Unknitting the black hole: black holes as effective geometries

Messamah, I.

Citation for published version (APA):
Messamah, I. (2009). Unknitting the black hole: black holes as effective geometries

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CONTENTS

Preface 1

I From Black Holes to Microstates 11

1 Four Dimensional Black Holes 15
 1.1 Black Holes in General Relativity 15
 1.1.1 Black Holes 16
 1.1.2 Killing Horizons and Surface Gravity 18
 1.2 The Laws of Black Hole Mechanics 18
 1.2.1 Kumar Integrals 18
 1.2.2 Black Hole Laws 19
 1.3 Black Holes as Thermodynamical Objects 20
 1.3.1 A Free Scalar Field and Bogoliubov Transformations 20
 1.3.2 Hawking Radiation 23
 1.4 Consequences of the Black Hole Radiation 27
 1.4.1 Black Hole Evaporation and Information Loss 28
 1.4.2 Gravity as an Effective Description 28

2 The Fuzzball Machinery 29
 2.1 Black Holes of Interest to Us 30
 2.1.1 BPS-ness, Linearity and AdS/CFT 30
 2.1.2 Beyond AdS/CFT? 34
 2.1.3 The Guinea Pigs 35
 2.2 Black Hole Ensemble 37
 2.2.1 The No-Hair Theorem, Entropy and Geometry 37
 2.2.2 At Which Level Can we Trust Our geometries 38
 2.3 Phase Space Quantization 39
 2.3.1 Solution Space, Phase Space and the Symplectic Form 40
 2.3.2 Quantization 42
Contents

A.1 Squeezed States ... 157
A.2 Negative Energy Density 158

B A Quick Trip in Ten Dimensions 159
B.1 Ten-Dimensional Supergravity 159
 B.1.1 Type-IIA Supergravity 160
 B.1.2 Type-IIB Supergravity 160
B.2 D-Branes in Supergravity 161
 B.2.1 Electric and Magnetic D-Branes 162
 B.2.2 The Backreacted Dp-Brane 162
B.3 T and S Dualities ... 163
 B.3.1 T-Duality and Buscher Rules 163
 B.3.2 Type-IIB and S-Duality 163

C The D1-D5 Generating Function 165
C.1 Simple Phase Space Densities 166
C.2 The Monochromatic State 167
C.3 The Generic Thermodynamical Ensemble 168

D Calabi-Yau Manifolds and String Compactification 169
D.1 From Kähler to Calabi-Yau Manifolds 169
D.2 Cohomology of Calabi-Yau Manifolds 171
D.3 Compactification 171
 D.3.1 Some General Remarks on Compactification 172
 D.3.2 Type-IIA on a Calabi-Yau 174

E Adding Fermions 177
E.1 Calculating the determinant 177
E.2 Properties of $A(l)$ 178

F The Three-Center Solution Space 179

Bibliography 183
Summary 197
Samenvatting 201
Acknowledgements 207