A closer look at learning relations from text
Katrenko, S.

Citation for published version (APA):
Katrenko, S. (2009). A closer look at learning relations from text
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AID toolbox</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Illustrating SVM: a separable case</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Mining on trees (example)</td>
<td>56</td>
</tr>
<tr>
<td>4</td>
<td>3 runs on textual entailment: precision</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>3 runs on textual entailment: recall</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>The dependency structure for Example (5.1)</td>
<td>75</td>
</tr>
<tr>
<td>7</td>
<td>Precision and recall for different feature sets (AdaBoostM1, LLL and AIMed data sets)</td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>Precision and recall for LinkParser, Minipar and the Charniak parser (AdaBoostM1, the LLL data set)</td>
<td>86</td>
</tr>
<tr>
<td>9</td>
<td>Impact of syntactic functions on the level-based approach (LinkParser, the LLL data set)</td>
<td>87</td>
</tr>
<tr>
<td>10</td>
<td>LinkParser’s output for Example (5.8)</td>
<td>89</td>
</tr>
<tr>
<td>11</td>
<td>Minipar’s output for Example (5.8)</td>
<td>90</td>
</tr>
<tr>
<td>12</td>
<td>Charniak parser’s output for Example (5.8)</td>
<td>91</td>
</tr>
<tr>
<td>13</td>
<td>Distribution of the verbs selected by experts from the LLL data set</td>
<td>91</td>
</tr>
<tr>
<td>14</td>
<td>Stanford parser’s output and representation for Example (6.18)</td>
<td>109</td>
</tr>
<tr>
<td>15</td>
<td>Enju’s output and representation for Example (6.18)</td>
<td>110</td>
</tr>
<tr>
<td>16</td>
<td>Varying the gaps and β parameters: f-score</td>
<td>118</td>
</tr>
<tr>
<td>17</td>
<td>Varying the gaps and β parameters: precision</td>
<td>119</td>
</tr>
<tr>
<td>18</td>
<td>Varying the gaps and β parameters: recall</td>
<td>119</td>
</tr>
<tr>
<td>19</td>
<td>Learning curve on the SemEval test data set</td>
<td>122</td>
</tr>
<tr>
<td>20</td>
<td>Performance on the training set (Cause - Effect, Instrument - Agency and Product - Producer relations)</td>
<td>125</td>
</tr>
<tr>
<td>21</td>
<td>Performance on the training set (Origin - Entity, Theme - Tool and Part - Whole relations)</td>
<td>126</td>
</tr>
<tr>
<td>22</td>
<td>Performance on the training set (Content - Container relation)</td>
<td>127</td>
</tr>
<tr>
<td>23</td>
<td>Part of the WordNet hierarchy</td>
<td>132</td>
</tr>
<tr>
<td>24</td>
<td>Illustrating a generalization process (Method 1)</td>
<td>139</td>
</tr>
<tr>
<td>25</td>
<td>A snapshot of the evaluation exercise web page</td>
<td>152</td>
</tr>
<tr>
<td>26</td>
<td>Clustering solutions on Cause - Effect, Instrument - Agency, and Product - Producer</td>
<td>170</td>
</tr>
<tr>
<td>27</td>
<td>Clustering solutions on Origin - Entity, Theme - Tool, and Part - Whole</td>
<td>171</td>
</tr>
</tbody>
</table>
Figure 28 Clustering solutions on Content - Container 172

LIST OF TABLES

Table 1 Some semantic relations and their logical properties 20
Table 2 Some examples from the RTE-2 data set 61
Table 3 Accuracy on the RTE-2 test set (official results) 62
Table 4 Misclassified examples in the IE category 62
Table 5 Precision and recall on the RTE-2 test set (for TRUE category) 63
Table 6 Abbreviations for 9 runs 55
Table 7 Pairwise agreement for 9 runs 65
Table 8 Contingency tables for voting schemes 67
Table 9 Composed feature sets 78
Table 10 Illustrating features for Example (5.1) 79
Table 11 Least common subsumer: the AImed data set 82
Table 12 A list of diacritics used for statistical significance (two-tailed t-test, $\alpha = 0.05$) 84
Table 13 Mean precision, recall, F_1 scores and standard deviations on the LLL data set (level-based approach) 84
Table 14 Mean precision, recall, F_1 scores and standard deviations on the AImed data set (level-based approach) 85
Table 15 Syntactic functions used by LinkParser for Example (5.8) 89
Table 16 Syntactic functions used by MiniPar for Example (5.8) 90
Table 17 A list of distributional similarity measures 106
Table 18 Performance on the BC-PPI data set (LA kernel) 113
Table 19 Performance on the LLL training data set (LA kernel) 113
Table 20 Results on the LLL test data set (LA kernel) 114
Table 21 Performance on the AImed data set (LA kernel) 115
Table 22 Top 5 similar words for ‘adhere’, ‘expression’, and ‘sigF’ (LLL data set) 116
Table 23 Performance on the LLL data set by varying estimation settings 117
Table 24 Performance on the BC-PPI data set by varying estimation settings 117
Table 25 | Performance on the BC-PPI paths with removed dependencies and direction | 117
Table 26 | Results on the SemEval test data set (LA kernel) | 121
Table 27 | Statistics on the system types participating in SemEval | 135
Table 28 | An example of the two-step generalization procedure (Method 1) | 141
Table 29 | Distribution of the SemEval examples | 145
Table 30 | Performance on the SemEval training data set: generalization per argument | 146
Table 31 | Performance on the SemEval test data set: generalization per argument | 146
Table 32 | Generalization per argument: some frequent patterns | 147
Table 33 | Overall performance on the SemEval test data set (Method 1) | 147
Table 34 | Some examples per relation type (Method 1) | 148
Table 35 | Compression rates (Method 1) | 149
Table 36 | Proportions per category (an evaluation exercise) | 153
Table 37 | An example on pairwise ratings on Cause - Effect used for calculating kappa | 153
Table 38 | Agreement on 7 generic relations according to PABAK | 155
Table 39 | Performance on the SemEval training data set (Method 2) | 157
Table 40 | Performance on the SemEval test data set (Method 2) | 157
Table 41 | Some examples per relation type (Method 2) | 158
Table 42 | Shortest path kernel’s results per relation type | 159
Table 43 | Results on the SemEval test data set achieved by combining syntactic and semantic evidence | 159
Table 44 | Generalizations on Content - Container relation | 163
Table 45 | Generalizations on Part - Whole relation | 164
Table 46 | Generalizations on Cause - Effect relation | 165
Table 47 | Generalizations on Instrument - Agency relation | 166
Table 48 | Generalizations on Product - Producer relation | 167
Table 49 | Generalizations on Origin - Entity relation | 168
Table 50 | Generalizations on Theme - Tool relation | 169
ACRONYMS

NLP Natural Language Processing
NLU Natural Language Understanding
IE Information Extraction
QA Question Answering
SUM Summarization
IR Information Retrieval
DAS-3 Distributed ASCI Supercomputer 3
SVM Support Vector Machine
SW Smith-Waterman
LA Local Alignment
LCS Least Common Subsumer
NOTATION

\(\mathcal{X}\) an input space
\(\mathcal{Y}\) an output space
\(h(\cdot)\) a hypothesis function
\(\mathcal{H}\) a hypothesis space
\(\mathbb{R}\) the set of real numbers
\(|S|\) cardinality of a set \(S\)
\(\cup\) union of sets
\(\emptyset\) the empty set
\(f: \mathcal{X} \to \mathcal{Y}\) a function \(f\) from values in \(\mathcal{X}\) to \(\mathcal{Y}\)
\(\arg\max f\) the argument for which \(f\) has its maximum value
\(I\) an identity function
\(E\) an expectation
\(x_i\) a vector
\(\mathcal{R}(\cdot, \cdot)\) a relation
\(k(\cdot, \cdot)\) a kernel function
\(l(\cdot, \cdot)\) a loss function
\(R_n(h)\) an empirical risk
\(R(h)\) an expected risk
\(e^x\) the exponential function
\(\lim_{x \to \infty} f(x)\) the limit of \(f\) as \(x\) tends to infinity
\(d(\cdot, \cdot)\) a substitution score
\(g(\cdot)\) a gap function
\(\pi\) an alignment
\(s(x, x', \pi)\) an alignment score for two sequences \(x\) and \(x'\) given an alignment \(\pi\)
\(G\) a gap value
\(\beta\) a scaling parameter
\(\inf(S)\) infimum or greatest lower bound of a subset \(S\)
\(O(n)\) time complexity of an algorithm