
APPENDIX 1

Appendix A: Model Specifications

Most of the model specification is identical to the one described in Appendix A of Maier

et al. (2022). The individual models employed in the ensemble (Table 1) differ in terms of

the prior distribution specified over the effect size parameter (µ), the heterogeneity

parameter (τ), and the way they adjust for publication bias (ω). If we group the models

according to the way they adjust for publication bias, we can differentiate between the

following model types based on the likelihood function.

Models Assuming No Publication Bias

Models assuming no publication bias use a normal likelihood to model the observed effect

sizes y based on the observed standard errors se from K studies,

yk ∼ Normal(µ, τ 2 + se2
k). (1)

If the specific model assumes absence of an effect or heterogeneity, it further simplifies by

setting µ = 0 and τ = 0. Otherwise, the corresponding prior distributions for µ and τ

needs to be specified to obtain the complete model.

Models Adjusting for Publication Bias Based on The Relationship Between

Standard Errors and Effect Sizes

Models correcting for publication bias by adjusting for the relationship between standard

errors/variances and effect sizes use a normal likelihood as the models assuming no

publication bias; however, they add a regression parameter that adjusts for the relationship

between effect sizes and standard errors (PET) or the effect sizes and variances (PEESE),

yk ∼ Normal(µ + PET × sek, τ 2 + se2
k), (2)

yk ∼ Normal(µ + PEESE × se2
k, τ 2 + se2

k).

As before, in the case that the specific model assumes absence of the effect, or

heterogeneity, it further simplifies by setting µ = 0 and τ = 0. Otherwise, the
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corresponding prior distributions for µ, τ , and PET or PEESE needs to be specified to

obtain the complete model.

Selection Models

Selection models use a weighted likelihood function to incorporate the publication

probabilities, ω, into the likelihood function for the observed effect sizes,

yk ∼ Weighted-normal(µ, τ 2 + se2
k, ω). (3)

Weighted-normal stands for a likelihood function of a weighted normal distribution, with

mean µ, variance σ2, weights ω, and a cumulative probability function of a standard

normal distribution Φ, that is further differentiated accordingly whether the one-sided or

two-sided selection is assumed,

Weighted-normalone-sided(y | µ, σ2, ω) = Normal(y | µ, σ2) × w(ω, p, c)∫
Normal(x | µ, σ2) × w(ω, 1 − Φ(x/σ), c)dx

, (4)

Weighted-normaltwo-sided(y | µ, σ2, ω) = Normal(y | µ, σ2) × w(ω, p, c)∫
Normal(x | µ, σ2) × w(ω, (1 − Φ(|x/σ|)) × 2, c)dx

,

where the weights ω are assigned based on the one or two-sided p-values, p, and N cutoffs c

through the weight function w,

w(ω, p, c) =



ω1, if p > c1

ωn, if cn < p ≤ cn+1

...

1, if p ≤ cN

(5)

Again, in the case that the specific model assumes absence of the effect, or heterogeneity, it

further simplifies by setting µ = 0 and τ = 0 respectively. Otherwise, the corresponding

prior distributions for µ, τ , and ω needs to be specified to obtain the complete model.

Appendix B: Parameter Prior Distributions

Table 1 outlines the default prior distributions used throughout the manuscript. The

specified default prior distributions can be viewed as a sensible starting options tested in
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simulations. However, one of the advantages of Bayesian statistics is that it allows

researchers to flexibly specify and test different hypotheses. We urge researchers to specify

their own prior distributions directly corresponding to the hypotheses of interest. See

Bartoš et al. (in press) for a tutorial where we explain how to specify different alternative

and/or null hypotheses with RoBMA. Here, we outline the rationale for the default prior

distributions used in this manuscript.

Effect Size (µ)

For the effect size µ, we use a standard normal, Normal(0, 1), as the default prior

distribution. We already used this distribution when introducing the previous version of

the method (Maier et al., 2022). The standard normal prior distribution specifies a wide a

range of plausible values for effect sizes, yet it has thinner tail than a frequently used

Cauchy(0, 1) prior distribution. The thinner tails of the standard normal distribution

reduce the prior probability of very large effect sizes that we deem as less plausible in

meta-analytic settings. Another choice for prior distribution for µ, used in the robustness

analysis of Kvarven et al. (2020, Appendi C), might be Student-t[0,∞](0.35, 0.102, 3),

so-called “Oosterwijk prior” (Gronau et al., 2020). The Oosterwijk prior is a shifted and

scaled student-t distribution with location 0.35, scale 0.102, and three degrees of freedom,

truncated to have mass only on positive effect sizes. We consider Oosterwijk prior to be a

reasonable specification for effects that are known to be of small-to-medium size and it has

been used in previous studies (e.g., Gronau et al., 2017; Landy et al., 2020).

Heterogeneity (τ)

For the heterogeneity τ , we use an inverse-gamma, InvGamma(1, 0.15), as the default prior

distribution. We also used this distribution in Maier et al. (2022) and it is based on

heterogeneity estimates from meta-analyses in psychology recorded by van Erp et al.

(2017). This prior distribution was used in previous studies (e.g., Gronau et al., 2017;
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Landy et al., 2020) and it is also the default choice of the metaBMA R package (Heck et al.,

2019).

Publication Bias Regression Coefficients For PET and PEESE

For the PET and PEESE regression coefficients, we use Cauchy, Cauchy[0,∞](0, 1) and

Cauchy[∞](0, 5), as the default prior distributions. Equation 2 shows that the PET and

PEESE regression coefficients can be thought as a bias of studies with a given standard

error or variance. Since standard errors (and subsequently variances) are dependent on the

sample size for standardized effect size measures, we derived the range of plausible values

for the prior distribution based on the regression coefficients based on small sample studies

(N = 25, 50, 100) and values of medium to large bias (bias = 0.30, 0.40, 0.50). The resulting

values of PET regression coefficients are summarized in Table 1 and PEESE regression

coefficients in Table 2. We conclude that the Cauchy[0,∞](0, 1) and Cauchy[0,∞](0, 5) prior

distribution cover the range reasonably well and still allow for larger values in case that our

initial assessment was incorrect.

Table 1

PET Regression Coefficients Based on Theoretical Sample Sizes and Degrees of Bias

Bias 0.30 0.40 0.50

N = 25 0.75 1.00 1.25

N = 50 1.06 1.41 1.77

N = 100 1.50 2.00 2.50
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Table 2

PEESE Regression Coefficients Based on Theoretical Sample Sizes and Degrees of Bias

Bias 0.30 0.40 0.50

N = 25 1.88 2.50 3.13

N = 50 3.75 5.00 6.25

N = 100 7.50 10.00 12.50

To assess the robustness of our results in the Kvarven et al. (2020) example, we collected

the estimated PET and PEESE regression coefficients from conditions assuming presence

of the publication bias in the simulation study. We fitted gamma distributions to the

simulation-based PET and PEESE regression coefficients using maximum likelihood and

obtained Gamma(2.84, 2.19) and Gamma(2.32, 0.86) shape and rate parameterized prior

distributions for PET and PEESE regression coefficients. Both of the prior distributions

show a more concentrated prior probability density around 1.30 and 2.70 with a much

thinner tail, making them more informed.

Notably, when transforming prior distributions for PET and PEESE regression coefficients

to a different effect size scale, the prior distribution for the PET regression coefficient does

not change – the scaling of the effect size corresponds to scaling of the standard error when

using approximate linear transformation, however, the PEESE regression coefficient

changes with the inverse of the approximate linear transformation applied to the effect size

and standard errors.

Publication Bias Weights (ω)

For the publication bias weights ω, we use unit cumulative Dirichlet distributions, as the

default prior distributions. In the case of a weight function with only one step, the unit

cumulative Dirichlet distribution simplifies to a uniform distribution on interval from zero

to one. In the more complex cases, the unit cumulative Dirichlet distributions assigns prior
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probabilities across the possible weights, constraining them to be increasing, bound

between zero and one, and allowing for variation in the predicted values.

Similarly to the prior distribution for the PET and PEESE regression coefficient, we assess

the robustness of our results in the Kvarven et al. (2020) example by fitting cumulative

Dirichlet distributions to the estimated publication bias weights based on the simulation

study using maximum likelihood. Table 3 summarizes the simulation-based prior

distribution and shows that the first parameter is usually larger resulting in a smaller step

from significant to the non-significant studies, in other words, a more optimistic prediction

regarding publication bias.

Table 3

Simulation-Based Prior Distribution for Publication Bias Weight Functions

Weight function Prior distribution

ωTwo-sided(.05) CumDirichlet(2.49, 0.83)

ωTwo-sided(.1,.05) CumDirichlet(2.88, 0.98, 0.99)

ωOne-sided(.05) CumDirichlet(2.61, 0.89)

ωOne-sided(.05,.025) CumDirichlet(2.92, 0.95, 0.75)

ωOne-sided(.5,.05) CumDirichlet(3.17, 0.80, 0.83)

ωOne-sided(.5,.05,.025) CumDirichlet(3.24, 1.02, 0.68, 0.66)

Appendix C: Robustness of the Kvarven et al. (2020) Results Across Different

Prior Specifications

To assess the robustness of the results on the empirical data sets provided by Kvarven et al.

(2020), we repeated the analysis conducted in the “Evaluating RoBMA on Registered

Replication Reports” section with different parameter prior distributions. First, we

exchanged the default standard normal prior for the effect size µ with the Oosterwijk prior

distribution, Student-t[0,∞](0.35, 0.102, 3). Second, we exchanged the default prior

distributions for the PET and PEESE regression coefficients and the publication bias
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weights ω for the simulation-based prior distributions. Finally, we exchanged the default

prior distributions for both parameters simultaneously (a detailed description of the prior

distributions can be found in Appendix B).

We found that all RoBMA models performed the best under the simulation-based prior

distribution for the PET and PEESE regression coefficients and publication bias weights

and the worst under the Oosterwijk prior distribution. We attribute the inferior

performance of the Oosterwijk prior distribution to the fact that three replication studies

resulted in negative estimates that are unattainable under the prior distribution restricted

to positive numbers. However, even though there were some differences in how the RoBMA

models performed under different prior distributions, the results were still in line with our

previous conclusions.

Figure 1 compares the model-averaged posterior effect size estimate from RoBMA-PSMA

with the default prior distribution specification (blue) to model-averaged posterior effect

size estimates from RoBMA-PSMA with the above three alternative prior distributions for

each of the 15 RRRs from Kvarven et al. (2020). In general, the figure shows consistent

results across prior distributions; however, a closer look reveals that the informed

Oosterwijk prior distribution pulls the model-averaged posterior for effect size towards its

prior location (i.e., µ = 0.35). Also note that under the Oosterwijk prior, the lower bounds

of the credible interval do not cross zero – it is impossible to obtain a negative estimate

when this has been ruled out a priori by restricting the prior range to the positive real line.
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Table 4

Performance of RoBMA with Different Priors in the Kvarven et al. (2020) example.

Method FPR FNR Undecided OF Bias RMSE

Oosterwijk prior (µ)

RoBMA-PSMA 0.286 0.000 0.667 1.446 0.073 0.204

RoBMA-old 0.714 0.000 0.133 2.050 0.172 0.224

Simulation-based prior

RoBMA-PSMA 0.143 0.000 0.800 1.080 0.013 0.160

RoBMA-old 0.714 0.000 0133. 2.021 0.167 0.212

Oosterwijk prior (µ) & simulation-based prior

RoBMA-PSMA 0.143 0.000 0.667 1.358 0.059 0.192

RoBMA-old 0.714 0.000 0.133 2.032 0.169 0.219
Note. FPR = false positive rate, FNR = false negative rate, Undecided = undecided evidence,

OF = overestimation factor, and RMSE = root mean square error.

Appendix D: Robustness of the Kvarven et al. (2020) to the Selection of

Registered Replication Reports

To further assess the robustness of the results on the empirical data sets provided by

Kvarven et al. (2020), we repeated the analysis conducted in the “Evaluating RoBMA on

Registered Replication Reports” section with a non-parametric bootstrap of the data set.

We performed a 1000 repetitions, each of which sampled 15 RRR data sets with

replacement which allowed us to assess the dependency of the reported results on the

particular data.

Table 5 summarizes results from the non-parametric bootstrap as 95% quantile intervals.

We found that the false positive and false negative rates estimates were highly variable

since each of them was based only on a subset of the RRR (seven not statistically

significant and eight statistically significant). Despite the added uncertainty depicted via
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Figure 1

Robustness Check of Effect Size Estimates with 95% CIs Comparing RoBMA-PSMA with

the Default Prior Distribution to Three Alternative Prior distribution Specifications for the

15 Experiments Included in Kvarven et al. (2020).

Oppenheimer et al. (2009)
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Husnu & Crisp (2010)

Schwarz et al. (1991)
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Srull & Wyer (1979)
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Effect Size
Default Sim Oosterwijk Oosterwijk + Sim

Note. Estimates are reported on the Cohen’s d scale. “Sim” corresponds to simulation based

priors for the publication bias adjustment part and “Oosterwijk” corresponds to an informed

prior distribution expecting small-to-medium effect sizes (Student-t[0,∞](0.35, 0.102, 3)).
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the quantile intervals of overestimation, bias, and RMSE estimates, the results were aligned

with our previous conclusions. Moreover, the higher quantile limit of bias and RMSE of the

RoBMA-PSMA was around or bellow lower quantile limits of many other methods.

Appendix E: Performance Under the Absence of Publication Bias

In the “Evaluating RoBMA on Registered Replication Reports” section, all Registered

Replication Reports (RRR) found lower effect size estimates than the original

meta-analyses. To assess whether RoBMA’s performance can be explained by a systematic

underestimation of effect sizes, we estimated RoBMA and the remaining publication bias

correction methods on data from Many Labs 2 (Klein et al., 2018). Many Labs 2 is a

collection of different RRR attempting to replicate 28 classic and contemporary findings

from psychology across multiple participating labs (N = 125). Since each finding was

replicated by about half of the labs following the same RRR protocol, we can be certain

about the absence of publication bias in the collection of the lab estimates. Consequently,

we can establish the “Gold Standard” effect size estimate for each of the 28 psychological

findings by applying a fixed-effect meta-analysis to the corresponding effect size estimates

from the different labs (only one heterogeneity estimate τ was larger than 0.2). If

RoBMA’s previous performance was a result of systematic underestimation, we would

expect to find significantly underestimated effect size estimates (the positive bias of the

random-effect meta-analytic models in the “Evaluating RoBMA on Registered Replication

Reports” section was 0.259).

The results are summarized in Table 6. We found that RoBMA-PSMA showed a small

negative bias and slightly larger RMSE than most of the remaining methods. However, the

increase in bias and RMSE in the Many Labs 2 data is decisively outweighed by the

advantage in performance obtained in the “Evaluating RoBMA on Registered Replication

Reports” section. This result, in conjunction with the results reported in the “Evaluating

RoBMA Through Simulation Studies” section, show that the RoBMA’s performance
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cannot be explained by a systematic underestimation of effect sizes.

Table 6

Performance of 13 Publication Bias Correction Methods for 28 Meta-Analysis from Many

Labs 2 Compared to a “Gold Standard” established with Fixed-Effect Meta-Analytic Models.

Method FPR FNR Undecided OF Bias RMSE

WAAP-WLS 0.000 0.056 1.005 0.002 0.011

TF 0.100 0.000 0.991 -0.004 0.044

Random Effects (DL) 0.000 0.000 1.035 0.013 0.035

3PSM 0.000 0.000 1.033 0.013 0.042

RoBMA-old 0.000 0.000 0.071 0.961 -0.015 0.043

AK1 0.000 0.056 1.083 0.017 0.044

4PSM 0.000 0.167 1.048 0.019 0.063

AK2 0.167 0.200 0.000 0.631 0.020 0.051

RoBMA-PSMA 0.000 0.000 0.214 0.897 -0.040 0.070

PET-PEESE 0.100 0.444 0.820 -0.070 0.170

p-curve 1.352 0.058 0.195

EK 0.100 0.444 0.733 -0.103 0.259

p−uniform 0.571 0.182 1.353 0.155 0.745
Note. FPR = false positive rate, FNR = false negative rate, Undecided = undecided evidence,

OF = overestimation factor, and RMSE = root mean square error. The results in gray italic are

conditional on convergence: p-uniform and p-curve did not converge in four cases (p-uniform also

did not provide test for the effect in 10 cases) and AK2 did not converge in 17 cases. The rows

are ordered based on combined log scores performance of the abs(log(OF), abs(Bias), and RMSE

(not shown).

Appendix F: Additional Results from the Hong and Reed (2020) Simulation

Study
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Table 7

Mean Square Error (MSE) in the Carter et al. (2019) simulation environment stratified by

publication bias.

Rank No-QRP MSE Medium-QRP MSE High-QRP MSE

1 3PSM 0.012 RoBMA-old 0.011 RoBMA-old 0.011

2 RoBMA-old 0.013 WAAP-WLS 0.018 WAAP-WLS 0.018

3 RoBMA-PSMA 0.014 p-uniform 0.021 p-uniform 0.019

4 WAAP-WLS 0.018 TF 0.023 TF 0.025

5 TF 0.018 3PSM 0.023 p-curve 0.029

6 4PSM 0.021 PET-PEESE 0.027 PET-PEESE 0.032

7 PET-PEESE 0.022 EK 0.033 3PSM 0.035

8 EK 0.027 4PSM 0.033 EK 0.038

9 Random Effects (DL) 0.039 AK2* 0.034 4PSM 0.040

10 p-uniform 0.042 RoBMA-PSMA 0.039 Random Effects (DL) 0.052

11 p-curve 0.156 p-curve 0.041 RoBMA-PSMA 0.056

12 AK1* 0.620 Random Effects (DL) 0.047 AK1* 0.134

13 AK2* 2.515 AK1* 0.086 AK2* 6.127

Note. *The difference of performance in terms of MSE for AK1 and AK2 between our and Hong

and Reed (2020) is a result of us not omitting 5% of the most extreme estimates.

Methods in gray italic converged in less than 90% repetitions in a given simulation environment.

Different columns correspond to the conditions described in Carter et al. (2019); “no-QRP”

condition corresponds to lack of questionable research practices (QRPs), “medium-QRP”

condition corresponds to mix of no QRPs (30%), moderate QRPs (50%), and strong QRPs (20%),

and “high-QRP” condition corresponds to a mix of no QRPs (10%), moderate strategy QRPs

(40%), and strong QRPs (50%).
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Table 8

Bias in the Carter et al. (2019) simulation environment stratified by publication bias.

Rank None Bias Medium Bias High Bias

1 3PSM 0.028 PET-PEESE 0.059 WAAP-WLS 0.063

2 4PSM 0.041 WAAP-WLS 0.062 RoBMA-old 0.067

3 RoBMA-PSMA 0.045 RoBMA-old 0.063 PET-PEESE 0.070

4 PET-PEESE 0.047 AK1 0.065 AK1 0.071

5 EK 0.050 EK 0.075 EK 0.093

6 WAAP-WLS 0.061 3PSM 0.091 p-uniform 0.094

7 RoBMA-old 0.063 TF 0.094 p-curve 0.096

8 AK1 0.064 p-uniform 0.095 TF 0.100

9 AK2 0.067 p-curve 0.100 3PSM 0.124

10 TF 0.080 4PSM 0.113 4PSM 0.134

11 Random Effects (DL) 0.128 AK2 0.123 RoBMA-PSMA 0.161

12 p-uniform 0.129 RoBMA-PSMA 0.124 AK2 0.166

13 p-curve 0.158 Random Effects (DL) 0.154 Random Effects (DL) 0.167

Note. Methods in gray italic converged in less than 90% repetitions in a given simulation

environment.

Different columns correspond to the conditions described in Carter et al. (2019); “no-QRP”

condition corresponds to lack of questionable research practices (QRPs), “medium-QRP”

condition corresponds to mix of no QRPs (30%), moderate QRPs (50%), and strong QRPs (20%),

and “high-QRP” condition corresponds to a mix of no QRPs (10%), moderate strategy QRPs

(40%), and strong QRPs (50%).
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