Unknitting the black hole: black holes as effective geometries
Messamah, I.

Citation for published version (APA):
Messamah, I. (2009). Unknitting the black hole: black holes as effective geometries

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CONTENTS

Preface

From Black Holes to Microstates

1. **Four Dimensional Black Holes**
 - 1.1 Black Holes in General Relativity
 - 1.1.1 Black Holes
 - 1.1.2 Killing Horizons and Surface Gravity
 - 1.2 The Laws of Black Hole Mechanics
 - 1.2.1 Kumar Integrals
 - 1.2.2 Black Hole Laws
 - 1.3 Black Holes as Thermodynamical Objects
 - 1.3.1 A Free Scalar Field and Bogoliubov Transformations
 - 1.3.2 Hawking Radiation
 - 1.4 Consequences of the Black Hole Radiation
 - 1.4.1 Black Hole Evaporation and Information Loss
 - 1.4.2 Gravity as an Effective Description

2. **The Fuzzball Machinery**
 - 2.1 Black Holes of Interest to Us
 - 2.1.1 BPS-ness, Linearity and AdS/CFT
 - 2.1.2 Beyond AdS/CFT?
 - 2.1.3 The Guinea Pigs
 - 2.2 Black Hole Ensemble
 - 2.2.1 The No-Hair Theorem, Entropy and Geometry
 - 2.2.2 At Which Level Can we Trust Our geometries
 - 2.3 Phase Space Quantization
 - 2.3.1 Solution Space, Phase Space and the Symplectic Form
 - 2.3.2 Quantization
Contents

2.4 Coarse Graining .. 43
 2.4.1 Coarse Graining as an Average 43
 2.4.2 Another Possibility: Typical States 44

II D1-D5 System and Coarse Graining 45

3 The Lunin-Mathur (LM) Geometries 49
 3.1 The Five Dimensional “Small” Black Hole 49
 3.1.1 The Set-Up 50
 3.1.2 The Geometry 50
 3.2 The Lunin-Mathur (LM) Geometries 52
 3.2.1 Switching to the FP System 52
 3.2.2 The LM Geometries 52
 3.3 The Symplectic Form and Quantization 53
 3.3.1 The Symplectic Form 54
 3.3.2 Quantization 55

4 Simple Ensembles and Their Coarse Graining 57
 4.1 Interlude: Phase Space Densities 58
 4.1.1 Why Phase Space Densities? 58
 4.1.2 Wigner vs Husimi Distribution 59
 4.2 Mapping States to Geometries 61
 4.2.1 From States to Geometries 61
 4.2.2 Avoiding Red Traffic Lights 63
 4.3 A First Look at Thermodynamical Ensembles 69
 4.4 The Survival of the No-Hair Theorem 71
 4.5 Thermal Ensembles and Condensation 73
 4.6 The “Small” Black Ring 76
 4.6.1 Describing the “Condensate” Ensemble 76
 4.6.2 The Small Black Ring Effective Geometry 77
 4.6.3 Avoiding the No-Hair Theorem 78
 4.7 The Conical Defect Metric 79

III Towards Macroscopic Black Holes in the Fuzzball Realm 83

5 Black Constellations in Four Dimensions 87
 5.1 From Ten to Four Dimensions 88
 5.1.1 Walking the Path of Reduction 88
 5.1.2 The Special Kähler Geometry 90
 5.2 Spherical Symmetry and Attractor Flow 93
Contents

5.2.1 Supersymmetry and Attractor Flow 93
5.2.2 The One Centered Black Hole 95
5.3 Bubbles and Bound Black Holes 97
 5.3.1 More than One Center 97
 5.3.2 Useful Properties ... 98
5.4 BPS States Counting .. 100
 5.4.1 The Family Tree ... 100
 5.4.2 Missing States: Wall Crossing 102

6 Setting the Stage for Fuzzballs 105
 6.1 From the Symplectic Form to Quantization 106
 6.1.1 Open Strings and Symplectic Form 108
 6.1.2 Kähler Geometry and Geometric Quantization 110
 6.2 Quantization at Work ... 114
 6.2.1 Behind the Scene: Toric Kähler Manifolds 115
 6.2.2 Inviting Fermions to the Party 119
 6.2.3 Treasure Hunt: Degeneracy 120
 6.3 Simple Bound Black Hole Systems 121
 6.3.1 The Two-Center Case 122
 6.3.2 The Three-Center Case 123
 6.3.3 Comparison to the Split Attractor Flow Picture 129
 6.4 Dipole Halos .. 131
 6.4.1 Meet the Dipole Halo 132
 6.4.2 Degeneracy Using Attractor Tree 135
 6.4.3 Degeneracy Using Toric Techniques 137
 6.5 Scaling Solutions and Fuzzballs 140
 6.5.1 D6-D6-D0 Crush and its Quantization 141
 6.5.2 Not Enough States 142
 6.5.3 Beyond Supergravity? 143
 6.6 Large Scale Quantum Effects 145

IV Conclusion and Discussion .. 149

7 Conclusions ... 151
 7.1 So Far so Good ... 151
 7.2 Looking to the Future 153

V Appendices .. 155

A Squeezed States and Negative Energy Density 157