Corals through the light: phylogenetics, functional diversity and adaptive strategies of coral-symbiont associations over a large depth range

Rodrigues Frade, P.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
REFERENCES

BAK RPM (1977) Coral reefs and theirzonation in the Netherlands Antilles. The American Association of Petroleum Geologists 4:3-16

Boehnlein JM, Santigo-Vazquez LZ, Kerr RG (2005) Diterpene biosynthesis by the dinoflagellate symbiont of the Caribbean gorgonian Pseudopterogorgia bipinnata. Marine Ecology-Progress Series 303:105-111

Brown BE, Downs CA, Dunne RP, Gibb SW (2002a) Preliminary evidence for tissue retraction as a factor in photoprotection of corals incapable of xanthophyll cycling. Journal of
Experimental Marine Biology and Ecology 277:129-144

BURLIS RH (1983) Uptake and assimilation of 15NH$_4^+$ by a variety of corals. Marine Biology 75:151-155

DARWIN CR (1859) On the origin of species by means of natural selection, or the preservation of

EXCOFFIER L, LAVAL G, SCHNEIDER S (2005) ARLEQUIN ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47-50

FITT WK, COOK CB (2001) The effects of feeding or addition of dissolved inorganic nutrients in maintaining the symbiosis between dinoflagellates and a tropical marine cnidarian. Marine Biology 139:507-517

FRADE PR, ENGLEBERT N, FARIA J, VISser PM, BAK RPM (2008a) Distribution and photobiology of Symbiodinium types in different light environments for three colour morphs of the coral Madracis pharensis: is there more to it than total irradiance? Coral Reefs 27:913-925

FRADE PR, DE JONGH F, VERMEULEN F, VAN BLEISWIJK J, BAK RPM (2008c) Variation in symbiont distribution between closely related coral species over large depth ranges. Molecular Ecology 17:691-703

FUKAMI H, BUDD AF, LEVITAN DR, JARA J, KERSANACH R, KNOWLTON N (2004a) Geographic differences in species boundaries among members of the Montastraea annularis complex based on
molecular and morphological markers. Evolution 58:324-337

REFERENCES
fluorescence rise kinetics. Photosynthesis Research 82: 59-72

Marine Science 57: 489-494

HINDERSTEIN LM, MARR JCA, MARTINEZ FA, DOWGIALLO MJ, PUGLISE KA, ZAWADA D, PYLE R (in
Coral Reefs

HIROSE M, KINZIE RA, HIDAKA M (2001) Timing and process of entry of zooxanthellae into oocytes

HIROSE M, YAMAMOTO H, NONAKA M (2008) Metamorphosis and acquisition of symbiotic algae in
planula larvae and primary polyps of Acropora spp. Coral Reefs 27:247-254

from reef-building corals. Marine Ecology-Progress Series 183:73-86

HOEGH-GULDBERG O, MUMBY PJ, HOOTEN AJ, STENECK RS, GREENFIELD P, GOMEZ E, HARVELL CD,
SALE PF, EDWARDS AJ, CALDEIRA K, KNOWLTON N, EAKIN CM, IGLESIAS-PRIETO R, MUTHIGA N,
and ocean acidification. Science 318:1737-1742

Marine Ecology-Progress Series 313:1-12

Reviews 84:1-17

of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora

HUANG D, MEIER R, TODD PA, CHOU LM (2008a) Slow mitochondrial COI sequence evolution at the
base of the metazoan tree and its implications for DNA barcoding Journal of Molecular
Evolution 66:167-174

HUANG HJ, WANG LH, CHEN WNU, FANG LS, CHEN CS (2008b) Developmentally regulated
localization of endosymbiotic dinoflagellates in different tissue layers of coral larvae.
Coral Reefs 27:365-372

Evolution 7:292-295

HUISMAN J, MATTHIS HCP, VISSEr PM, BALKe H, SIORON CAM, PASSARGe J, WEISSING FJ, MUR LR
Antonie van Leuwenhoek International Journal of General and Molecular Microbiology
81:117-133

HUNTER C, MORDEN CW, SMITH C (1997) The utility of ITS sequences in assessing relationships
among zooxanthellae and corals. Proceedings of the 8th International Coral Reef
Symposium 2:1599-1602

HUXLEY J (1942) Evolution: The Modern Synthesis, London (reprinted with new Introduction,
Science Editions, 1964)

IGLESIAS-PRIETO R, TRENCH RK (1994) Acclimation and adaptation to irradiance in symbiotic
dinoflagellates. I. Responses of the photosynthetic unit to changes in photon flux-density.
Marine Ecology-Progress Series 113:163-175

IGLESIAS-PRIETO R, TRENCH RK (1997a) Photoacclimation, photoacclimation and niche diversification
in invertebrate-dinoflagellate symbioses. Proceedings of the 8th International Coral Reef
Symposium 2:1319-1324

IGLESIAS-PRIETO R, TRENCH RK (1997b) Acclimation and adaptation to irradiance in symbiotic
dinoflagellates. II. Response of chlorophyll-protein complexes to different photon-flux
densities. Marine Biology 130:23-33

KAWAGUTI S (1944) On the physiology of reef corals VII. Zooxanthella of the reef coral is Gymnodinium sp., Dinoflagellata; its culture in vitro. Palao Tropical Biological Station Studies 2:675-679

LAJEUNESSE TC (2005) "Species" radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Molecular Biology and Evolution 22:570-581

LAJEUNESSE TC, TRENCH RK (2000) Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biological
REFERENCES

Bulletin 199:126-134
LEICHER JJ, WING SR, MILLER SL, DENNY MW (1996) Pulsed delivery of subthermocline water to Conch Reef (Florida Keys) by internal tidal bores. Limnology and Oceanography 41:1490-1501

Miller KJ, Ayre DJ (2008b) Population structure is not a simple function of reproductive mode and

MYERS RM, FISCHER SG, LERMAN LS, MANIATIS T (1985a) Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel-electrophoresis. Nucleic Acids Research 13:3131-3145

ODORICO DM, MILLER DJ (1997) Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria; Scleractinia): Patterns of variation consistent with reticulate evolution. Molecular Biology and Evolution 14:465-473

PRASAD KVSK, SABADHI PP (2004) Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into the chloroplasts. Plant Science 166:1197-1212

of the Workshop “Understanding the stress response of corals and *Symbiodinium* in a rapidly changing environment”, UNAM, Mexico

Santos SR, Coffroth MA (2003) Molecular genetic evidence that dinoflagellates belonging to the genus *Symbiodinium* Freudenthal are haploid. Biological Bulletin 204:10-20

Santos SR, Gutierrez-Rodriguez C, Lasker HR, Coffroth MA (2003b) *Symbiodinium* sp associations in the gorgonian *Pseudopterogorgia elisabethae* in the Bahamas: High levels of genetic variability and population structure in symbiotic dinoflagellates. Marine Biology 143:111-120

REFERENCES

151

THORNHILL DJ, KEMP DW, BRUNS BU, FITT WK, SCHMIDT GW (2008) Correspondence between cold tolerance and temperate biogeography in a Western Atlantic Symbiodinium (Dinophyta) lineage. Journal of Phycology 44:1126-1135

VAN OPPER MJH, WILLIS BL, VAN VUGT HWJA, MILLER DJ (2000) Examination of species boundaries in the *Acropora cervicornis* group (Scleractinia, Cnidaria) using nuclear DNA sequence analyses. Molecular Ecology 9:1363-1373

VAN OPPER MJH, PALSTRA FP, PIQUET AMT, MILLER DJ (2001a) Patterns of coral-dinoflagellate associations in *Acropora*: Significance of local availability and physiology of *Symbiodinium* strains and host-symbiont selectivity. Proceedings of the Royal Society of London Series B-Biological Sciences 268:1759-1767

VAN OPPER MJH, McDoNALD BJ, WILLIS B, MILLER DJ (2001b) The evolutionary history of the coral genus *Acropora* (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: Reticulation, incomplete lineage sorting, or morphological convergence? Molecular Biology and Evolution 18:1315-1329

VAN VEGHEL MLJ, BAK RPM (1993) Intraspecific variation of a dominant Caribbean reef building

VERMEIJ MJA, SAMPAYO E, BROKER K, BAK RPM (2003b) Variation in planulae release of closely related coral species. Marine Ecology-Progress Series 247:75-84

VERMEIJ MJA, FraDE PR, JacINTO RIR, DeBRot AO, BAK RPM (2007b) Habitat-related differences in population structure are associated with coral reproductive mode: A comparison between fringing reef and inland bay coral communities. Marine Ecology-Progress Series 351:91-102

WARNER ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic

WILLIS BL, BABCOCK RC, HARRISON PL, WALLACE CC (1997) Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs 16:S53-S65

WRIGHT S (1965) The Interpretation of population-structure by F-statistics with special regard to systems of mating. Evolution 19:395-420

REFERENCES