UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Framework for path finding in multi-layer transport networks

Dijkstra, F.

Publication date
2009

Document Version
Final published version

Link to publication

Citation for published version (APA):
Dijkstra, F. (2009). Framework for path finding in multi-layer transport networks.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:23 Sep 2021

https://dare.uva.nl/personal/pure/en/publications/framework-for-path-finding-in-multilayer-transport-networks(a610da85-de2b-4cc1-b1d4-5ad57538b2b1).html

Going in Loops: Path Finding
in Multi-Layer Networks

This chapter is based on A Path Finding Implementation for Multi-Layer
Networks by F. Dijkstra, J.J. van der Ham, P. Grosso, and C.T.A.M. de
Laat [a13].

The provisioning of circuit switched network connections is a three-step pro-
cess:

Routing: the distribution of topology and network state across different do-
mains;

Path finding: the calculation of the shortest viable path;

Signalling: the provisioning of the actual network elements across the chosen
path.

A routing protocol is a network protocol that is responsible for distributing
information about the state of a local network or node to neighbouring net-
works or nodes. A path finding algorithm will use that information to calculate
a shortest path.

This chapters also articulates the main research question of this thesis:

Is it possible to use the same path finding algorithms in
multi-layer transport networks as those in use for the In-
ternet and telephony networks? If not, what kind of al-
gorithm is required?

-

CHAPTER 3. GOING IN LOoOPS

In order to answer this question, we describe a few common protocols in
section 3.1, and summarise which algorithms are used in the Internet and
telephony networks work in section 3.2. Section 3.3 describes how this differs
from path finding in multi-layer networks. Sections 3.4 and 3.5 discuss the
different kind of constraints in path finding. Section 3.6 ends this chapter by
summarising the conclusions.

3.1 Algorithms

This section describes the most common path finding algorithms in use [pY],
the shortest path first (SPF) algorithms. All described algorithms find a path
in a graph.

3.1.1 Breadth-first and Depth-first

Breadth first and depth first search algorithms are two distinct approaches to
walking down a tree graph, given the root of the tree.

Figure 3.1: A simple tree graph

Breadth first search algorithm starts with the root, and first traverses the
direct child nodes, before traversing the child nodes of the child nodes. In the
tree of figure 3.1, it would traverse the vertices in the order A, B, D,C, E, F.

Depth first search algorithm starts with the root, and traverses child nodes
recursively. It first traverses an entire branch of one child before proceeding
to another child. In the tree of figure 3.1, it would traverse the vertices in the
order A,B,C,E,D,F.

3.1. ALGORITHMS

3.1.2 Bellman-Ford and Dijkstra Algorithms

The Bellman-Ford [p3] and Dijkstra [p11] algorithms are both single source
shortest path first algorithm published in the late 1950s, and are still in wide
use today [pY].

Both algorithms find all shortest paths in a graph, given a certain source
vertex. The Bellman-Ford algorithm can deal with vertices with negative weight,
while the Dijkstra algorithm can not. The Bellman-Ford algorithm scales
with O(|E| x |V]), which is worse than the scalability of Dijkstra’s algorithm
O(|E| xlog|V]), with |V| the number of vertices in a graph and | E/| the number
of edges in a graph.

3.1.3 Constrained Shortest Path First

Constrained Shortest Path First (CSPF) algorithms find shortest path ful-
filling a certain constraint. For example, only edges with a minimal available
bandwidth can be part of the shortest path. The solution is to prune all edges
that do not meet the constraint from the graph before calculating the shortest
path.

Kuipers et al. published a performance comparison of different constrained
shortest path first algorithms [p20].

We have not defined what “shortest” path means. Usually, either the hop
count is used (the number of edges or number of vertices in a path), or each
edge has a given metric, the “weight” of an edge.

All algorithms above assume that a subsection B ~» C' of a shortest path
A ~ D is also the shortest path from B to C. This is true if the total metric
of a path is the sum of the metric of each individual edge. Kuipers and Van
Mieghem developed the SAMCRA algorithm, which can deal with multiple
constraints, where this assumption does not have to be valid [p19, p26].

3.1.4 Path-Constraint Algorithms

Constrained shortest path first algorithms only deal with a specific kind of
constraint: link-constraints that apply to a particular edge. These constraints
can be filtered out in the initialisation phase of the algorithm.

Path-constraints are constraints that are based on a particular combination
of multiple edges. This type of constraints can not be solved in the initialisa-
tion phase of an algorithm because it does not apply to single edges but to
combinations of edges. For example, it may be allowed to use the edge A — B,
but not in combination with the edge B — C.

CHAPTER 3. GOING IN LOoOPS

We distinguish between these two constraints in this thesis by referring
to link-constrained path finding algorithms and path-constrained path finding
algorithms.

Examples of path-constrained algorithms can be in a routing problem with
different forms of transportation. For example, it may always be allowed to
travel from A to B on a map by foot, but it is only possible to continue the
travel from B by car if there is a car parked at B. Another practical example
of such algorithms is in analysing formal languages [p2]. For example, the code
of a programming language may only contain an ‘end’ statement if it was first
preceded by a corresponding ‘begin’ statement

3.1.5 k-Shortest Path

Usually, we are only interested in the shortest path between two nodes. How-
ever, in some circumstances, it is desirable to find a list of shortest paths.
An algorithm that finds the first k& shortest paths is called a k-shortest path
algorithm.

3.2 Routing Protocols

3.2.1 Distributed Path Finding

The algorithms in the previous section take a graph as input. Thus, before
applying an algorithm, it first needs to have full topology knowledge. While
this may be feasible for path finding within a domain, it does not scale to a
worldwide solution.

Algorithms can only be applied on a world-wide scale if they are able to do
path finding without having full topology knowledge. A common solution is to
let each node make a local path finding decision based on a limited amount of
information, but in such a way that the final result is still a shortest path.

There are three common routing protocols in use on the Internet: link-state
routing, path distance routing and path vector routing.

All these routing protocols build a routing table. This table, which is dif-
ferent for each node, contains a list with all destinations and the next hop for
the shortest path to that destination.

A link state routing protocol will distribute all topology knowledge. With
that information, each node can apply an exact algorithm such as Dijkstra’s
algorithm for a path finding request, and find the complete end-to-end path.

3.2. RouTING PROTOCOLS

A host using the distance vector routing protocol does not distribute the
full topology knowledge between neighbours, but only announces the distance
in which it can reach a certain destination. A host that receives distance in-
formation to a particular destination from multiple neighbours only needs to
pick the neighbour with the shortest distance. Distance vector routing proto-
cols are a variant of the Bellman-Ford algorithm, and are sometimes referred
to as the Ford-Fulkerson algorithm [p12]. Dijkstra’s algorithm can not be used
with a distance vector protocol.

The path vector routing protocol is very similar to the distance vector
routing protocol, but distributes the information about the shortest path next
to the distance. The advantage is that this allows easy detection of cycles, and
solves the problem that the slow convergence with the distance vector problem
if a link goes down.

3.2.2 The Internet

The routing protocol between domains on the Internet, the Border Gateway
Protocol (BGP) [s24,], uses a path vector algorithm. It keeps a routing
table, a list of destinations with the associated next hop. Before a route is
added to the routing table, and before it is announced to neighbours, it is
filtered using a policy.

Multiple protocol standards exist to distribute routing information within

a domain, each with a different routing protocol. OSPF [s10] and IS-IS [s7]
are link-state routing protocols, while RIP [s11] is a distance vector routing
protocol.

3.2.3 Public Switched Telephone Service

The telephony network reduces the information required by the routing al-
gorithm by standardising on a single technology, so there are no incompatib-
ilities. Scheduling constraints are solved using a route congestion statue, and
by massively overprovisiong the system.

The routing algorithm in Signalling System 7 (the control plane of the
telephone network) uses a routing table with prefixes (of the telephone num-
ber) [s51,]. The routing protocol is similar to the is approach is similar
to the distance vector routing protocol. Policies (e.g. transfer-prohibited) are
distributed across a limited set of nodes.

Ia

CHAPTER 3. GOING IN LOoOPS

3.2.4 Generalized Multiprotocol Label Switching

Generalized Multiprotocol Label Switching (GMPLS) is a set of protocols un-
der development by the Internet Engineering Task Force (IETF) for a control
plane that supports data forwarding based on labels [s20]. GMPLS supports
switching at different technology layers, and specifically mentions time division
multiplexing (TDM), wavelength and spatial (fibre) switching.

The GMPLS framework works as follows:

¢ A routing protocol distributes topology knowledge across the network.
o This information is stored in Traffic Engineering Databases (TED).
o Users and applications can send path setup requests to the network.

o A path computation element (PCE) in the network takes responsibility
for the computation of the actual network connection [s27].

e The signalling of the decided path to the network elements that do the
actual provisioning is done with a signalling protocol.

While this framework does not enforce a specific routing or signalling
protocol, the de-facto standards are Traffic Engineering (TE) extensions to
Open Shortest Path First (OSPF) and Resource Reservation Protocol (RSVP),
OSPF-TE and RSVP-TE respectively [s23, s18]. The path computation ele-
ments (PCE) framework in GMPLS also does not enforce a specific path find-
ing algorithm [s27].

GMPLS describes the network topology using OSPF-TE Link State An-
nouncements (LSAs). The connections through this network are built using
Label Switched Paths (LSPs), which reside on a single layer. All hops of an
LSP can be described using a Record Route Object (RRO) in RSVP-TE.

Since GMPLS uses OSPF-TE, the full topology information is distributed
across all nodes. Without modifications this does not scale for larger networks,
let alone multi-domain scenarios. RFC 4655 says (section 4.9.1) “PCE is not
considered to be a solution that is applicable to the entire Internet. That is,
the applicability of PCE is limited to a set of domains with known relation-
ships.” [s27, 528, s30].

GMPLS deploys three mechanisms to confine scalability within reasonable
limits:

Choice of labels during signalling: Instead of distributing information about
available labels in the routing protocol, a list of k-shortest paths is chosen
without this information. During the signalling phase, the ReSerVation

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

Protocol (RSVP) announces the available labels, such as wavelengths or
VLAN tags, to its neighbours. The given paths are then tried in order
until a path is found where an unused label is available.

Loose hops: The path computation can be done per-layer. Instead of provid-
ing a list of strict hops, it is possible to use loose hops in the Explicit
Route Object (ERO), and only specify hops on the same layer, and let
another path computational element (PCE) deal with the hops on an-
other layer.

Abstraction of domains: The size of the graph can be reduces by abstract-
ing the topology information per domain or per OSPF area. For example,
the DRAGON project [p24] contains a Network Aware Resource Broker
(NARB) that abstracts the topology in either a set of edge nodes (nodes
connected to a neighbouring domain) or even one node per domain [t3].

Unlike OSPF, IS-IS, RIP en BGP, the network model of GMPLS is not
based on a graph but mostly on ideas in the ITU-T, such as G.805 and
G.800 [s42, s41].

3.3 Path Finding in Multi-Layer Networks

The Internet and the telephony network as examined in the previous section are
essential single layer networks with very few incompatibilities (the distinction
between IPv4 and IPv6 is a notable exception). GMPLS deals with complexity
by assuming that incompatibilities are rare: it only applies to single or few
domains, with one or only few different technologies, and it uses k-shortest
path heuristics to deal with potential incompatible labels.

The use of multi-layer networks leads to additional technology constraints.
Technology constraints are potential incompatibilities such as incompatible
packet size leading to packet loss, a laser transmitting light at a wavelength
undetectable by a receiver, or two devices supporting a different adaptation,
the encapsulation of data of one layer into another layer.

These technology constraints are important for two reasons. First of all, we
argued in section 2.3 that technology constraints will continue to exist. Ideally,
transport protocols will evolve to a single de-facto standard, eliminating in-
compatibilities. However, as technologies evolve over time, incompatibilities
will continue to exist. This surfaces in multi-domain networks, as engineers in
different domains choose different technology standards. For example, one net-
work may provide dynamic switching capabilities using MPLS, while another

Ia

CHAPTER 3. GOING IN LOoOPS

network may provide dynamic switching capabilities using Ethernet PBB-TE,
and a third network using DWDM lightpaths. So as long as technologies evolve,
multi-domain networks are also multi-layer networks.

Secondly, technical incompatibilities for multi-layer networks can exist between

two geographically separated domains. They are not limited to domains dir-
ectly connected with each other, and thus can not be solved locally, but needs
to be announced across multiple domains. We will see an example of such a
geographically separated incompatibility in the example later in this section.

At the beginning of this chapter, the question was raised if it is possible
to use the same path finding algorithms in multi-layer transport networks
as those in use for the Internet and telephony networks. The Internet and
telephony networks rely on graph theory for modelling and algorithms that
find a shortest path through a graph in polynomial time.

We have not yet given an exact problem statement for path finding in
multi-layer networks, as currently no all-encompassing model for multi-layer
networks exists (chapter 4 will define such a model). For now, all we know
is if graph theory and shortest-path algorithms in graphs are to be sufficient
to be used in multi-layer networks, they must deal with dynamic capabilities
as described in section 2.3.3 and technology constraints such as incompatible
packet size, lasers with different wavelength, etc. We will now claim that graph
theory and algorithms in graphs are not sufficient to deal with this.

First of all, graphs can not be used for path finding in multi-layer
networks. To be precise, we claim that graphs can not be used for path finding
in multi-layer networks, if it is required that (1) the outcome of the path finding
algorithm is sufficient to reconstruct the original path in the network; (2) the
graph can be created from the actual network in polynomial time; and (3) a
path finding algorithm as discussed in section 3.1 can be used.

A network is not a graph. A graph is merely a representation of a net-
work, and it is possible to map the same network onto multiple graphs. This
distinction is causes the three conditions in the above claim.

Secondly, it is not possible to use existing path finding algorithms
as used on the Internet and telephony network for multi-layer net-
works. To be precise, we claim that link-constrained algorithms are not
sufficient for path finding in multi-layer networks, if links are 1:1
mapped to edges, but that path-constrained algorithms are sufficient
for path finding in multi-layer networks.

The above claims are proven in the following subsections.

The root of both claims is that path finding in single layer networks is a
problem in complexity class P, that is, a decision problem that is verifiable
in polynomial time by a non-deterministic Turing machine. Algorithms like

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

breadth first search and Dijkstra are non-deterministic Turing machines, and
not only verify but find the solution in polynomial time (their running time
is O(n) and O(n x log(n)) respectively, with n the number of vertices in the
graph). On the other hand, path finding in multi-layer networks is a NP-
hard problem, that is, a decision problem whose time-complexity is at least
as large of that of NP-complete problems. In a joint paper, Kuipers recently
proved that the 3SAT problem can be mapped onto the multi-layer path finding
problem [a12]. Since 3SAT is a known NP-complete problem, this proves that
that the multi-layer path finding problem is NP-Hard. Thus, path finding in
a single layer network belong to a different complexity class (P) than
path finding in a multi-layer network (NP-hard). The exact complexity
class to which this problem belong is yet unknown, and will depend on the
exact formulation of the multi-layer path finding problem. The problem to
find a path in a multi-layer network shorter than a given length is easy to
verify, making that problem NP-complete. The problem to find the shortest
path in a multi-layer network may be harder to verify. That problem has either
NP-complete, EXPTIME or NEXPTIME complexity.

3.3.1 Practical Example

We first turn to our original question, is it possible to use the same path
finding algorithms in multi-layer transport networks as those in use for the
Internet and telephony networks? We claim that this is not true. path finding
algorithms in use for the Internet and telephony networks are based on graphs,
as described in section 3.1. Each edge in these graphs represents a single links
in the network. The essence of path finding algorithms in graphs, is that a
shortest path can not contain cycles in the graph. If the existing algorithms
can be used in a multi-layer network, this means that no shortest path exists
which the same link twice.

We will now give a counter-example where the shortest path does traverse
the same link twice.

Figure 3.2 introduces an example network, which is used throughout the
remainder of this thesis. Each circle in the picture represents an operational
network domain. The domains are interconnected by links: the edges in the
figure. Each domain is a participant in the Global Lambda Integrated Facility
(GLIF). University of Amsterdam and Université du Quebec are universities,
CAnet is a National Research and Education Network (NREN), and StarLight,
MAN LAN and NetherLight are optical exchanges. All these domains collab-
orate to provide researchers with circuit switched connections, the lightpaths.

While this example is based on a historic scenario, the topology is modified

CHAPTER 3. GOING IN LOoOPS

can adapt GE in STS-24c

Université
du
Quebec

CA*net
Canada

University of
Amsterdam

0C-192
(87 free)

0c-192 GE

(22 free) 2x OC-192

(63 free)

StarLight
Chicago

MAN LAN
New York

NetherLight
Amsterdam

0C-192
(38 free)

can adapt GE in STS-24c or STS-3c-7v can adapt GE in STS-3c-7v

Figure 3.2: Ezample of a multi-layer and multi-domain network.

to emphasise our point, and the mentioned incompatibilities are not present
at these specific domains in real-life.

The network in the example is not only a multi-domain network, but also
a multi-layer network. The connection between the Université du Quebec and
CAnet, as well as the connection between the Universiteit van Amsterdam and
NetherLight is a Gigabit/second Ethernet (GE) connection.

While Ethernet is a common technology in domains and between universit-
ies and their access network, the international connections are currently mostly
based on SONET and SDH. These technologies provide the monitoring cap-
abilities that Ethernet lacks, but which are required for such long distances.
The Ethernet packets are transported over the SONET/SDH network. This
encapsulation of data of one layer (Ethernet) in another layer (SONET) is
called adaptation. The extraction of the data is called de-adaptation.

The links in SONET and SDH are optical carriers (OC), and the OC-192
variant is divided in 192 timeslots, referred to as STS channels. The total
capacity of an OC-192 connection is 9.8 Gigabit/second, and each timeslot is
51 Megabit/second. 51 Megabit/second is less than the 1 Gigabit/second for
Gigabit Ethernet, so each Gigabit Ethernet connection needs to be packed in
multiple STS channels.

There are at least five different standards to encapsulate Gigabit Ethernet
in STS channels'. CAnet supports a Cisco-developed variant that can embed

LGE over STS3c-7v/VC4-7v using GFP-F [545]; GE over STS-24c using LEX [s9]; GE
over STS-24c¢ using Cisco HDLC [s57]; GE over STS-24c using PPP/BCP [s19]; GE over
STS-24c using Ethernet in HDLC framing over PPP over SONET [s8, s13]; and GE over

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

Gigabit Ethernet in 24 concatenated STS channels (an ST'S-24c) [s57]. Neth-
erLight supports a ITU-developed variant called Generic Framing Procedure
(GFP) [s45] which embeds Gigabit Ethernet in 7 VC-4 containers, each in 3
concatenated STS channels: 21 STS channels in total (an STS-3c¢-7v). Star-
Light supports both methods to adapt Ethernet in STS channels.

In this example, an application wants to have a Gigabit/second Ethernet
(GE) connection between the Université du Quebec in Montreal (Canada)
and the University of Amsterdam (the Netherlands). This can be achieved by
creating a switched circuit through a set of the interconnected networks. Not
all 192 STS channels in this example are available. The numbers next to the
links show how many channels are free.

can adapt GE in STS-24c

Université
du
Quebec

University of

CA*net
81 Amsterdam

(87 free)

(22 free) 2x 0C-192
(63 free) ﬂ
StarLight VetherLight
Chicago New York Amsterdam

(38 free)

can adapt GE in STS-24c or STS-3c-7v can adapt GE in STS-3c-7v

Figure 3.3: An invalid network connection: the adaptation of gigabit Ethernet
(GE) in 24 STS channels (STS-24c) is incompatible with the adaptation of
gigabit Ethernet in 21 STS channels (STS-3¢-Tv).

If we would treat figure 3.2 as a graph, the shortest path from the Université
du Quebec to the University of Amsterdam would traverse CAnet, MAN LAN
and NetherLight respectively, as shown in figure 3.3. However, in practice this
would be a non-functioning network connection since the adaptation performed
at CAnet, which adapts the GE in 24 STS channels, is incompatible with the
adaptation of GE in 21 STS channels, as performed in NetherLight.

In this example network, StarLight is able to convert gigabit Ethernet (GE)
in 24 STS channels (STS-24c) to gigabit Ethernet in 21 STS channels (STS-
3c-7v). Nevertheless, the network connection from Université du Quebec via
CAnet, StarLight, MAN LAN, and NetherLight to the University of Amster-
dam, as shown in 3.4, is also non-functioning: there are only 22 STS channels

STS-24c using PPP [s13]. This ignores another four variants that use STS3c-8v/VC4-8c
instead of STS-24c using VCAT [s47]

CHAPTER 3. GOING IN LOoOPS

can adapt GE in STS-24c

Université
du
Quebec

University of
Amsterdam

2x 0C-192
(63 free)

(38 free)

can adapt GE in STS-24c or STS-3c-7v can adapt GE in STS-3c-7v

Figure 3.4: An invalid network connection: there are only 22 STS channels
available between CAnet and StarLight, while 24 are required.

available between CAnet and StarLight, while 24 are required.
can adapt GE in STS-24c

Université CA*net University of

Quilé)ec ‘A anada Amsterdam

0C-192

0C-192 (87 free)

(22 free) \ 2x 0C-192
’ \ (63 free) l‘
MA NetherLight

Amsterdam

(38 free)

can adapt GE in STS-24c or STS-3c-7v can adapt GE in STS-3c¢-7v

Figure 3.5: The shortest valid network connection from Université du Quebec
to University of Amsterdam through the example network of figure 3.2.

In fact, the shortest functional path between the Université du Quebec
and the University of Amsterdam is shown in figure 3.5, and traverses the link
between CAnet and MAN LAN twice. Once as Gigabit Ethernet in 24 STS

O channels, and the second time as Gigabit Ethernet in 21 STS channels.

If we define a ‘loop’ in a network connection as a network connection that
traverses the same physical link twice, then we can say that the shortest net-
work connection between the Université du Quebec and the University of Am-
sterdam has a loop.
a0 / So we now have a multi-layer network where the shortest path does traverse
N7 the same link twice. This proves our claim that the algorithms used in the

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

Internet and telephony network can not be used for path finding
in multi-layer transport networks, if links in the network are 1:1
mapped to edges in the graph.

3.3.2 Path-Constrained Problem

We earlier mentioned that path finding in a single layer network is a problem
in complexity class P, while path finding in a multi layer network is a NP-hard
problem.

Fundamentally, path finding in multi-layer networks contains conditional
constraints based on the chosen path. In the given example, it is only pos-
sible to extract Ethernet data from the SONET layer if the Ethernet data
was earlier embedded in the SONET layer with the same adaptation function.
A corresponding problem is travel problem with multiple transport vehicles
where you can always depart by bus or train from Amsterdam central sta-
tion, but only by bike if you somehow first managed to get your bike at the
station. This means that path finding in multi-layer networks requires a path-
constrained algorithm. The algorithms in use for single layer networks such as
the Internet and telephony network are link-constrained algorithms. This is
the fundamental reason why path finding algorithms as used in the Internet
or telephony network can not be used for multi-layer path finding.

Our earlier claim that the algorithms used in the Internet and telephony
network can not be used for path finding in multi-layer transport networks, if
links in the network are 1:1 mapped to edges in the graph, can be rewritten
as link-constrained algorithms are not sufficient for path finding in
multi-layer networks, if links are 1:1 mapped to edges.

Similarly, the third condition in the claim that graphs can not be used for
path finding in multi-layer networks, that a path finding algorithm as discussed
in section 3.1 can be used, can now also be rewritten by the condition that a
link-constrained path finding algorithm is used.

The full claim is now: graphs can not be used for path finding in
multi-layer networks, if it is required that (1) the outcome of the
path finding algorithm is sufficient to reconstruct the original path in
the network; (2) the graph can be created from the actual network in
polynomial time; and (3) a link-constrained path finding algorithm
is used.

We can proof this claim by contradiction. Lets assume that graphs could
be used for path finding in multi-layer networks, while all conditions hold. By
condition (3), path finding in the graph would be solvable (and thus also verifi-
able) in polynomial time, as link-constrained path finding algorithms (without

CHAPTER 3. GOING IN LOoOPS

further conditions) have P complexity. By condition (1), this would give a
solution for the original problem, and by condition (2) the solution for path
finding in multi-layer networks would be solvable in polynomial time as well.
However, Kuipers has shown that the multi-layer problem is NP-hard, so this
would lead to a contradiction. So we must conclude that our claim is true.

Our example network has two conditional constraints. First, a de-adaptation
may only be used if the corresponding adaptation occurred earlier in the path.
Secondly, a link may only be (re)used if the capacity is sufficient.

The incompatibility caused by the two adaptation functions occurred between
StarLight and NetherLight. These domains are not direct neighbours. This
implies that multi-layer incompatibilities can not be resolved locally.
Information about these incompatibilities needs to be distributed across do-
mains.

Multi-layer path finding algorithm must not only have information of the
layers and adaptations of its direct neighbours, but also of the layers and ad-
aptations of domains further down the path. Another way to look at this is
that a path finding algorithm must not only take the topological neighbours
into account, thus the neighbours at the physical layer, but also the technolo-
gical neighbours: the neighbours on higher layers (for instance StarLight and
NetherLight as seen in figure 3.3).

Individual domains deal with multi-layer complexity by choosing to switch
at a single technology layer only, but since different domains choose different
layers, the complexity remains in the system as a whole.

We have proven the that link-constrained algorithms are not sufficient for
path finding in multi-layer networks, if links are 1:1 mapped to edges, and
now postulate the theorem that path-constrained algorithms are suffi-
cient for path finding in multi-layer networks. So far we only made
this theorem plausible by the describing of the problem and have proven it
for one example only. In order to prove it for networks, we must show that a
path constrained algorithm can be applied to all network examples, using any
technology. We will construct such a path-constrained path finding algorithm
that can be used for all technologies in the remainder chapters, in particular
in chapter 7.

3.3.3 Graphs

The counter example in section 3.3.1 contains a shortest path where a certain
link is used twice. The proof relied on the fact that we mapped each link in
the network to a single edge in the graph. Using this condition, we could map
loops in a network to cycles in a graph.

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

This mapping between a network and a graph is important: A graph is
merely a representation of a network, and it is possible to map the same
network onto multiple graphs.

Earlier, we proved the following claim: graphs can not be used for path
finding in multi-layer networks, if it is required that (1) the outcome
of the path finding algorithm is sufficient to reconstruct the original
path in the network; (2) the graph can be created from the actual
network in polynomial time; and (3) a link-constrained path finding
algorithm is used.

All three conditions in this claim are essential. If any of these conditions is
left out, it is possible to use graphs for path finding in multi-layer networks.
We will now prove this for the first two conditions, and get back to the third
condition in the next subsections.

The first condition, the outcome of the path finding algorithm is sufficient
to reconstruct the original path in the network, is required to only allow useful
mappings from networks to graphs.

University
of
Amsterdam

Université
du Quebec

StarLight
Chicago

Figure 3.6: Graph where each edge represents the shortest path in the network
of figure 3.2.

Figure 3.6 shows a mapping from network to graph where this condition is
not met. In this figure, all Ethernet domains are mapped onto a vertex, and the
shortest path between each Ethernet domain is mapped onto an edge. In this
graph each edge represents a series of links in the network. Path finding in this
graph can be done with conventional algorithms, and is trivial: For example
the single edge between Quebec and Amsterdam represents is the shortest
path between these two locations and represent the full network connection
described in figure 3.5. Of course, this graph is not very useful: the graph is so
condensed that it is not possible to determine the actual path in the network
from a path in the graph.

Ia

CHAPTER 3. GOING IN LOoOPS

The second condition, the graph can be created from the actual network in
polynomial time is also required. It is possible to create a graph that retains all
information about the network, but only requires a conventional path finding
algorithm. Given a source device, construct a tree graph, starting with a vertex
representing this device. Extend the tree by an edge for each link connected
to the device. Each new vertex represents not only the connected device, but
also the state of the network so far. Disallow vertices that yield conflicting
states (for example because the link is used twice, while not enough capacity
is left in the network). Recursively construct the branches of the tree until the
destination is reached in each branch. Path finding in this graph is trivial, but
it would take an exponential time to construct this graph. This graph does not
so much represent the network as well as the result of a path finding algorithm,
and we want to disallow it for that reason.

3.3.4 Multi-Layer Representations

A common representation of a network is to map nodes or domains to vertices
and links to edges. If we would do this with the network of figure 3.2, we get
a graph with 6 vertices and 7 edges. Such a graph lacks essential information
about adaptation in the network and can no be used for multi-layer path
finding.

Unl\gzrs\ﬁe GE CA*net University of
Quebec Canada Amsterdam

potential GE _ ~~ ll | GE

can adapt GE in STS-24c

CA*net
Canada
0C-192
StarLight MAN LAN NetherLight
- - NetherLight Chicago New York Amsterdam
Amsterdam
can adapt GE in STS-24c or STS-3¢-7v can adapt GE in STS-3c¢-7v

(a) Ethernet layer (b) SONET layer

Figure 3.7: Two layers of the multi-layer network of figure 3.2. This still does
not visualise the adaptations between the two layers.

Figure 3.7 describe the example multi-layer network as multiple graphs: one
graph per layer. Edges in such a graph would represent channels rather than
physical links. Observe that the topology of the network is different at each
layer, and such a multi-graph description makes this explicit. This is also not
complete because it does not explicitly describe the adaptation functions, and

3.3. PATH FINDING IN MULTI-LAYER NETWORKS

thus also not the compatibilities and incompatibilities caused by adaptation
functions.

It is possible to abstract the possible and impossible connections on the
SONET layer in figure 3.7b and place these as edges in the Ethernet layer
in subfigure 3.7a. Besides that the generation of this graph is non-trivial (all
possible links at a lower layer need to be determined, before the higher layer
graph can be created), it also needs information about possible links that can
not be created together if the run over the same limited capacity link.

The recurring problem is that information about the relation between dif-
ferent network layers is lost in the mapping from network to graph. The fun-
damental limitation of graphs is that graph theory only provides two basic
building blocks, edges and vertices, while multi-layer computer networks have
at least three building blocks: links, devices and adaptations, and perhaps four
if interfaces are counted as well.

With only two building blocks, vertices and edges, the following choices
must be considered when mapping multi-layer networks onto a graph:

e A vertex in a graph may either represent a device, a physical interface,
a logical interface, an adaptation stack at an interface, or even a link (in
bipartite graphs).

o An edge in a graph may either represent a link, a channel in a link (for
instance wavelength 1310 nm in a fibre), or an adaptation function.

Given this dissimilarity between multi-layer networks and graphs, we ask
ourselves the following question:

Are there other network models, beside graphs, that
can describe multi-layer networks? Can such a model be
technology-independent?

Either a new model needs to be chosen, or the graph model needs to be
extended to contain all information, and the path finding algorithm needs to
be adjusted to take this additional information into account.

It is possible to map both links and adaptations to edges. Figure 3.8 gives
such a representation for our example network. In order to describe adapta-
tions, the network elements that provide an adaptation must be described as
multiple logical vertices: at least one for each layer, with an edge in between
them. Multi-layer network description must distinguish between physical in-
terfaces and logical interfaces, and between physical links and logical channels
in these links. This leads us to the following claim: multi-layer networks

Ia

CHAPTER 3. GOING IN LOoOPS

Quebec CA*net StarLight NetherLight Amsterdam

MAN LAN H

Figure 3.8: The network of figure 3.2, modelled as graph with edge properties.

can only be mapped to a graph if devices are mapped to multiple
vertices, or if information about the adaptation is lost.

This graph in figure 3.8 shows that the third condition in the claim that
the graph can be created from the actual network in polynomial time is also
required. This graph does provide all information, if all edges and vertices
are labelled (which is necessary to distinguish between adaptation and de-
adaptation and incompatible adaptation functions). However, we still need a
path-constrained algorithm to find the shortest path in that graph.

Links and adaptations have different properties, even though they are both
mapped onto edges in figure 3.8. It is non-trivial to represent multiplexing
adaptation functions (adaptations with multiple channels over a single link).
In the next few chapters we will attempt to overcome these shortcomings and
find a more suitable approach to model multi-layer networks.

3.4 Path Finding in Transport Networks

So far, we have looked at the technology constraints caused by the multi-layer
nature of transport networks. We will continue to do so in the next chapter,
but for the moment, we take a step back and look at the other properties of
transport networks.

We claim that path finding in multi-layer transport networks is different
from path finding in the regular Internet or the telephony network, because of
the circuit-switched nature of transport networks.

Transport networks consist of scarce resources, which can be reserved for
existing services. This means that links may not be assumed to be available
at all time. As a consequence, the pair of end-nodes is not enough to compute
a path, but the state of the network must be taken into account for each path
setup request.

In fact, at least four different types of information may be required to find

3.5. MULTI-STAGE PATH FINDING

a valid path:

Topology information — the interconnections between devices and between
domains;

Technology information — the potential technical incompatibilities;
Scheduling information —the simultaneous availability of required resources;
Policy information — the user authorisation level on the available resources.

Path Finding Software

Whilst it is possible to distribute all this information in a routing protocol,
that would give a routing table that scales with the product of the number of
each constraint type (topology, technology, scheduling and policy).

3.5 Multi-Stage Path Finding

Because transport networks as described in this thesis are still relatively new,
it is yet unknown which constraints are important and which can be ignored.

In case all constraints are relevant, a possible routing table would not scale.
Since the different constraints are orthogonal to each other, the size would
scale with the product of each number of constraints, O([[, |C;|) with |C;] the
number of different values for constraint C;. Thus the number of destinations,
the number of incompatibilities, the number of potential time slots and the
number of per-user policies. Clearly, if different constraints are relevant and
orthogonal to each other, using a routing table will not scale.

If not all path request can be pre-computed in a routing table, then for
each path set up request a new path needs to be calculated at the time of the
request. It can not be done by distributing all routing information beforehand.

One of the questions to ask is if it is possible to create a scalable multi-
domain path finding algorithm without relying on a routing table (path vector
algorithms) or on knowledge about each domain (link state algorithms which O
require full topology knowledge)? If so, does this alternative approach have
advantages over current path vector or link state algorithms?

Torab et al. did show that other algorithms than shortest path first (SPF)
are possible [p40]. In particular, they distinguished between (1) no collabor-
ation, (2) collaboration but no cooperation, (3) model-based cooperation and \ a9 /
(4) ad-hoc cooperation.

Ia

CHAPTER 3. GOING IN LOoOPS

no collaboration: only intradomain calculation. Each domain independently
determines the egress (exit) port, without consulting the domain where
it leads to in this decision. No path information exchange between PCE
in each domain.

collaboration but no cooperation: receive time frame or event based to-
pology and resource availability information. No per-request information
exchange.

model-based cooperation: limited information ("model”) of dynamic info
of few neighbouring domains, and additionally availability information
exchange.

ad-hoc cooperation: information exchange as soon as a request comes in.
No a-priori information.

Independent from Torab et al., we turned to a very basic algorithm for our
path finding problem: a broadcast algorithm. The basic idea is that domains
simply forward a path setup request by checking if the request can be accom-
modated, and for each possible egress interface, forwarding the path request
along with the possible path so far to the next domain. While we anticipate
that this is not a very efficient algorithm, it is a first approach and it may be
possible that all sorts of constraints will limit the flooding of such an algorithm.

The broadcast algorithm would effectively be a breadth first search al-
gorithm that checks all possible paths in parallel. Alternatively, it is possible
to intelligently try one egress domain at a time, making it a depth first search
algorithm, with some sort of back-track algorithm in case of dead ends.

Our ideal approach is very similar to the model-based co-operation, and
was partially inspired by a talk by Lehman [t12].

In our view, domains should push ‘static’ and ‘non-sensitive’ information to
their neighbours (e.g. “this is our topology”), and they should provide a service
to either get more information (e.g. “there is a link here, what wavelengths are
still available?”) or provide a (web)service where to ask a specific configuration
question (e.g. “can I use wavelength 1552 nm for this link for the next hour,
for a user in my virtual organisation?”)

In particular, domains should announce (push) the following information to
their neighbours, for each type of information (topology, technology, scheduling
and policy information):

o either the information itself; or

e an access method to retrieve this information; or

3.6. CONCLUSION

e an access method to check for usage availability.

Our vision is that a path computation element acts as a broker and uses
these information services from different domains to stitch a working end-to-
end path together.

3.6 Conclusion

Multi-layer networks give rise to technology incompatibilities. Individual do-
mains deal with multi-layer incompatibilities by choosing to switch at a single
technology layer only, but since different domains choose different layers, the
complexity remains in the system as a whole.

We have shown that algorithm as used in the Internet or telephony networks
can not be used for multi-layer path finding. To be precise, we have proven
that Link-constrained algorithms are not sufficient for path finding
in multi-layer networks, if links are 1:1 mapped to edges. We have
shown this using a counter example.

In addition, we have shown that graphs can not be used for path finding in
multi-layer networks, if it is required that (1) the outcome of the path finding
algorithm is sufficient to reconstruct the original path in the network; (2) the
graph can be created from the actual network in polynomial time; and (3) a
link-constrained path finding algorithm is used.

The standard mapping of one link to one edge leads to loss of information
in the graph, and other mappings from a network to a graph have similar
problems. The bottom line is that path finding in a single layer network and
path finding in multi-layer network belong to different complexity categories.

The rest of this thesis is devoted to prove that Path-constrained al-
gorithms are sufficient for path finding in multi-layer networks. In
order to prove this claim, we present a path-constrained algorithm in the next
chapters, and show that it can find path in multi-layer networks for all tech-
nologies known to us.

Ia

