Framework for path finding in multi-layer transport networks

Dijkstra, F.

Publication date
2009

Document Version
Final published version

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction
1.1 Computer Networks 1
1.2 e-Science Applications 2
1.3 Hybrid Networking 3
1.4 Research Overview 4
1.5 Thesis Overview 8
1.5.1 Papers and Topics Covered 8
1.5.2 Research Question 8
1.5.3 Methodology 10
1.5.4 Chapter Outline 10

2 Optical Exchanges 13
2.1 Network Terminology 14
2.1.1 Photonic Networks 14
2.1.2 Optical Networks and Transport Networks 14
2.1.3 Hybrid Networks 15
2.2 Exchanges 16
2.2.1 Peering, Exchanges and Members 16
2.2.2 Classification 17
2.2.3 Internet Exchanges 18
2.2.4 Internet versus Optical Exchanges 19
2.3 Incompatibilities 21
2.3.1 Progressing Technology 21
2.3.2 Impact on Optical Exchanges 22
2.3.3 Services .. 23
2.3.4 Control Plane Services 24
2.4 Ownership .. 25
 #### 2.4.1 Owner, Operator and Users 25
 #### 2.4.2 Open Control 26
 #### 2.4.3 Domains .. 27
2.5 Transparency .. 27
2.6 Conclusion ... 28

3 Going in Loops ... 31
 #### 3.1 Algorithms ... 32
 #### 3.1.1 Breadth-first and Depth-first 32
 #### 3.1.2 Bellman-Ford and Dijkstra Algorithms 33
 #### 3.1.3 Constrained Shortest Path First 33
 #### 3.1.4 Path-Constraint Algorithms 33
 #### 3.1.5 k-Shortest Path 34
 #### 3.2 Routing Protocols 34
 #### 3.2.1 Distributed Path Finding 34
 #### 3.2.2 The Internet 35
 #### 3.2.3 Public Switched Telephone Service 35
 #### 3.2.4 Generalized Multiprotocol Label Switching ... 36
 #### 3.3 Path Finding in Multi-Layer Networks 37
 #### 3.3.1 Practical Example 39
 #### 3.3.2 Path-Constrained Problem 43
 #### 3.3.3 Graphs .. 44
 #### 3.3.4 Multi-Layer Representations 46
 #### 3.4 Path Finding in Transport Networks 48
 #### 3.5 Multi-Stage Path Finding 49
 #### 3.6 Conclusion .. 51

4 Multi-Layer Network Model 53
 #### 4.1 Introduction ... 53
 #### 4.2 Related work ... 54
 #### 4.2.1 Generalized Multi-Protocol Label Switching 56
 #### 4.2.2 Common Information Model 56
 #### 4.3 ITU-T G.805 Concepts 56
 #### 4.3.1 Functional Elements 57
 #### 4.3.2 Connection Point and Layer 58
 #### 4.3.3 Connections 58
 #### 4.3.4 Adaptation and Termination 59
4.3.5 Multiplexing .. 61
4.3.6 Connection Partitioning 61
4.4 Network Model .. 62
 4.4.1 Mapping to Functional Elements 63
 4.4.2 Notation .. 65
 4.4.3 Channel Labels ... 66
 4.4.4 Capability Model ... 68
 4.4.5 Validation of Network Connections 69
 4.4.6 Well Typed Adaptations 72
4.5 Validation .. 73
4.6 Extensions of the Model 76
 4.6.1 Layer Properties ... 77
 4.6.2 Inverse Multiplexing 77
 4.6.3 Broadcast and Multicast 78
 4.6.4 Physical Layer Properties 78
 4.6.5 Uniqueness of Layers 79
 4.6.6 Tunnels .. 79
 4.6.7 Uniqueness of Adaptations 79
4.7 Conclusion .. 80

5 Network Description Language 81
 5.1 Introduction ... 81
 5.2 Introduction to the Semantic Web 82
 5.2.1 Resource Description Framework 82
 5.2.2 RDF Schemata ... 83
 5.2.3 RDF versus XML ... 85
 5.3 Network Description Language 85
 5.3.1 Topology Schema 85
 5.3.2 Domain Schema ... 87
 5.3.3 Distributed Repositories 90
 5.3.4 Addressing ... 90
 5.3.5 Extensibility ... 91
 5.4 Applications ... 91
 5.4.1 Visualisation using RDF tools 91
 5.4.2 Path Finding and Google Mash-up 92
 5.4.3 Lightpath Planning in SURFnet6 93
 5.4.4 Lightpath Monitoring in NetherLight 94
 5.5 Conclusion ... 94
Contents

6 Multi-Layer NDL

6.1 Goal ... 95
 6.1.1 Scope .. 95
 6.1.2 Technology Independence .. 96
6.2 NDL Schemata .. 97
 6.2.1 NDL Topology and Domain Schema 99
 6.2.2 NDL Layer Schema ... 99
 6.2.3 NDL Capability Schema .. 100
6.3 Technology Schemata ... 103
 6.3.1 Encodings .. 103
 6.3.2 Layers and Labels .. 105
 6.3.3 Wavelength Division Multiplexing 107
 6.3.4 Signal Degeneration .. 108
 6.3.5 Shared Risk Link Groups .. 109
 6.3.6 Packet Layers ... 109
 6.3.7 Ethernet ... 109
6.4 Conclusion .. 110

7 Path Finding Algorithms ... 111
7.1 Introduction ... 111
7.2 Terminology ... 112
 7.2.1 Definition of a Network ... 112
 7.2.2 Granularity .. 114
 7.2.3 Technology Stacks .. 114
 7.2.4 Definition of a Graph ... 117
7.3 Multi-layer Network Model .. 118
 7.3.1 Example Network ... 118
 7.3.2 Device-Based Network Description G_p 119
 7.3.3 Layer-Based Network Description G_l 120
 7.3.4 Stack-based network description G_s 122
7.4 Path Selection in G_l .. 128
7.5 Path Selection in G_s .. 132
7.6 Extension to Multiple Labels 135
 7.6.1 Extension to Graph G_l 136
 7.6.2 Extension to Graph G_s 138
7.7 Discussion and Comparison .. 140
 7.7.1 Commonalities .. 140
 7.7.2 Differences .. 141
 7.7.3 Time Complexity .. 142
7.8 Conclusion ... 145
8 Path Finding Implementation

8.1 Modelling the Network .. 147
8.2 Software Framework ... 150
8.3 Path Finding Software ... 151
 8.3.1 Path Finding in G_l 151
 8.3.2 Software Logic .. 151
 8.3.3 Path Walk ... 152
 8.3.4 Switch Matrix Properties 153
 8.3.5 Multi-Domain scalability 155
 8.3.6 Result ... 155
 8.3.7 Ambiguity of Labels 156
8.4 Optimization ... 157
8.5 Conclusion ... 161

9 Discussion and Conclusion 163

9.1 Context and Goals .. 163
9.2 Contributions to the Field 163
9.3 Strengths and Weaknesses 164
 9.3.1 Architecture .. 164
 9.3.2 Modelling .. 165
 9.3.3 Path finding ... 167
9.4 Claims and Statements ... 168
9.5 Conclusion ... 170

A Algorithm Time Complexity 171

A.1 Running Time of Multi-Layer Path Finding 171
A.2 Multi-Layer Dijkstra’s Algorithm 172
A.3 Running Time of Multi-Layer-Dijkstra 173
A.4 Running Time of Multi-Layer-Breadth-First 174
A.5 Running Time of Multi-Layer-k-Shortest-Path 177

Bibliography .. 181

B.1 List of Author’s Publications 181
 B.1.1 Covered in this Thesis 181
 B.1.2 Other Publications 183
B.2 References to Scientific Publications 184
B.3 Technical References .. 189
 B.3.1 Normative References (Standards) 189
 B.3.2 Informative References (Technical Reports) 195
B.4 Miscellaneous References 197
Contents

Samenvatting 199
Abstract 201
Acknowledgment 203
Biography 207