Corals through the light: phylogenetics, functional diversity and adaptive strategies of coral-symbiont associations over a large depth range

Rodrigues Frade, P.

Citation for published version (APA):
REFERENCES

BOEHNLEIN JM, SANTIAGO-VAZQUEZ LZ, KERR RG (2005) Diterpene biosynthesis by the dinoflagellate symbiont of the Caribbean gorgonian Pseudopterogorgia bipinnata. Marine Ecology-Progress Series 303:105-111

BROWN BE, DOWNS CA, DUNNE RP, GIBB SW (2002a) Preliminary evidence for tissue retraction as a factor in photoprotection of corals incapable of xanthophyll cycling. Journal of
REFERENCES

Experimental Marine Biology and Ecology 277:129-144

BURRIS RH (1983) Uptake and assimilation of 15NH$_4^+$ by a variety of corals. Marine Biology 75:151-155

DARWIN CR (1859) On the origin of species by means of natural selection, or the preservation of

References

Donoghue MJ (1985) A critique of the biological species concept and recommendations for a phylogenetic alternative. The Bryologist 88:172-181

EXCOFFIER L, LAVAL G, SCHNEIDER S (2005) ARLEQUIN ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47-50

FITTK WK, COOK CB (2001) The effects of feeding or addition of dissolved inorganic nutrients in maintaining the symbiosis between dinoflagellates and a tropical marine cnidarian. Marine Biology 139:507-517

FRADE PR, ENGLEBERT N, FARIA J, VISser PM, BAK RPM (2008a) Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: is there more to it than total irradiance? Coral Reefs 27:913-925

FRADE PR, BONGAERTS P, WINKELHAGEN AJs, TONK L, BAK RPM (2008b) In situ photobiology of corals over large depth ranges: A multivariate analysis on the roles of environment, host, and algal symbiont. Limnology and Oceanography 53:2711-2723

FRADE PR, DE JONGH F, VERMEULEN F, VAN BLEISWUIK J, BAK RPM (2008c) Variation in symbiont distribution between closely related coral species over large depth ranges. Molecular Ecology 17:691-703

FREUDENTHAL HD (1962) Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella - Taxonomy, life cycle, and morphology. Journal of Protozoology 9:45-68

FUkAMI H, BUDD AF, LEVITAN DR, JARA J, KERSANACH R, KNOWLTON N (2004a) Geographic differences in species boundaries among members of the Montastraea annularis complex based on
molecular and morphological markers. Evolution 58:324-337

fluorescence rise kinetics. Photosynthesis Research 82: 59-72

Iglesias-Prieto R, Trench RK (1997b) Acclimation and adaptation to irradiance in symbiotic dinoflagellates. II. Response of chlorophyll-protein complexes to different photon-flux
densities. Marine Biology 130:23-33

KAWAGUTI S (1944) On the physiology of reef corals VII. Zooxanthella of the reef coral is Gymnodinium sp., Dinoflagellata; its culture in vitro. Palao Tropical Biological Station Studies 2:675-679

LAJEUNESSE TC (2005) "Species" radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Molecular Biology and Evolution 22:570-581

LAJEUNESSE TC, TRENCH RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biological

Miller KJ, Ayre DJ (2008b) Population structure is not a simple function of reproductive mode and

MYERS RM, FISCHER SG, LERMAN LS, MANIATIS T (1985a) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel-electrophoresis. Nucleic Acids Research 13:3131-3145

ODORICO DM, MILLER DJ (1997) Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): Patterns of variation consistent with reticulate evolution. Molecular Biology and Evolution 14:465-473

PEARSE VB, MUSCATINE L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification.
Biological Bulletin 141:350-363

PETTAY DT, LAJEUNESSE TC (2007) Microsatellites from clade B Symbiodinium spp. specialized for
Caribbean corals in the genus Madracis. Molecular Ecology Notes 7:1271-1274

POCHON X, LAJEUNESSE TC, PAWLOWSKI J (2004) Biogeographic partitioning and host specialization
among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Marine
Biology 146:17-27

POLNEFULLER M (1991) A novel technique for preparation of axenic cultures of Symbiodinium
(Pyrrophyta) through selective digestion by amoebae. Journal of Phycology 27:552-554

in light-adapted and shade-adapted colonies of the symbiotic coral, Styllophora pistillata.
Proceedings of the Royal Society of London Series B-Biological Sciences 222:161-180

POSADA D, CRANDALL KA (1998) modeltest: testing the model of DNA substitution. Bioinformatics
14:817-818

Systematic Biology 53:793-808

PRASAD KVSK, SARADHI PP (2004) Enhanced tolerance to photoinhibition in transgenic plants
through targeting of glycinebetaine biosynthesis into the chloroplasts. Plant Science 166:
1197-1212

RALPH PJ, GAEMANN R, LARKUM AWD (2001) Zooxanthellae expelled from bleached corals at 33
degrees C are photosynthetically competent. Marine Ecology-Progress Series 220:163- 168

REYNOLDS JM, BRUNS BU, FITT WK, SCHMIDT GW (2008) Enhanced photoprotection pathways in
symbiotic dinoflagellates of shallow-water corals and other cnidarians. Proceedings of the National Academy of Sciences of the United States of America 105:13674-13678

RHODES D, HANSON AD (1993) Quaternary ammonium and Tertiary sulfonium compounds in higher
plants. Annual Review of Plant Physiology and Plant Molecular Biology 44: 357-384

ROBISON JD, WARNER ME (2006) Differential impacts of photoacclimation and thermal stress on the
photobiology of four different phylotypes of Symbiodinium (Pyrrophyta). Journal of
Phycology 42:568-579

RODRIGUES LJ, GROTTOLE AG (2007) Energy reserves and metabolism as indicators of coral recovery
from bleaching. Limnology and Oceanography 52:1874-1882

RODRIGUEZ-LANETTY M (2003) Evolving lineages of Symbiodinium-like dinoflagellates based on
ITS1 rDNA. Molecular Phylogenetics and Evolution 28:152-168

Biology 143:501-509

of the Workshop “Understanding the stress response of corals and Symbiodinium in a rapidly changing environment”, UNAM, Mexico

REFERENCES

Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperate biogeography in a Western Atlantic Symbiodinium (Dinophyta) lineage. Journal of Phycology 44:1126-1135

VAN OPPEN MJH, WILLIS BL, VAN VUGT HWJA, MILLER DJ (2000) Examination of species boundaries in the *Acropora cervicornis* group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Molecular Ecology 9:1363-1373

VAN OPPEN MJH, PALSTRA FP, PIQUET AMT, MILLER DJ (2001a) Patterns of coral-dinoflagellate associations in *Acropora*: Significance of local availability and physiology of *Symbiodinium* strains and host-symbiont selectivity. Proceedings of the Royal Society of London Series B-Biological Sciences 268:1759-1767

VAN OPPEN MJH, MC DONALD BJ, WILLIS B, MILLER DJ (2001b) The evolutionary history of the coral genus *Acropora* (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: Reticulation, incomplete lineage sorting, or morphological convergence? Molecular Biology and Evolution 18:1315-1329

VAN VEGHEL MLJ, BAK RPM (1993) Intraspecific variation of a dominant Caribbean reef building

VERMEIJ MJA, SAMPAYO E, BROKER K, BAK RPM (2003b) Variation in planulae release of closely related coral species. Marine Ecology-Progress Series 247:75-84

VERMEIJ MJA, FRADE PR, JACINTO RIR, DEBRAT AO, BAK RPM (2007b) Habitat-related differences in population structure are associated with coral reproductive mode: A comparison between fringing reef and inland bay coral communities. Marine Ecology-Progress Series 351:91-102

WArNER ME, FITT WK, SCHMIDT GW (1996) The effects of elevated temperature on the photosynthetic

WILLIS BL, BABCOCK RC, HARRISON PL, WALLACE CC (1997) Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs 16:S53-S65

WRIGHT S (1965) The Interpretation of population-structure by F-statistics with special regard to systems of mating. Evolution 19:395-420

