\)-tagged. The number of multijet (MJ) events expected in the signal region (SR) is then estimated according to

\[
N_{SR}^{MJ} = N_{B}/N_{D} \times N_{C}.
\]

where \(N_{X}\) is the number of events in region X, after having removed the top-quark, diboson and other electroweak background contributions as determined from MC simulations.

This estimate assumes that no bias results from the choice of control regions. To evaluate and potentially correct for the effect of any biases, a re-weighting is performed on two kinematic distributions, the leading-\pt and the \(\Delta R\) between the reconstructed Higgs boson candidate and the leading jet not associated with it. Control regions C and D (B and D) are re-weighted, using a method similar to Ref. [51], to have the same shape as in control region B (C) with weights obtained from \(N_{B}/N_{D} \times N_{B}/N_{D}\) per bin. The effect of this re-weighting is found to be negligible and therefore no correction is applied.

A validation region is defined as the 15 GeV sideband regions outside the Higgs boson candidate mass window, i.e. 75–90 GeV and 140–155 GeV, for each signal region. The contribution from multijet background is estimated as above, but with the control regions B and D excluding these validation regions and region C now being the two sidebands. It is then compared to the number of observed data events, after adding back the simulation-based background, in these regions. Table 2 shows that the expected and observed numbers of events agree well in the validation regions for the merged- and resolved-channel signal regions.

7. Systematic uncertainties

Systematic uncertainties from several sources affect the expected numbers of background and signal events. Table 3 shows the estimated size of the different components.

The statistical uncertainty in the data control regions used for the estimation of the multijet background is considered as part of the statistical error.

There is an uncertainty in the number of background events due to the difference between the observed and estimated numbers of events in each of the validation regions. In each validation

Table 2

<table>
<thead>
<tr>
<th></th>
<th>VR1</th>
<th>VR2</th>
<th>VR3</th>
<th>VR4</th>
<th>VR5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected</td>
<td>563 ± 16</td>
<td>213 ± 10</td>
<td>1680 ± 29</td>
<td>135 ± 8</td>
<td>45 ± 4</td>
</tr>
<tr>
<td>Observed</td>
<td>558</td>
<td>184</td>
<td>1666</td>
<td>137</td>
<td>35</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>SR1</th>
<th>SR2</th>
<th>SR3</th>
<th>SR4</th>
<th>SR5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background estimation</td>
<td>5%</td>
<td>15%</td>
<td>2.8%</td>
<td>10%</td>
<td>27%</td>
</tr>
<tr>
<td>(\gamma) cross section</td>
<td>+1.0% - 1.1%</td>
<td>+0.8% - 0.9%</td>
<td>+1.2% - 1.4%</td>
<td>+0.8% - 0.9%</td>
<td>+0.6% - 0.7%</td>
</tr>
<tr>
<td>JER small-R</td>
<td>+0.29%</td>
<td>+0.15%</td>
<td>+0.01%</td>
<td>−0.32%</td>
<td>+0.20%</td>
</tr>
<tr>
<td>JES small-R</td>
<td>+0.9% - 0.8%</td>
<td>+1.6% - 0.7%</td>
<td>+1.0% - 1.0%</td>
<td>+0.9% - 1.0%</td>
<td>+1.5% - 1.0%</td>
</tr>
<tr>
<td>JES(\gamma)/MS large-R</td>
<td>+0.31% - 1.5%</td>
<td>+1.3% - 1.5%</td>
<td>+0.13% - 1.9%</td>
<td>+0.9% - 0.8%</td>
<td>+1.6% - 0.20%</td>
</tr>
<tr>
<td>(b)-tagging</td>
<td>+0.16% - 0.18%</td>
<td>+0.23% - 0.33%</td>
<td>+0.24% - 0.18%</td>
<td><0.01%</td>
<td>+1.6% - 0.01%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>0.3%</td>
<td>0.3%</td>
<td>0.3%</td>
<td>0.2%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Data/MC statistical (CR)</td>
<td>2.2%</td>
<td>2.6%</td>
<td>4.4%</td>
<td>4%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Merged

| Total (stat.) | 2.7% | 5% | 1.5% | 6% | 10% |
| Total (syst.) | 6% | 15% | 4% | 11% | 28% |

Resolved

<table>
<thead>
<tr>
<th>Systematic uncertainty</th>
<th>SR1</th>
<th>SR2</th>
<th>SR3</th>
<th>SR4</th>
<th>SR5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background estimation</td>
<td>3.5%</td>
<td>6%</td>
<td>4%</td>
<td>8%</td>
<td>16%</td>
</tr>
<tr>
<td>(\gamma) cross section</td>
<td>+0.24% - 0.27%</td>
<td>+0.20% - 0.23%</td>
<td>+0.31% - 0.4%</td>
<td>+0.23% - 0.26%</td>
<td>+0.17% - 0.20%</td>
</tr>
<tr>
<td>JER small-R</td>
<td>+0.17%</td>
<td>+0.32%</td>
<td>+0.18%</td>
<td>−0.37%</td>
<td>−0.5%</td>
</tr>
<tr>
<td>JES small-R</td>
<td>+0.8% - 0.6%</td>
<td>+0.7% - 0.6%</td>
<td>+0.6% - 0.7%</td>
<td>+0.8% - 0.7%</td>
<td>+1.0% - 0.8%</td>
</tr>
<tr>
<td>(b)-tagging</td>
<td>+0.5% - 0.4%</td>
<td>+0.5% - 0.30%</td>
<td>+0.5% - 0.4%</td>
<td>+0.4% - 0.4%</td>
<td>+0.7% - 0.7%</td>
</tr>
<tr>
<td>Luminosity</td>
<td>0.13%</td>
<td>0.13%</td>
<td>0.15%</td>
<td>0.15%</td>
<td>0.11%</td>
</tr>
<tr>
<td>Data/MC statistical (CR)</td>
<td>1.6%</td>
<td>2.7%</td>
<td>1.0%</td>
<td>3.3%</td>
<td>6%</td>
</tr>
</tbody>
</table>

| Total (stat.) | 2.1% | 4% | 1.0% | 4% | 8% |
| Total (syst.) | 4% | 7% | 4% | 8% | 17% |
region, if the observed number of events is compatible with the estimated number within one standard deviation (calculated as the sum in quadrature of the relative statistical errors of the two), this standard deviation is considered to be the background estimation uncertainty. Otherwise, the background uncertainty is considered to be the fractional difference between the observed and estimated numbers of events. This is the largest uncertainty, ranging from 5% in SR1 to 27% in SR5 for the merged case, and from 3.5% in SR1 to 16% in SR5 for the resolved case.

The $t\bar{t}$ contribution dominates the simulation-based background. The theoretical uncertainty on its cross section is taken to be 6%, as discussed in Section 3.

Uncertainties due to the calibration and modelling of the detector affecting the simulation-based background estimates in the control and signal regions are principally due to the jet energy scale (JES) and jet energy resolution (JER). JES uncertainties for small-R jets include contributions from detector reconstruction and from different physics modelling and evaluation methods [52]. Uncertainties leading to a higher (lower) yield than the nominal value are added in quadrature to the total JES up (down) uncertainty. To evaluate the impact of JER for small-R jets, energies of simulated jets are smeared to be consistent with the JER measured in data. The JER systematic uncertainty is the difference between the nominal and smeared values.

JES uncertainties for large-R jets in the central region are evaluated as described in Ref. [47]. The jet mass scale (JMS) uncertainty is 4–5% for $p_T \lesssim 700$ GeV and increases linearly with p_T to about 8% in the range $900 \lesssim p_T \lesssim 1000$ GeV. The total uncertainty in the measured b-tagging efficiency was evaluated in Ref. [53] and is p_T and η dependent. For high-p_T jets, the systematic uncertainty is derived from simulation. It is estimated here for the simulation-based backgrounds, accounting for the statistical uncertainty, the error on the generator-dependent scale factors, the track momentum scale, resolution and efficiency systematic uncertainties, and the extrapolation uncertainties for light jets. It is at or below the percent level and always dominated by the background estimation.

The predicted signal is not confined to the signal region: it could also constitute a fraction of the observed data in the control regions. The effect of this potential contamination on the statistical procedure is described in Section 8.

Systematic uncertainties due to detector effects also affect the VLQ signal yields. They are dominated by the b-tagging uncertainties, ranging from 16% to 40% depending on p_T, while other sources of systematic uncertainties listed above are below 5%. Theoretical uncertainties in the signal cross section due to the choice of PDFs are estimated from CTEQ6.6 with its 22 eigenvector sets [29].

8. Results

After applying all selection criteria in the signal regions, the multijet background in the Higgs boson candidate mass window is evaluated according to Eq. (1). Mass distributions of reconstructed Higgs boson candidates are shown in Fig. 2 for the merged and resolved cases in SR3. The observed data and the background predictions are consistent within statistical and systematic uncertainties.

For each pair of mass points considered, the expected signal yield, based on the benchmark model, is evaluated in the corresponding signal region. These yields result from the signal $\sigma \times (A \times \epsilon)$, where σ is the cross section including all the branching fractions and $(A \times \epsilon)$ is the acceptance times reconstruction.
Table 4
Observed data and background yields in the different signal regions for the merged and resolved cases. The first error is statistical and the second is systematic, while for individual background contributions only the statistical error is shown. Statistical errors on the numbers of data events in the control regions used to estimate the multijet background are included in the total statistical error. The row \(t\bar{t} / \text{Top} \) includes \(t\bar{t} \), single-top and \(t\bar{t} + V / H \) backgrounds while \(W / Z + \text{jets} \) includes leptonic and hadronic decays of the vector boson.

<table>
<thead>
<tr>
<th>Background</th>
<th>SR1</th>
<th>SR2</th>
<th>SR3</th>
<th>SR4</th>
<th>SR5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multijet</td>
<td>1104 ± 27</td>
<td>398 ± 16</td>
<td>3372 ± 49</td>
<td>259 ± 12</td>
<td>85 ± 7</td>
</tr>
<tr>
<td>(t\bar{t} / \text{Top})</td>
<td>107 ± 4</td>
<td>30.0 ± 2.3</td>
<td>398 ± 8</td>
<td>183 ± 1.9</td>
<td>4.2 ± 1.0</td>
</tr>
<tr>
<td>(W / Z + \text{jets})</td>
<td>10.5 ± 1.3</td>
<td>4.4 ± 0.9</td>
<td>30.1 ± 1.9</td>
<td>2.6 ± 0.8</td>
<td>0.8 ± 0.5</td>
</tr>
<tr>
<td>Total BG</td>
<td>1222 ± 70</td>
<td>432 ± 20</td>
<td>3800 ± 60</td>
<td>280 ± 16</td>
<td>90 ± 9</td>
</tr>
<tr>
<td>Data</td>
<td>1310</td>
<td>456</td>
<td>3827</td>
<td>287</td>
<td>89</td>
</tr>
</tbody>
</table>

Table 5
Combined limits, in fb, on \(\sigma (pp \rightarrow G^* \rightarrow B_H b \bar{b}) \times BR (B_H \rightarrow Hb) \times BR (H \rightarrow b\bar{b}) \). First and second entries in each cell give the expected and observed limits, respectively. The third entry gives the cross section in fb predicted by the benchmark model. Red cells are excluded and green cells are not considered in this analysis and are marked in yellow. (For interpretation of the references to colour in this table legend, the reader is referred to the web version of this article.)

| \(m_{H^0} \) [TeV] | | 62.3
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.75</td>
<td>72.7</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>51.8</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>57.1</td>
<td>57.1</td>
</tr>
<tr>
<td></td>
<td>64.7</td>
<td>65.8</td>
</tr>
<tr>
<td></td>
<td>64.7</td>
<td>65.8</td>
</tr>
<tr>
<td>1.50</td>
<td>66.2</td>
<td>66.4</td>
</tr>
<tr>
<td></td>
<td>66.4</td>
<td>66.4</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>1.375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>163</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>66.2</td>
<td>66.2</td>
</tr>
<tr>
<td></td>
<td>54.4</td>
<td>54.4</td>
</tr>
<tr>
<td></td>
<td>54.4</td>
<td>54.4</td>
</tr>
<tr>
<td></td>
<td>60.5</td>
<td>60.5</td>
</tr>
<tr>
<td></td>
<td>42.4</td>
<td>42.4</td>
</tr>
<tr>
<td></td>
<td>42.4</td>
<td>42.4</td>
</tr>
<tr>
<td>1.125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>157</td>
<td>157</td>
</tr>
<tr>
<td></td>
<td>53.7</td>
<td>53.7</td>
</tr>
<tr>
<td></td>
<td>53.7</td>
<td>53.7</td>
</tr>
<tr>
<td></td>
<td>53.7</td>
<td>53.7</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>58.5</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>58.5</td>
</tr>
<tr>
<td></td>
<td>58.5</td>
<td>58.5</td>
</tr>
<tr>
<td>0.875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>233</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>84.4</td>
<td>84.4</td>
</tr>
<tr>
<td></td>
<td>137</td>
<td>137</td>
</tr>
</tbody>
</table>

Efficiency of the signal selection cuts. The amount of contamination, defined as the expected ratio of the number of signal events in control regions B, C, or D to that in the signal region, is also estimated.

Table 4 shows the expected and observed background event yields in each of the signal regions for the merged and resolved cases. No significant excess of data events is found compared to the expected SM background. Taking into account the number of
expected background events in each of the signal regions and the yield of signal events for each test mass pair, together with all statistical and systematic uncertainties, upper limits at the 95% confidence level (CL), using the CLs prescription [54] and RooStats [55], are set on the cross section times the branching fraction of a signal, combining results from the merged and resolved analyses. To account for possible contamination of the control regions by signal, an iterative procedure is used: a 95% CL limit is first obtained assuming no contamination in the control regions. The contamination in regions B, C, D is then calculated, assuming a signal corresponding to that limit, and the multijet background is then re-evaluated. The procedure is repeated until it converges to a stable value. Expected and observed limits on the cross section \(\sigma (pp \rightarrow G^* \rightarrow B_H, B_H \rightarrow H \rightarrow b\bar{b}) \times BR(H \rightarrow b\bar{b}) \) are shown in Fig. 3. Limits for the particular cases where \(m_{B_H} = m_{G^*}/2 \) and \(m_{B_H} = m_{G^*} - 250 \text{ GeV} \) are shown in Figs. 3 and 4.

9. Conclusion

A search for a heavy gluon and a charge \(-1/3\) vector-like quark in the process \(pp \rightarrow G^* \rightarrow B_H, B_H \rightarrow H \rightarrow b\bar{b} \), with \(H \rightarrow b\bar{b} \), has been performed using an integrated luminosity of 19.5 fb\(^{-1}\) of pp collision data recorded at \(\sqrt{s} = 8 \) TeV with the ATLAS detector at the LHC. The main background, multijet production, is estimated with a data-driven technique. Five signal regions are defined based on the choice of jet assignment to the \(B_H \) candidate and on lower mass requirements for the reconstructed \(G^* \) and \(B_H \). No significant excess over the SM predictions is observed and upper limits have been set at the 95% confidence level on the total cross section times branching ratio in the two-dimensional plane of \(m_{G^*} \) vs. \(m_{B_H} \) with \(m_{G^*} \leq 2m_{B_H} \). Using a benchmark model presented in

Ref. [23], a lower limit of 2.0 TeV on the \(G^* \) mass is obtained when \(m_{G^*} = 2m_{B_H} \).

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFV and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESB, Brazil; NSERC, NRC and CRM, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNISW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, Canarie, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, F7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSE, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS
Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CERN-ATLAS (CERN), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

References

ATLAS Collaboration

B.S. Acharaya 163a,163b,a, L. Adamczyk 38a, D.L. Adams 25, J. Adelman 107, S. Adomeit 99, T. Adye 130
A.A. Affolder 74, T. Agatonovic-Jovin 13, J. Aglicora 54, J.A. Aguilar-Saavedra 125a,125f,a, S.P. Ahlen 22
F. Ahmadov 65,b, G. Aielli 132a,132b, H. Akerstedt 145a,145b, T.P.A. Akesson 131, A.V. Akimov 39
C. Alexe 26b, G. Alexander 152, T. Alexopoulos 10, M. Alhrrool 112, G. Alimonti 91a, L. Allo 85, J. Alison 31
S.P. Alkire 35, B.M.M. Allbrooke 148, B.W. Allen 115, P.P. Alport 18, A. Alosio 103a,103b, A. Alonso 36
F. Alonso 71, C. Alpigiani 137, B. Alvarez Gonzalez 130, D. Alvarez Piquerias 166, M.G. Alviggi 103a,103b
S.P. Amor Dos Santos 125a,125c, A. Amarim 123a,125b, S. Amoroso 30, N. Amram 152, G. Amundsen 23
K.J. Anderson 11, A. Andreaea 91a,91b, V. Angelidakis 9, I. Angelozzi 106, P. Angele 44
A. Angerami 35, F. Anghinolfi 30, A.V. Anisenkov 108c,a, N. Anjos 12, A. Annovi 123a,123b, M. Antonelli 47
A. Antonov 97, J. Antos 143b, F. Anuli 131a,131b, M. Aoki 66, L. Aperio Bella 18, G. Arabidze 90, Y. Arai 66
J.P. Araque 125a, A.T.H. Arce 45, F.A. Arduh 71, J-F. Arguin 94, S. Argyropoulos 63, M. Arik 19a
G. Artino 119, S. Artz 83, L. Attia 154, N. Asab 42, A. Ashkenazi 152, B. Asman 145a,145b, L. Asquith 148
M.K. Ayoub 116, G. Azuelos 94,d, M.A. Baak 30, A.E. Baas 58a, M.J. Baca 18, H. Bachacou 135, K. Bachas 73a,73b
M. Backes 30, M. Backhaus 30, P. Baggiachi 131a,131b, P. Bagnaia 131a,131b, V. Bai 33a, J.T. Baines 130
O.K. Baker 175, E.M. Baldvin 108,c,b, P. Balek 128, T. Balestini 147, F. Balli 135, W.K. Balunas 121, E. Banas 39
T. Barillari 100, M. Barisonza 163a,163b, T. Barklow 142, N. Barlow 28, S.L. Barnes 84, B.M. Barnett 130
R.M. Barnett 15, Z. Barnovski 5, A. Barconcelli 133a, G. Barone 23, A.J. Barr 119, L. Barranco Navarro 166
F. Barreiro 82, J. Bariere Guimaraes da Costa 33a, R. Bartoldus 142, A.E. Barton 72, P. Bartos 143a
A. Basalaev 122, A. Bassalat 116, A. Basey 164, R.L. Bates 53, S.J. Batista 157, J.R. Batley 28, M. Battaglia 136
M. Bauge 131a,131b, F. Bauer 135, H.S. Bawa 142d, J.B. Beacham 110, M.D. Beattie 72, T. Beau 80,
P.H. Beauchemin 160, R. Beccarle 123a,123b, P. Bechtle 21, H.P. Beck 17,g, K. Becker 119, M. Becker 83,
M. Beckingham 169, C. Beco 109, A.J. Beddall 19e, A. Beddall 19b, V.A. Bednyakov 65, M. Bedognetti 106
C.P. Bee 147, J.L. Beemster 106, T.A. Beermann 30, M. Begel 25, J.K. Behr 119, C. Belanger-Champagne 87
A.S. Bell 78, W.H. Bell 46, G. Bella 152, L. Bellagamba 20a, A. Bellerive 79, M. Bellomo 86, K. Belotskii
O. Beltramello 30, N.L. Belayev 100, O. Benay 135, D. Benchekroun 134a, M. Bender 99, K. Bendor
N. Benekos 10, Y. Benhammou 152, E. Benhar Noccioli 175, J. Benitez 63, J.A. Benitez Garcia 158b
D.P. Benjamin 45, J.R. Bensinger 23, S. Bentvelsen 106, L. Beresford 119, M. Beretta 47, D. Berge 106
E. BERGEAAS KUUTFALT 165, N. Berger 5, F. Berghaus 168, J. Beringer 15, S. Berlendis 55, C. Bernard 22,
N.R. Bernard 86, C. Bernard 109, F.U. Bernlochner 21, T. Berry 77, P. Berta 128, C. Bertella 83
G. Bertoli 145a,145b, F. Bertolucci 123a,123b, C. Bertsche 112, D. Bertsche 112, G.J. Besjes 36
O. Bessidskaia Bylund 145a,145b, M. Bessner 42, N. Besson 135, C. Betancourt 48, S. Bethke 100, A.J. Bevan 76
W. Bhijmi 15, R.M. Bianchi 124, L. Bianchini 23, M. Bianco 30, O. Bieber 99, D. Biedermann 16, R. Bielski 84
N.V. Biesuz 123a,123b, M. Biglatti 133a, J. Bilbao De Mendizabal 49, H. Bilokon 47, M. Bindi 54, S. Binet 116
A. Bingul 19b, C. Bini 131a,131b, S. Bioni 20a,20b, D.M. Bjergaard 45, C.W. Black 149, J.E. Black 142,
K.M. Black 22, D. Blackburn 137, R.E. Blair 6, J.-B. Blanchard 135, J.E. Blance 77, T. Blazeck 143a, I.Bloch 23,
C. Blocker 23, W. Blum 83,e, U. Blumenschein 34, S. Blunier 32a, G.J. Bobink 108c, V.S. Bobrownikov 108c
S.S. Bocchetta 81, K. Bos 106, D. Boscherini 20a, M. Bosman 12, J.D. Bossio Sola 27,
J. Boudreau 124, J. Bouffard 72, E.V. Bouhuova-Thacker 72, D. Boumendiee 34, C. Bourdarios 116,
N. Bousson 113, S.K. Boutle 33, A. Boveia 30, J. Boyd 30, I.R. Boyko 65, J. Bracinik 18, A. Brandt 8, G. Brandt 54,
O. Brandt 58a, U. Bratzler 155, B. Brau 86, J.E. Brau 115, H.M. Braun 174*, W.D. Breaden Madden 53,
257

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany, NY, United States
3 Department of Physics, University of Alberta, Edmonton, AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (b) Istanbul Aydin University, Istanbul; (c) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP/CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States
7 Department of Physics, University of Arizona, Tucson, AZ, United States
8 Department of Physics, The University of Texas at Arlington, Arlington, TX, United States
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, United States
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics Engineering, Gaziantep University, Gaziantep; (c) Istanbul Bilgi University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey; (d) Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physicaliskais Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston, MA, United States
23 Department of Physics, Brandeis University, Waltham, MA, United States
24 (a) Universidad Federal de Rio De Janeiro COPPE/EIE, Rio de Janeiro, (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao do Rio (UFSJ), Sao Joao del Rey; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton, NY, United States
99 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
100 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
101 Nagasaki Institute of Applied Science, Nagasaki, Japan
102 Graduate School of Science and Kobayashi–Maskawa Institute, Nagoya University, Nagoya, Japan
103 INF NSezione di Napoli, INFN Dipartimento di Fisica, Università di Napoli, Napoli, Italy
104 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, United States
105 Institute for Mathematics, Astrophysics, and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands
106 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
107 Department of Physics, Northern Illinois University, DeKalb, IL, United States
108 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
109 Department of Physics, New York University, New York, NY, United States
110 Ohio State University, Columbus, OH, United States
111 Faculty of Science, Okayama University, Okayama, Japan
112 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, United States
113 Department of Physics, Oklahoma State University, Stillwater, OK, United States
114 Palacký University, RCPTM, Olomouc, Czech Republic
115 Center for High Energy Physics, University of Oregon, Eugene, OR, United States
116 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
117 Graduate School of Science, Osaka University, Osaka, Japan
118 Department of Physics, University of Oslo, Oslo, Norway
119 Department of Physics, Oxford University, Oxford, United Kingdom
120 INFN Sezione di Pavia, INFN Dipartimento di Fisica, Università di Pavia, Pavia, Italy
121 Department of Physics, University of Pennsylvania, Philadelphia, PA, United States
122 National Research Centre “Kurchatov Institute”, B.P. Konstantinov Peterburg Nuclear Physics Institute, St. Petersburg, Russia
123 INFN Sezione di Pisa, INFN Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
124 Department of Physics and Astronomy, University of Pittsburgh, PA, United States
125 Laboratorio di Instrumentazione e Fisica Eperimentale di Particelle – LIP, Lisbon; Laboratory of Sciences, Universidade de Lisboa, Lisboa; Department of Physics, University of Coimbra, Coimbra, Portugal
126 Centro de Física Nuclear de la Universidad de Lisboa, Lisboa; Departamento de Física, Universidade do Minho, Braga; Departamento de Física Teórica y del Cosmos and CAFFE, Universidad de Granada, Granada; Sezione INFN, Università di Cagliari (Sardinia); INFN Sezione di Roma Tor Vergata; Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
127 INFN Sezione di Roma Tre, INFN Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
128 Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies – Université Hassan II, Casablanca; Centre National de l’Energie des Sciences Techniques Nucléaires, Rabat; Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA, Marrakech; Centre des sciences, Université Mohamed Premier and LPTP, Oujda; Faculté des sciences, Université Mohammed V, Rabat, Morocco
129 DSM/RFUE (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), GIF-sur-Yvette, France
130 Santa Cruz Instituto for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, United States
131 Department of Physics, University of Washington, Seattle, WA, United States
132 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
133 Department of Physics, Shinshu University, Nagano, Japan
134 Fachbereich Physik, Universität Siegen, Siegen, Germany
135 Department of Physics, Simon Fraser University, Burnaby, BC, Canada
136 SLAC National Accelerator Laboratory, Stanford, CA, United States
137 Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
138 Department of Physics, University of Cape Town, Cape Town; Department of Physics, University of Johannesburg, Johannesburg; School of Physics, University of the Witwatersrand, Johannesburg, South Africa
139 Department of Physics, Stockholm University; The Oskar Klein Centre, Stockholm, Sweden
140 Physics Department, Royal Institute of Technology, Stockholm, Sweden
141 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, United States
142 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
143 School of Physics, University of Sydney, Sydney, Australia
144 Institute of Physics, Academia Sinica, Taipei, Taiwan
145 Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
146 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
147 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
148 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
149 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
150 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
151 Department of Physics, University of Toronto, Toronto, ON, Canada
152 TRIUMF, Vancouver, BC; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
153 INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; ICTP Trieste; Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
154 Department of Physics, University of Illinois, Urbana, IL, United States
155 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
156 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica e Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
157 Department of Physics, University of British Columbia, Vancouver, BC, Canada
158 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
159 Department of Physics, University of Warwick, Coventry, United Kingdom
160 Waseda University, Tokyo, Japan
Centre Yerevan

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany

Department of Physics, Yale University, New Haven, CT, United States

Yerevan Physics Institute, Yerevan, Armenia

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

\[^{a} \text{Also at Department of Physics, King’s College London, London, United Kingdom.} \]
\[^{b} \text{Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.} \]
\[^{c} \text{Also at Novosibirsk State University, Novosibirsk, Russia.} \]
\[^{d} \text{Also at TRIUMF, Vancouver, BC, Canada.} \]
\[^{e} \text{Also at Department of Physics \\& Astronomy, University of Louisville, Louisville, KY, United States.} \]
\[^{f} \text{Also at Department of Physics, California State University, Fresno, CA, United States.} \]
\[^{g} \text{Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.} \]
\[^{h} \text{Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain.} \]
\[^{i} \text{Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal.} \]
\[^{j} \text{Also at Tomsk State University, Tomsk, Russia.} \]
\[^{k} \text{Also at Universita di Napoli Parthenope, Napoli, Italy.} \]
\[^{l} \text{Also at Institute of Particle Physics (IPP), Canada.} \]
\[^{m} \text{Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.} \]
\[^{n} \text{Also at Department of Physics, The University of Michigan, Ann Arbor, MI, United States.} \]
\[^{o} \text{Also at Louisiana Tech University, Ruston, LA, United States.} \]
\[^{p} \text{Also at Instituto Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain.} \]
\[^{q} \text{Also at Graduate School of Science, Osaka University, Osaka, Japan.} \]
\[^{r} \text{Also at Department of Physics, National Tsing Hua University, Taiwan.} \]
\[^{s} \text{Also at Department of Physics, The University of Texas at Austin, Austin, TX, United States.} \]
\[^{t} \text{Also at Institute of Theoretical Physics, Ila State University, Tbilisi, Georgia.} \]
\[^{u} \text{Also at CERN, Geneva, Switzerland.} \]
\[^{v} \text{Also at Georgian Technical University (GTU), Tbilisi, Georgia.} \]
\[^{w} \text{Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan.} \]
\[^{x} \text{Also at Manhattan College, New York, NY, United States.} \]
\[^{y} \text{Also at Hellenic Open University, Patras, Greece.} \]
\[^{z} \text{Also at Institute of Physics, Academia Sinica, Taipei, Taiwan.} \]
\[^{aa} \text{Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan.} \]
\[^{ab} \text{Also at School of Physics, Shandong University, Shandong, China.} \]
\[^{ac} \text{Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.} \]
\[^{ad} \text{Also at Section de Physique, Université de Genève, Geneva, Switzerland.} \]
\[^{ae} \text{Also at International School for Advanced Studies (SISSA), Trieste, Italy.} \]
\[^{af} \text{Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, United States.} \]
\[^{ag} \text{Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China.} \]
\[^{ah} \text{Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofia, Bulgaria.} \]
\[^{ai} \text{Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.} \]
\[^{aj} \text{Also at National Research Nuclear University MEPhI, Moscow, Russia.} \]
\[^{ak} \text{Also at Department of Physics, Stanford University, Stanford, CA, United States.} \]
\[^{al} \text{Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.} \]
\[^{am} \text{Also at Flensburg University of Applied Sciences, Flensburg, Germany.} \]
\[^{an} \text{Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia.} \]
\[^{ao} \text{Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France.} \]
\[^{*} \text{Deceased.} \]