Bibliography

[31] Berman, P., “A $d/2$ Approximation for Maximum Weight Independent

Bibliography

[88] Dobiński, G., “Summirung der Reihe \(\sum \frac{n^m}{m!} \) für \(m = 1, 2, 3, 4, 5, \ldots \)”, *Archiv der Mathematik und Physik* 61 (1877), pp. 333–336. Cited on p. 62

gle Tiling and Packing” in Proceedings of the Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 1998, San Francisco,
California, United States, January 25-27, 1998, Association for Com-

Cited on p. 162, 179

[166] Kiess, W., Mauve, M., “A survey on real-world implementations of mo-
Cited on p. 3

of Intersection Graphs of Convex Sets in the Plane”, The Electronic

[168] Kloks, T., Treewidth: Computation and Approximation, Lecture Notes

über die Verhandlungen der Sächsischen Akademie der Wissenschaften
Leipzig, Mathematische-Physische Klasse Sitzung vom 11. Februar 1935,

[171] Kozyrev, V.P., Yushmanov, S.V., “Representations of graphs and
networks (coding, layouts and embeddings)”, Journal of Mathematical
Sciences 61:3 (September 1992), pp. 2152–2194, (translated from
Itogi Nauki i Tekhniki, Seriya Teoriya Veroyatnostei, Matematicheskaya
on p. 18, 19

[172] Kratochvíl, J., “String graphs. II. recognizing string graphs is NP-hard”,
Cited on p. 20

[189] Lekkerkerker, C.G., Boland, J.C., “Representation of a finite graph by a set of intervals on the real line”, Fundamenta Informaticae 51 (1962), pp. 45–62. Cited on p. 18

[192] Li, X.Y., Wang, Y., “Simple approximation algorithms and PTASs for various problems in wireless ad hoc networks”, Journal of Parallel and

[224] Pergel, M., “Recognition of Polygon-Circle Graphs and Graphs of Interval Filaments Is NP-Complete” in Brandstädt, A., Kratsch, D., Müller,

