Genetic variation in PCAF, a key mediator in epigenetics, is associated with reduced vascular morbidity and mortality: evidence for a new concept from three independent prospective studies

Published in: Heart

DOI: 10.1136/hrt.2010.199927

Citation for published version (APA):
Genetic variation in PCAF, a key mediator in epigenetics, is associated with reduced vascular morbidity and mortality: evidence for a new concept from three independent prospective studies

Douwe Pons,1,2,3 Stella Trompet,1,4 Anton J M de Craen,4 Peter E Thijssen,5 Paul H A Quax,3,5 Margreet R de Vries,5 Rutger J Wierda,3,6 Peter J van den Elsen,3,6,7 Pascalle S Monraats,1, Mark M Ewing,1,3 Bastiaan T Heijmans,8 P Eline Slagboom,8 Aeilko H Zwinderman,9 Pieter A F M Doevendans,2,10 René A Tio,2,11 Robbert J de Winter,12 Moniek P M de Maat,13 Olga A Iakoubova,14 Naveed Sattar,15 Jim Shepherd,16 Rudi G J Westendorp,4 J Wouter Jukema,1,2,3,17 also on behalf of the PROSPER, WOSCOPS and GENDER study groups*

In the past decade, research into cardiovascular diseases, such as atherosclerosis and restenosis, has been focused on the identification of genetic factors that determine disease risk. Several genes involved in inflammation and cell proliferation appeared to be common denominators of these diseases.2–5 It has become clear, however, that part of the gene—environment interactions relevant for complex diseases is regulated by epigenetic mechanisms such as histone acetylation and DNA methylation.5 Epigenetic processes modulate gene expression patterns without modifying the actual DNA sequence and have profound effects on the cellular repertoire of expressed genes.6 Evidence is growing that epigenetic mechanisms also regulate the expression of genes in the inflammatory and cell proliferation pathways7,8 and may therefore also play a role in cardiovascular disease.9–11

A major influence on gene expression is attributed to the counterbalancing action of lysine acetyltransferases (KAT) and lysine deacetylases (KDAC).12 KAT acetylate histones by transfer of an acetyl group to the 3(3) histone acetylation. As such, these genetic variations in the genes encoding KAT and KDAC could influence the balance between KAT and KDAC in favour of KAT, leading to an increase in inflammation.13 Notably, genetic variations in the genes encoding KAT and KDAC, which affect the activities of the enzymes they encode, have a bearing on the global and gene-specific levels of histone acetylation. As such, these genetic variations in the genes encoding KAT and KDAC could affect the expression of genes involved in the pathogenesis of cardiovascular diseases, such as inflammatory and cell proliferation.14–16

Investigations into the pathogenetic mechanisms of human complex disease, such as cardiovascular disease and cancer, may lead to better risk prediction, treatment and new targets for future therapy. Cell proliferation regulatory pathways and pro-inflammatory transcription factors, such as nuclear factor kappa B (NFkB), have been associated with the progression of these diseases.17

See Editorial, p 96

For numbered affiliations see end of article.

Correspondence to
Professor J Wouter Jukema,
Leiden University Medical Center, Department of Cardiology, C5-P, P.O. Box 9600, 2300 RC Leiden, The Netherlands;
J.W.Jukema@lumc.nl

*For author footnote see end of article.

Accepted 5 October 2010
Published Online First
8 November 2010
also be important determinants contributing to susceptibility to major human diseases. P500/CBP-associated factor (PCAF) is a transcriptional co-activator with intrinsic KAT activity. Besides its role in lysine acetylation of histones at the site of NFκB-regulated genes and the resultant inflammatory gene activation,14,15 PCAF is also found to act as a factor acetyltransferase that acetylates non-histone proteins, including several tumour-suppressor proteins, such as p5316 and the phosphatase and tensin homologue.17 Because PCAF is involved in proliferation and inflammation, common denominators of the major diseases determining human mortality, with clear evidence for inflammatory factors predicting incident cardiovascular disease events,19,20 incident cancer21 and mortality, we hypothesised that the PCAF gene could be of major importance in the development of cardiovascular disease and cancer and death from such diseases.

We investigated the impact of genetic variation in the promoter region of the PCAF gene on all-cause mortality and mortality due to coronary heart disease (CHD) and cancer in the PROSPER-study, a randomised controlled trial in which 5804 elderly patients (aged 70–82 years) at risk of vascular disease were randomly assigned to pravastatin or placebo.22 In order to validate the observed effects and to be able to extrapolate our findings to a younger population, we investigated the PCAF gene in the WOSCOPS study, a randomised controlled trial similar to the PROSPER study, designed to determine the effect of pravastatin in middle-aged men with hypercholesterolaemia without a history of cardiovascular disease. Finally, in order to test further the validity of results in the two statin trials, and to gain insights into the mode of action, we investigated these variants in another large prospective study, the GENDER study, a prospective follow-up study that included 3104 patients undergoing percutaneous coronary intervention (PCI).23 The primary endpoint in that study was clinical restenosis, a process that is known to be mainly determined by inflammation and proliferation.2

All participants in the three study groups were analysed for two single nucleotide polymorphisms (SNP) in the promoter region of the PCAF gene. Of these polymorphisms, the −2481G/C SNP was found to be significantly associated with CHD mortality in elderly patients in PROSPER and WOSCOPS and, in addition, with a differential risk of restenosis in the GENDER study.

METHODS

Study design and follow-up of the PROSPER study

The protocol of PROSPER has been described elsewhere.24 PROSPER is a prospective multicentre randomised placebo controlled trial to assess whether treatment with pravastatin diminishes the risk of major vascular events in elderly individuals. Between December 1997 and May 1999, we screened and enrolled subjects in Scotland (Glasgow), Ireland (Cork), and The Netherlands (Leiden). Men and women aged 70–82 years were recruited if they had pre-existing vascular disease or an increased risk of such disease because of smoking, hypertension, or diabetes. A total number of 5804 subjects was randomly assigned to pravastatin or placebo. In this genetic substudy, we evaluated the predefined endpoints all-cause mortality and mortality due to vascular events and cancer. Mean follow-up was 3.2 years (range 2.8–4.0) and 604 (10.4%) patients died during the study.25 Of these patients, 292 (48%) died from vascular disease and 206 (31%) from cancer.

Study design and follow-up of the WOSCOPS study

The WOSCOPS study (the West of Scotland Coronary Prevention Study), a primary prevention trial, included 6595 men, aged between 45 and 64 years, who had low-density lipoprotein cholesterol levels between 174 and 252 mg/dl (4.5 and 6.0 mmol/l), who had no history of myocardial infarction, but were considered to be at enhanced risk of developing CHD.25 The first patient was enrolled on 1 February 1989, and the study ended on 15 May 1995. The mean follow-up duration was 4.9 years. All participants were randomly assigned to receive 40 mg of pravastatin or placebo daily.

The present genetic study was performed in a previously described nested case–control cohort.26 In brief, the prospective nested case–control study included all of the 580 on-trial CHD events (death from CHD, non-fatal myocardial infarction, or revascularisation procedures) from the WOSCOPS cohort as case subjects and 1160 control subjects matched to case subjects by age and smoking. In the present genetic study we used death from CHD as our primary endpoint.

Study design and follow-up of the GENDER study

The present study sample has been described previously.23 In brief, the GENetic DEterminants of Restenosis project (GENDER) was a multicentre follow-up study designed to study the association between various gene polymorphisms and clinical restenosis. Patients eligible for inclusion in the GENDER study were treated successfully for stable angina, non-ST-elevation acute coronary syndromes or silent ischaemia by PCI in four out of 13 referral centres for interventional cardiology in The Netherlands. Patients treated for acute ST-elevation myocardial infarction were excluded. Experienced operators, using a radial or femoral approach, performed standard angioplasty and stent placement. During the study, no drug-eluting stents were used. Follow-up lasted for at least 9 months, except when a coronary event occurred. Clinical restenosis, defined as target vessel revascularisation (TVR), either by PCI or coronary artery bypass grafting, was the primary endpoint. Median follow-up duration was 9.6 months (IQR 3.9) and 304 (9.8%) patients underwent TVR during follow-up. A prespecified subgroup of 478 patients was scheduled for re-angiography at 6 months, according to standard procedures, as described previously.27 Identical projections were used before, during and 6 months after the PCI for all assessed angiograms. Quantitative computer analyses were independently performed by Heartcore (Leiden, The Netherlands).

For all three studies, all endpoints were adjudicated by independent clinical events committees. The protocols meet the criteria of the Declaration of Helsinki and were approved by the medical ethics committees of each participating institution. Written informed consent was obtained from all participating patients.

Genotyping

Blood was collected in EDTA tubes at baseline and genomic DNA was extracted following standard procedures. As a first step to investigate this gene, we selected two validated polymorphisms in the PCAF promoter. The −4556 C/T (rs2623074) and the −2481G/C (rs2948080) polymorphisms were selected on the basis of their high minor allele frequency (>5%) and measured using the Sequenom Massarray genotyping platform (Sequenom Inc, San Diego, CA, USA). A multiplex assay was designed using Assay designer software (Sequenom Inc). As quality controls, 5–10% of the samples were genotyped in duplo. No inconsistencies were observed. Cluster plots of the signals from the low and the high mass allele were drawn. Two independent researchers carried out scoring. Disagreements or
vaguely positioned dots produced by Genotyper 4.0 (Sequenom Inc) were left out of the results.

Cells and cell culture
The cell lines (HeLa, U251, Raji) used in this study were obtained through the American Type Culture Collect (ATCC) (Rockville, Maryland, USA) and were cultured in Iscove's modified Dulbecco's medium (BioWhittaker Europe, Verviers, Belgium) supplemented with 10% (v/v) heat-inactivated fetal calf serum (Greiner, Alphen a/d Rijn, The Netherlands), supplemented with 20% (v/v) fetal calf serum (PAA, Pasching, Austria), 100 IU/ml streptomycin and 100 IU/ml penicillin. For interferon gamma (IFN-γ) induction, cells were treated with 500 U/ml of IFN-γ (Boehringer-Ingelheim, Alkmaar, The Netherlands) for 4 h, hereafter nuclear extracts were prepared (see below). Human umbilical vein endothelial cells (HUVEC) were cultured in medium 199 with Earl's salt and 1-glutamine (Life Technologies, The Netherlands) and 25 mg bovine pituitary extract (Life Technologies).

Transcription factor binding site search
Potential transcription factor binding sites were identified using the TFSEARCH program (http://www.cbrc.jp/research/db/TFSEARCH.html), which searches the TRANSFAC database. Cut-off was set at 75% of the consensus transcription factor binding site.

Nuclear extracts and EMSA
Nuclear extracts and electrophoretic mobility shift assays (EMSA) were performed as described previously. In brief, 2 μl of nuclear extracts (HeLa, HUVEC, U251, Raji) in binding buffer were incubated for 30 min on ice, with 2 ng of a [33P]labelled double-stranded DNA probe. The probe sequences for transcription factors (PCAF-C: 5'-CCGGCTGGTGAGGGGGAATCG-3'; PCAF-G: 5'-CCTTG-3') were labelled using T4 polynucleotide kinase (5'-GCTTTGAGGGGGAATCG-3').

For competition assays, nuclear extracts from IFN-γ-stimulated HeLa cells were incubated with unlabelled oligonucleotides in 100 and 200-fold excess for 30 min on ice, before incubation with the labelled probe. In the case of IFN-γ-treated samples, cells from five different cell types were stimulated with IFN-γ (500 U/ml; Boehringer-Ingelheim) for 4 h before preparing nuclear extracts. Samples were run on a 6% polyacrylamide gel in 0.25xTBE buffer. Gels were densitometrically analysed using ImageJ software.

Mouse model for reactive stenosis
The institutional committee on animal welfare approved all animal experiments. For all experiments hyperlipidaemic male ApoE*3-Leiden mice were fed a high-cholesterol diet (ArieBlok, Woerden, The Netherlands). Blood samples to determine plasma cholesterol were collected at the time of surgery. After 3 weeks on the diet, a non-constrictive polyethylene cuff was placed loosely around one femoral artery and mice were killed at several time points after surgery. After they were killed, at t=0 h (control, no cuff placement), 6 h, 24 h, 2 days, 3 days, 7 days and 14 days, both femoral arteries were isolated and snap-frozen in liquid nitrogen (n=6 mice for each time point).

RNA isolation and cDNA synthesis from femoral artery tissue
Per time point, cuffed segments of three femoral arteries were pooled to enable isolation of suitable amount of RNA, resulting in four pooled RNA samples obtained from n=6 mice, cuffed at two limbs. After RNA isolation, complementary DNA was synthesised and reverse transcriptase (RT)–PCR analysis was performed as previously described.

PCAF mRNA quantification
Expression levels of PCAF were measured by virtue of quantitative RT–PCR using TaqMan gene expression assay (Mm00451387_m1). PCR runs were carried out in the ABI PRISM 7700 sequence detection system (Applied Biosystems, Foster City, California, USA). Hprt1 was assayed as the control gene and its cycle threshold (Ct) was subtracted from the cycle threshold of the gene of interest, yielding ΔCt. For each time point, ΔΔCt was determined by subtracting the average ΔCt at time point 0 h from the ΔCt at each other time point. This ΔΔCt was used to calculate the displayed fold increase for each gene.

Statistical analysis
Allele frequencies were determined by gene counting. The χ2 test was used to test the consistency of the genotype frequencies at the SNP locus with Hardy–Weinberg equilibrium. HR with 95% CI were calculated using a Cox proportional hazards model. All analyses with PROSPER and WOSCOPS data were adjusted for sex, age and pravastatin use. The analyses with PROSPER data were additionally adjusted for country. In the GENDER study, polymorphisms were included in a multivariable model containing clinical and procedural risk factors for restenosis, such as diabetes, smoking, hypertension, stenting, total occlusion and residual stenosis greater than 20%.

To reach statistical significance with an α of 0.05 and a β of 0.8 in the association between the −2481 polymorphism and CHD death in this population, we need 168 cases of CHD death, for 4556 we need 379 cases of CHD death. A combined-effect analysis was performed to pool the results of the effect of the −2481G/C polymorphism on study endpoints (all-cause mortality, CHD death and clinical restenosis) and coronary endpoints (CHD death in two studies and clinical restenosis in the third study) in the three separate studies at old age. The random-effects model was used to consider both the between-study and within-study variability. The pooled HR over the genotypes was assessed with ordinary logistic regression. SPSS software (version 12.0.1) was used for all statistical analyses.

RESULTS

PROSPER study
Participant characteristics are presented in table 1. Genotyping success rates were higher than 96% for all polymorphisms and there were no significant deviations from Hardy–Weinberg equilibrium.

Using a Cox proportional hazards model, which included several clinical variables such as sex, age, pravastatin use and country, we found a significant association of the −2481G/C promoter polymorphism with all-cause mortality in PROSPER. As presented in table 2 and figure 1, heterozygotes had a reduced mortality risk by 17% (2–50%; p=0.03), whereas individuals homozygous for the −2481C allele had a 59% lower mortality.
Genetics of heart disease

Table 1 Baseline characteristics of the PROSPER, the GENDER and the WOSCOPS studies

<table>
<thead>
<tr>
<th></th>
<th>PROSPER N = 5595</th>
<th>WOSCOPS N = 1092</th>
<th>GENDER N = 2852</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous variates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>75.3 (3.4)</td>
<td>56.8 (5.2)</td>
<td>62.1 (10.7)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>26.8 (4.2)</td>
<td>26.0 (3.2)</td>
<td>27.0 (3.9)</td>
</tr>
<tr>
<td>Categorical variates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male sex</td>
<td>48</td>
<td>100</td>
<td>71</td>
</tr>
<tr>
<td>Current smoker</td>
<td>27</td>
<td>54</td>
<td>25</td>
</tr>
<tr>
<td>History of diabetes</td>
<td>11</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>History of hypertension</td>
<td>62</td>
<td>18</td>
<td>40</td>
</tr>
<tr>
<td>History of myocardial infarction</td>
<td>13</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>History of stable angina</td>
<td>27</td>
<td>8</td>
<td>67</td>
</tr>
<tr>
<td>Statins</td>
<td>50</td>
<td>48</td>
<td>55</td>
</tr>
<tr>
<td>Genotype, minor allele frequency (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCAF −4556C/T</td>
<td>9</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>PCAF −2481G/C</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>

All data are presented in percentages unless otherwise stated. PCAF, P300/CBP-associated factor.

(16–56%; p = 0.003). The effect of PCAF is more profound in the association with CHD death (risk reduction 22% (2–37%), p = 0.05) compared with the association with cancer mortality (risk reduction 15% (9–50%), p = 0.22). Due to its proximity to the −2456C/T polymorphism, we also present the data of the −4556 C/T polymorphism (table 2). It shows a small and non-significant trend towards a decrease in all-cause mortality. The linkage disequilibrium coefficient between these promoter polymorphisms was 0.79.

WOSCOPS study

To validate the association of the −2481G/C polymorphism with CHD mortality, and to investigate whether its effect is also present in a population largely without established vascular disease, we aimed to replicate our findings in a previously described nested case–control cohort of the WOSCOPS study. Baseline characteristics of the WOSCOPS study are presented in table 1.

In this case, the −2481G/C polymorphism was associated with a non-significant trend towards protection against death from CHD (risk reduction 17% (−14–59%), p = 0.26) at all ages. Heterozygotes (risk reduction 11% (−59–42%), p = 0.62) and homozygotes (risk reduction 57% (−36–71%), p = 0.24) had a non-significantly lower mortality risk. Although these data did not reach statistical significance, the point estimate for CHD mortality in WOSCOPS was similar to that observed in the PROSPER study (figure 1). The −4556 C/T polymorphism was not significantly associated with the risk of CHD death (risk reduction 20% (−56–53%), p = 0.40).

GENDER study

To extend the observed results in the PROSPER study, we tested the relevance of the gene to clinical conditions in which cell proliferation and inflammation play a role in a large patient population included in the GENDER study. In this study patients were followed for at least 9 months after a PCI to determine the absence or presence of clinical restenosis, as defined by the need for TVR. We considered TVR a suitable intermediate endpoint as it is a direct consequence of mainly proliferative and inflammatory processes.2

In agreement with the results from the PROSPER and WOSCOPS studies, the −4556 C/T polymorphism was not associated with the risk of TVR in the GENDER study, whereas the −2481G/C polymorphism showed a significant association with TVR (P trend = 0.02) (table 3 and figure 1). Heterozygous patients were at lower risk of TVR (risk reduction 20% (−2–58%), p = 0.07), and patients carrying two −2481C alleles had a greater protection against the development of restenosis (risk reduction 36% (0–59%), p = 0.05).

In analogy of the clinical restenosis (TVR) results, carriers of the −2481C allele also had less angiographic restenosis in a subpopulation of 478 patients undergoing angiography 6 months after the PCI (risk reduction 44% (4–67%), p = 0.05) (table 3).

Combined effect analysis

HR were almost remarkably equal in all three studies (figure 1). We formally tested for homogeneity using a standard Olkin-type Q-test and found p values of 0.91 and 0.77 for heterozygotic and homozygotic carriers of the minor allele of −2481G/C SNP between the three studies. Therefore and as all three studies have comparable endpoints, we conducted a combined effect analysis to show the effect of the −2481C on the study endpoints (CHD death in PROSPER and WOSCOPS, and clinical restenosis in GENDER) at all ages (figure 2, top panel). The pooled HR for the −2481C allele was 0.79 (95% CI 0.74 to 0.85; p = 8.1×10⁻⁶). Heterozygotes had a reduced risk (HR 0.82, 95% CI 0.68 to 0.98; p = 0.03), and this risk was lower in subjects homozygous for the −2481C allele (HR 0.61; 95% CI 0.44 to 0.84; p = 0.002).

Table 2 Results of the association between two promoter polymorphisms in the PCAF gene and mortality endpoints within the PROSPER and WOSCOPS studies

<table>
<thead>
<tr>
<th></th>
<th>PROSPER</th>
<th>CHD death in PROSPER</th>
<th>CHD death in WOSCOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All-cause mortality</td>
<td>N (%)</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>PCAF −4556C/T</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/C</td>
<td>491 (11)</td>
<td>1.0 (ref)</td>
<td>168 (4)</td>
</tr>
<tr>
<td>C/T</td>
<td>81 (9)</td>
<td>0.81 (0.64 to 1.02)</td>
<td>0.09</td>
</tr>
<tr>
<td>T/T</td>
<td>4 (7)</td>
<td>0.63 (0.24 to 1.69)</td>
<td>0.38</td>
</tr>
<tr>
<td>Trend</td>
<td>576 (10)</td>
<td>0.80 (0.65 to 0.99)</td>
<td>0.04</td>
</tr>
<tr>
<td>PCAF −2481G/C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G/G</td>
<td>290 (12)</td>
<td>1.0 (ref)</td>
<td>103 (4)</td>
</tr>
<tr>
<td>G/C</td>
<td>246 (10)</td>
<td>0.80 (0.70 to 0.98)</td>
<td>0.03</td>
</tr>
<tr>
<td>C/C</td>
<td>41 (7)</td>
<td>0.61 (0.44 to 0.84)</td>
<td>0.003</td>
</tr>
<tr>
<td>Trend</td>
<td>577 (10)</td>
<td>0.80 (0.70 to 0.91)</td>
<td>0.001</td>
</tr>
</tbody>
</table>

All HR and p values were assessed with a Cox proportional hazards model and adjusted for sex, age, country and use of pravastatin. Bold numbers indicate significant findings (p < 0.05). *Calculated for 5595 subjects in the PROSPER study and for 1092 in the WOSCOPS study. CHD, coronary heart disease; PCAF, P300/CBP-associated factor.
Examining for an age effect

We investigated an effect of the −2481C-variant allele on vascular mortality in two age strata, older and younger than 58 years. We could not, however, perform this analysis in the PROSPER study because all subjects were older than 70 years. In the WOSCOPS study, among participants 58 years of age and older (median age), we found that the −2481C allele significantly reduced the risk of CHD death (risk reduction 39% (3–62%), p=0.035), whereas there was no significant effect in the lower age group. We found similar results in the GENDER study. We again observed a strong protective effect of the C-allele in old patients (>58 years, n=1800) (risk reduction 30% (12–45%), p=0.003) whereas there was no significant effect present in young patients (<58 years, n=1052).

We also conducted a combined effect analysis to show the effect of the −2481C allele at a high age only (median age >58 years), shown in figure 2 bottom panel. The pooled HR for the −2481C allele on coronary events (CHD death or TVR) in this high age group was 0.72 (95% CI 0.61 to 0.84; p=4.9×10−5), which is somewhat stronger than the effect at all ages.

Table 3 Results of the association between two promoter polymorphisms in the PCAF gene and clinical and angiographic restenosis within the GENDER study

<table>
<thead>
<tr>
<th>Polymorphism/Study</th>
<th>Clinical restenosis (%)</th>
<th>N (%)</th>
<th>HR (95% CI)</th>
<th>p Value</th>
<th>Angiographic restenosis (%)</th>
<th>N (%)</th>
<th>HR (95% CI)</th>
<th>p Value</th>
<th>Clinical restenosis in the stented subpopulation (%)</th>
<th>N (%)</th>
<th>HR (95% CI)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCAF −4556C/T</td>
<td></td>
</tr>
<tr>
<td>C/C</td>
<td></td>
<td>218 (10)</td>
<td>1.0 (ref)</td>
<td>68 (21)</td>
<td>1.0 (ref)</td>
<td>149 (9)</td>
<td>1.0 (ref)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/T</td>
<td></td>
<td>54 (5)</td>
<td>0.98 (0.73 to 1.32)</td>
<td>16 (19)</td>
<td>0.80 (0.41 to 1.53)</td>
<td>31 (8)</td>
<td>0.86 (0.58 to 1.26)</td>
<td>0.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trend</td>
<td></td>
<td>274 (10)</td>
<td>0.92 (0.70 to 1.20)</td>
<td>84 (21)</td>
<td>0.77 (0.41 to 1.45)</td>
<td>180 (9)</td>
<td>0.80 (0.56 to 1.15)</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCAF −2481G/C</td>
<td></td>
</tr>
<tr>
<td>G/G</td>
<td></td>
<td>140 (11)</td>
<td>1.0 (ref)</td>
<td>47 (25)</td>
<td>1.0 (ref)</td>
<td>98 (10)</td>
<td>1.0 (ref)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G/C</td>
<td></td>
<td>114 (9)</td>
<td>0.80 (0.62 to 1.02)</td>
<td>0.07</td>
<td>29 (16)</td>
<td>0.56 (0.33 to 0.96)</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C/C</td>
<td></td>
<td>22 (7)</td>
<td>0.64 (0.41 to 1.00)</td>
<td>0.05</td>
<td>8 (18)</td>
<td>0.64 (0.27 to 1.52)</td>
<td>0.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trend</td>
<td></td>
<td>276 (10)</td>
<td>0.80 (0.67 to 0.97)</td>
<td>0.02</td>
<td>84 (21)</td>
<td>0.69 (0.47 to 1.02)</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

All HR and p values were assessed with a Cox proportional hazards model and adjusted for sex, age and clinical and procedural risk factors for restenosis. Bold numbers indicate significant findings (p-value < 0.05).

*Measured in a subgroup of 478 subjects.
†Measured in a subgroup of 2309 subjects.
PCAF, P300/CBP-associated factor.

DISCUSSION

Our data indicate that the −2481C allele in the gene encoding PCAF, a protein that has been shown to be a key mediator in epigenetics by acetylating histones and several non-histone proteins, such as the p53 tumour-suppressor proteins, is associated with a significant survival advantage in three independent studies. We found in the PROSPER-study an advantage in survival mainly due to a significant risk reduction in CHD death. In line with this observation we also observed that the −2481C allele was associated with a lower incidence of death by CHD in the WOSCOPS study in an age-dependent manner. Furthermore, this allele also protects against clinical and angiographic events.

Functional involvement: the −2481 region encompassing the C/G PCAF variants

Using the EMSA technique we tested whether the observed polymorphism would lead to differential protein binding in vitro. Using nuclear extracts of different cell types, we studied complex formation at the −2481 region of PCAF. We could detect constitutive protein binding to both PCAF C and G-variants (figure 3). In both HUVEC and U251 cells nuclear factor binding is slightly enhanced by IFN-γ stimulation. Densitometric analysis revealed that the PCAF G-variant exhibits slightly stronger protein binding in some cell types than the C-variant, although these differences are not statistically significant. Competition assays also suggest a modest difference in binding affinity (figure 3B).

Using the TFSearch program, we identified possible binding sites for MZF1 and GATA1-3 in the PCAF C-variant promoter. However, ds-oligonucleotides representing binding sites for MZF1 and GATA1-3 did not compete with factor binding to the PCAF C promoter variant (data not shown).

PCAF mRNA expression in a mouse model of reactive stenosis

Placement of a small non-constrictive cuff around the femoral artery in hypercholesterolaemic (13.9±3.6 mmol/l) ApoE-Leiden mice results in the induction of neointima formation. In the developing neointima a rapid upregulation of PCAF expression was observed after cuff placement in a time-dependent manner (figure 4). PCAF expression showed a peak 2 days after vascular injury (∼1.5-fold increase) and reduces to baseline levels of expression after 7 days. PCAF expression at days 3, 7 and 14 differed significantly from the 24 h measurement (p<0.05).
restenosis in the GENDER-study. The effects of the –2481C allele on mortality, CHD death and clinical restenosis were more profound at older ages (>58 years). The –2481G/C polymorphism in the PCAF promoter affects transcription factor binding, as was demonstrated by an EMSA band shift analysis. A role for PCAF in vascular disease was further confirmed in a mouse model for reactive stenosis, in which modulation of PCAF expression was detected during vascular remodelling.

Our observation in the PROSPER study that this promoter variant associates with lower mortality from cardiovascular disease and cancer as well as clinical restenosis after PCI in GENDER, may indicate a role of PCAF in inhibiting cell proliferation also in more general terms. PCAF has been shown, for example, to activate p53-responsive enhancer elements within the p21wa1 promoter, and activity of p21wa1 is known to induce cell-cycle arrest in vascular smooth muscle cells. Furthermore, A20, a NFκB-dependent gene that has been shown to inhibit proliferation of vascular smooth muscle cells by increased expression of p21wa1, was able to prevent neointima formation after balloon angioplasty in a rat model of carotid artery stenosis.

Apart from its well-described role in cell-cycle regulation, PCAF is also known to be required to co-activate p65-dependent transcription, and has been shown to activate directly the transcription of several NFκB-regulated genes known to be involved in cardiovascular disease. Miao et al have shown that PCAF could enhance the p65-mediated increase in tumour necrosis factor alpha (TNFα) promoter activity and that high glucose increased the recruitment of PCAF to the TNFα and cyclooxygenase 2 promoters. Furthermore, they demonstrated concomitant acetylation of specific lysine residues of histone H5 and H4 at these promoters. As TNFα and cyclooxygenase 2 have been implicated in the development of atherosclerosis, restenosis and also cancer, our data suggest that PCAF may also play a role in the development of these diseases.

Our finding in the WOSCOPS and GENDER studies that the strong protective effect of the –2481C allele was more profound in patients older than 58 years, whereas it seemed not to be present in young patients (<58 years old) is of particular interest. It could reveal the combined effect of a lifetime dysregulation of expression of the lysine acetyltransferase –2481C PCAF variant, which affects global levels of histone acetylation, in addition to the accumulating effect of exposure to environmental factors that also affects histone acetylation profiles during life, as observed by Fraga et al.

In the PROSPER population such an age-dependent effect was not observed as this trial included only patients over 70 years old. As expected, here the effects on cardiovascular and cancer mortality associated with the PCAF –2481G/C polymorphism were evident for the entire population. After observing an age-dependent effect in the WOSCOPS and GENDER studies, we suggest that this polymorphism in PCAF is associated with an altered tendency to acetylate histones and non-histone proteins (such as the tumour-suppressor p53, whose function relies on acetylation, reviewed in Spange et al), and may therefore become...

Figure 2 Combined effect estimate of the HR of the PROSPER, WOSCOPS, and GENDER studies for the P300/CBP-associated factor (PCAF) –2481G/C polymorphism. This figure represents the HR for the additive model of the PCAF –2481G/C polymorphism. Coronary endpoints consist of coronary heart disease death for the PROSPER and WOSCOPS studies, and clinical restenosis for the GENDER study. The top panel is the combined effect analysis for coronary endpoints at all ages, the bottom panel in subgroups with age greater than 58 years.

Example: PCAF expression was detected during vascular remodelling. This suggests slightly stronger binding of protein to the G-variant of the –2481 region using nuclear extracts of various cell-lines. EMSA suggests slightly stronger binding of protein to the G-variant of the –2481 region, most pronounced in human umbilical vein endothelial cells (HUVEC) and U251 cells. (B) Competition assay with nuclear extracts from HeLa cells stimulated with IFN-γ also suggests slightly increased binding affinity for the –2481G-variant at high concentrations. The difference is best observed when unlabelled probe is added in 200-fold excess, indicating that the observed difference in affinity is weak. Shown are representatives of multiple independent experiments.

Figure 3 Protein binding to the C and G-variant of the –2481 region. (A) Electrophoretic mobility shift assays (EMSA) showing binding of protein to the C and G-variant of the –2481 region using nuclear extracts of various cell-lines. EMSA suggests slightly stronger binding of protein to the G-variant of the –2481 region, most pronounced in human umbilical vein endothelial cells (HUVEC) and U251 cells. (B) Competition assay with nuclear extracts from HeLa cells stimulated with IFN-γ also suggests slightly increased binding affinity for the –2481G-variant at high concentrations. The difference is best observed when unlabelled probe is added in 200-fold excess, indicating that the observed difference in affinity is weak. Shown are representatives of multiple independent experiments.

Figure 4 Expression of P300/CBP-associated factor (PCAF) mRNA in a cuff-induced reactive stenosis mouse model. The figure shows PCAF differentially expressed upon activation of the vessel wall in a time-dependent manner, with an expression peak 48 h after vascular injury. The data are presented as fold increase compared with the control arteries, using HPRT as an internal control for cDNA input.
important especially in elderly patients, who may have been under the influence of altered PCAF activity for many years. This hypothesis, however, needs further investigation.

Although our findings in the GENDER study do not directly replicate the effect of the −2481G/C polymorphism on CHD mortality in the elderly, they are of much value as this study has a mechanistically linked and better defined concise endpoint. Therefore, in this way pathophysiological insights would be obtained and not just replication only. Restenosis after a PCI is very well investigated and is now known to be mainly the consequence of inflammatory and proliferative processes, which is underscored by the fact that drug-eluting stents that suppress these processes are highly efficacious in the prevention of restenosis. Therefore, we believe that our finding that the −2481C allele protects against restenosis in the GENDER study could possibly confirm its functional significance, but could also provide mechanistic insights into its beneficial role in survival in the PROSPER and WOSCOPS studies. However, this could only explain part of the causes by which CHD death risk is decreased in the PROSPER and WOSCOPS studies, the exact mechanism is not known. We did not find any association between the strongly linked −4556C/T polymorphism and survival in any of the three studies. The estimated HR were quite similar as expected, however, due to small numbers because the minor allele frequency of −4556C/T is three to four times smaller than that of −2481G/C, no significant results were yielded. This could simply be due to lack of power.

Here we show a strong association between the PCAF locus involved in epigenetic control and clinical conditions in three large follow-up studies with a mechanistically linked endpoint; however, our studies warrant further investigation into the influence of the −2481G/C polymorphism on the activity of the PCAF promoter or expression levels of NFκB-regulated genes. Here we hypothesise a new concept that differential transcription of the PCAF gene leads to differences in gene expression in various pathways mechanistically linked to CHD events, such as inflammatory regulatory pathways or pathways involved in proliferation. Therefore, further research has to be performed to test this hypothesis.

In a first analysis we were able to demonstrate binding of nuclear factors to the specific region flanking the −2481G/C polymorphism in the PCAF promoter. EMSA analysis showed that the G-variant possibly exhibits a slightly higher affinity for nuclear factor binding than the C-variant in some cell types proliferation. Therefore, further research has to be performed to understand the consequences of in the transcriptional coactivator is involved in the development of reactive stenosis, at least in the early stages. Unfortunately, it is not possible to measure the PCAF protein levels directly; however, the rapid up and downregulation of the messenger RNA levels suggests that PCAF is not stable. The changes in mRNA levels are likely to reflect the changes in protein levels.

In conclusion, we showed in three large prospective studies that the −2481C allele in the PCAF promoter is associated with a significant survival advantage in elderly patients while also protecting against clinical and angiographic restenosis after PCI. Although the exact mechanisms of these actions are thus far unknown, we suggest that the effect of this allele on these endpoints may be due to the well-known involvement of PCAF in inflammatory and proliferative processes. Our observations promote the concept that epigenetic processes are under genetic control and that, other than environment, genetic variation in genes encoding KAT may also determine susceptibility to CHD outcomes and mortality. Therefore, epigenetic histone modification, when our results are confirmed in our studies, might become a target for future therapy.

Author affiliations
1Department of Cardiology, Leiden University Medical Center, RC Leiden, The Netherlands
2Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
3Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
4Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
5Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
6Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
7Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
8Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
9Department of Medical Statistics, Academic Medical Center, Amsterdam, The Netherlands
10Department of Cardiology, University Medical Center, Utrecht, The Netherlands
11Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
12Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
13Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
14Celera, Inc, Alameda, California, USA
15BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, Scotland, UK
16Department of Vascular Biochemistry, University of Glasgow, Scotland, UK
17Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands

Author footnote
The PROSPER study group Scotland—J Shepherd, CJ Packard, A Gaw (Department of Pathological Biochemistry, University of Glasgow); PW Macfarlane, DJ Scott (Division of Cardiovascular and Medical Sciences, University of Glasgow); I Ford (Robertson Centre for Biostatistics, University of Glasgow); Ireland—MB Murphy, BM Buckley (Department of Pharmacology and Therapeutics, University College Cork); LJ Perry (Department of Epidemiology and Public Health, University College Cork); MJ Hyland, C Twomey (Department of Geriatric Medicine, Cork University Hospital); BJ Sweeney (Department of Neurology, Cork University Hospital); The Netherlands—S Trompet, GJ Blauw, AJM de Craen, RGJ Westendorp (Section of Gerontology and Geriatrics, Leiden University Medical Center); ELEM Bollen (Department of Neurology, Leiden University Medical Center); JW Jukema (Department of Cardiology, Leiden University Medical Center).

The WOSCOPS study group Scotland—J Shepherd, CJ Packard (Department of Pathological Biochemistry, University of Glasgow); SM Cobbe, AR Lorimer, PW Macfarlane (Department of Medical Cardiology); JH McKillop (Department of Medicine); I Ford (Robertson Centre for Biostatistics) from the University of Glasgow, Glasgow and CG Isles (Department of Medicine) from the Dumfries and Galloway District General Hospital, Dumfries.
The GENDER study group
The Netherlands—JW Jukema, D Pons, PS Monraats, A van der Laarse, EE van der Wall (Department of Cardiology, Leiden University Medical Center); RR Frants (Department of Human Genetics, Leiden University Medical Center); MPM de Maat (Department of Hematology, Erasmus University Medical Center); CW Eerelman (Department of Medical Statistics, Academic Medical Center, Amsterdam); PAFM Doevendans (Department of Cardiology, University Medical Center, Utrecht); RA Tio (Department of Cardiology, University Medical Center Groningen); RJ de Winter (Department of Cardiology, Academic Medical Center, Amsterdam); J Waltenberger (Department of Cardiology, Academic Hospital Maastricht).

Acknowledgements
The authors would like to thank Dennis Kramer and Eka Suchman from the Molecular Epidemiology Section of the Leiden University Medical Center, for their expert assistance with the Sequenom Massarray genotyping platform and Marja van Eggermond from the Department of Immunohematology and Blood Transfusion for her technical expertise. They also thank Dr H.C. de Boer and Prof. Dr. A.J. van Zonneveld, Department of Nephrology and the Ethoven Laboratory for Experimental Vascular Medicine for isolating and providing HUVEC.

Funding
This study was supported by grants from the Netherlands Heart Foundation, the Interuniversity Cardiology Institute of the Netherlands (ICYN), the Macoropa Foundation, the Center for Medical Systems Biology (CMSB), a centre of excellence approved by the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research (NWO), and the EU Project HEALTH-F2-2007 223004 PHASE.

Competing interests
None declared.

Patient consent
Obtained.

Ethics approval
The protocols meet the criteria of the Declaration of Helsinki and were approved by the medical ethics committees of each participating institution.

Provenance and peer review
Not commissioned; externally peer reviewed.

REFERENCES
Genetic variation in PCAF, a key mediator in epigenetics, is associated with reduced vascular morbidity and mortality: evidence for a new concept from three independent prospective studies

Heart 2011 97: 143-150 originally published online November 8, 2010
doi: 10.1136/hrt.2010.199927