The VLT-FLAMES Tarantula Survey: II. R139 revealed as a massive binary system

Published in:
Astronomy & Astrophysics

DOI:
10.1051/0004-6361/201116785

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The VLT-FLAMES Tarantula Survey

II. R139 revealed as a massive binary system

(Affiliations can be found after the references)

Received 25 February 2011 / Accepted 28 March 2011

ABSTRACT

We report the discovery that R139 in 30 Doradus is a massive spectroscopic binary system. Multi-epoch optical spectroscopy of R139 was obtained as part of the VLT-FLAMES Tarantula Survey, revealing a double-lined system. The two components are of similar spectral types; the primary exhibits strong C III λ4650 emission and is classified as an O6.5 Iaf supergiant, while the secondary is an O6 Iaf supergiant. The radial-velocity variations indicate a highly eccentric orbit with a period of 153.9 days. Photometry obtained with the Faulkes Telescope South shows no evidence for significant variability within an 18 month period. The orbital solution yields lower mass limits for the components of $M_1 \sin^3 i = 78 \pm 8 \, M_\odot$ and $M_2 \sin^3 i = 66 \pm 7 \, M_\odot$. As R139 appears to be the most massive binary system known to contain two evolved Of supergiants, it will provide an excellent test for atmospheric and evolutionary models.

Key words. binaries: spectroscopic – stars: early-type – stars: individual: R139 – open clusters and associations: individual: 30 Doradus

1. Introduction

Massive binary stars provide vital insights to our understanding of massive-star evolution. This is primarily because of the accuracy with which their masses can be determined; an essential ingredient for understanding a wide range of stellar properties. Because of the additional constraints that can be placed on their age and evolution, these stars provide information on initial masses, chemical mixing, and mass-loss (Moffat 2008, De Mink et al. 2009). In a broader context, they can then act as crucial calibration points for models of both stellar atmospheres and evolution.

From the catalogue of bright stars in the Magellanic Clouds by Feast et al. (1960), R139 has a V-band magnitude of ∼12, making it one of the brightest objects in the 30 Doradus nebula3. Walborn & Blades (1997) noted R139 as potentially one of the most massive stars in 30 Doradus, urging more detailed study.

Multi-epoch spectroscopy of R139 was obtained as part of the campaign by Moffat (1989). His mean radial velocity from observations in 1982 showed an offset of ∼100 km s−1 compared to the mean velocity from earlier data. He noted R139 as a single-lined binary, with a tentative period of 52.7 d adopted from a number of possible fits to the data. Schnurr et al. (2008b) presented spectroscopy of R139 from three observing seasons (spanning 2001 to 2003). While noting that the system displayed “slightly variable radial velocity”, it was concluded that R139 was single, citing the relatively large uncertainties in Moffat’s past work for the conflicting scenarios.

R139 has now been observed as part of the VLT-FLAMES Tarantula Survey2 (VFTS), an ESO Large Programme that has obtained multi-epoch spectroscopy of over 800 massive stars in 30 Doradus. A full overview of the survey is given by Evans et al. (2011, Paper I); here we report on the discovery of R139 as a massive double-lined binary.

2. Observations

The observations of R139 are summarised in Table 1. The primary dataset of the VFTS was obtained with the Giraffe spectrograph using the “Medusa” fibre-fed mode of the FLAMES instrument on the Very Large Telescope (VLT). Details of the reductions and observational strategy can be found in Paper I, in which R139 is catalogued as object VFTS 527.

After the initial detection of binarity made from the FLAMES data, follow-up observations were obtained on the 6.5 m Magellan Clay Telescope with the MagE instrument, with X-Shooter on the VLT, and also with FEROS on the MPG/ESO 2.2 m telescope at La Silla3. All these follow-up observations provide coverage across the entire visible spectrum, with a typical signal-to-noise ratio of order 150 – although the FEROS data must be degraded to $R \sim 9000$ to achieve this.

Observations obtained at the European Southern Observatory Very Large Telescope in programme 182.D-0222.

FEROS observations obtained as part of programme 086.D-0997.

* Hubble Fellow.
** European Space Agency.

1 Other aliases of R139 include: Brey 86 (Breysacher 1981), Parker 952 (Parker 1993), BAT99-107 (Breysacher et al. 1999), and Selman 2 (Selman et al. 1999).
3. Results

3.1. Binary identification and spectral classification

Feast et al. (1960) described the spectrum of R139 as exhibiting “O-type absorption plus weak W emission”. Walborn & Blades (1997) argued that R139 has very strong Of emission features, classifying it as Of IaP, while Schnurr et al. (2008b) adopted the spectral type WN9h::a. This ambiguity has likely arisen because the emission features are the superposition from two similar stars. When observed at lower resolution, this would have falsely suggested enhanced emission or broadening of the lines.

The increased resolution and time-sampling of the new data has revealed that many of R139’s prominent emission and absorption features separate into two distinct and similar components. This is best illustrated by contrasting epochs 11 and 16 in Fig. 1, which show the minimum and maximum observed separations respectively. The epochs that display well-separated components have allowed a precise classification of both components. The system consists of a more massive and more luminous primary, which is an O6.5 Iaf supergiant, and a slightly less luminous O6 Iaf companion. These spectral types are determined of any other assumptions about the orbit (Rauw et al. 2000).

Where possible, the relative shift of the components was identified through the C III emission and also He II λ4686 emission, which are only present in the primary. The C III emission lines show no separation, but exhibit radial velocity shifts in the same direction as the primary.

3.2. Radial velocity analysis and lower mass limits

A global χ^2 fitting approach was used to determine the radial velocity shifts of the different epochs. This technique fits double Gaussian profiles to a number of lines: He II λ4471, He II λ4420, Si IV λ4441, Si IV λ4550, He II λ4542, He II λ4686, and He I λ4922. The fitting is performed simultaneously on all the observations, which ensures that consistent profile shapes are used, including at conjunction. This approach improves the disentangling of the contribution from each star for the data sets with limited phase coverage, but ignores the possibility of line profile variations. The formal errors on the measurements for each component are a few km s$^{-1}$.

The mass ratio of the system can be found from the ratios of the primary and secondary radial velocities and is independent of any other assumptions about the orbit (Rauw et al. 2000). For R139 the mass ratio is found to be $M_1/M_2 = 1.20 \pm 0.05$.

Period searches based on Fourier analysis of the measured radial velocity shifts were performed using the methods of Gosset et al. (2001): the dominant signal indicated a period of
Table 2. The parameters associated with the best-fit orbital solution.

<table>
<thead>
<tr>
<th>Property</th>
<th>Best-fit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period, (P)</td>
<td>153.9 ± 0.1 days</td>
</tr>
<tr>
<td>Eccentricity, (e)</td>
<td>0.46 ± 0.02</td>
</tr>
<tr>
<td>Argument of periastron, (\omega)</td>
<td>106.9 ± 5.0 deg</td>
</tr>
<tr>
<td>Date of (\phi = 0) (HJD - 2 450 000), (T_0)</td>
<td>6035.9 ± 1.3 days</td>
</tr>
<tr>
<td>Maximum velocity of primary, (K1)</td>
<td>107.8 ± 3.8 km s⁻¹</td>
</tr>
<tr>
<td>Maximum velocity of secondary, (K2)</td>
<td>127.0 ± 4.5 km s⁻¹</td>
</tr>
<tr>
<td>Projected semi-major axis for primary, (a_1 \sin i)</td>
<td>290.6 ± 10.8 (R_\odot)</td>
</tr>
<tr>
<td>Projected semi-major axis for secondary, (a_2 \sin i)</td>
<td>342.3 ± 12.8 (R_\odot)</td>
</tr>
</tbody>
</table>

Notes. The errors quoted are the formal errors on the best-fit from the Fourier analysis, and therefore may not be fully representative of the uncertainty in the parameter values.

Fig. 3. Best-fit orbital solution from the measured radial velocities of the components, indicating a 153.9 day orbit. The closed circles denote the velocities of the primary and the open circles the secondary.

153.9 days. The corresponding orbital solution, which has an rms uncertainty of 6.2 km s⁻¹, is shown in Fig. 3 (based on methods of Sana et al. 2006a). The corresponding lower mass limits for the stars are \(M_1 \sin^3 i = 78 \pm 8 \, M_\odot \) and \(M_2 \sin^3 i = 66 \pm 7 \, M_\odot \). Other orbital parameters are listed in Table 2. These are sensitive to the behaviour of the system around periastron: additional observations of this stage in the orbit would allow confirmation of these results.

3.3. The luminosity of R139

To estimate the luminosity of the system, model atmospheres were calculated with CMFGEN (Hillier & Miller 1998), adopting abundances from Asplund et al. (2005) and scaling them appropriately for the LMC. These were used to constrain the effective temperature \((T_{\text{eff}}) \) consistent with: 1) the absence of N IV \(\lambda 4058 \) emission; 2) the presence of N III \(\lambda 4640 \) emission; 3) the intensity of the He I \(\lambda 4471 \) absorption. This gives an estimated \(T_{\text{eff}} \) for both components of 34 ± 2 K.

The luminosity was then determined by matching optical and infrared photometry from Selman et al. (1999) and 2MASS (Skrutskie et al. 2006). For this purpose, the visual extinction \(A_V = R \times E(B-V) \) was determined for each model based on the relation \(R = 1.12 \times E(V-K)/E(B-V) + 0.02 \) from Fitzpatrick (1999). The resulting luminosity for the composite system is \(\log(L/L_\odot) = 6.4 \pm 0.1 \) (with \(R \) in the range 3.4–3.9).

4. Photometric variability

R139 was identified as showing slight photometric variability by Feitzinger & Isserstedt (1983). They observed a 0.3 mag dimming in the V band over a 25 day period. However, this was from only three observations taken with a wide (18″) aperture.

Fig. 4. Differential V-band residuals for R139 compared to the mean of the five check stars, phased to the 153.8 day orbit. Open circles denote the five epochs when the seeing was in excess of 2′. The dotted lines indicate the expected mid-point of any possible eclipses: \(\phi = 0.39 \) and 0.98 for the eclipses near apastron and periastron respectively.

5. X-rays

R139 was detected by Portegies Zwart et al. (2002) as an X-ray source in the 30 Dor field observed with the Advanced CCD Imaging Spectrometer on the Chandra X-Ray Observatory. Further analysis of the Chandra data was carried out by Townsley et al. (2006) and more recently by Guerrero & Chu (2008). These studies found R139 to have a relatively low X-ray luminosity compared to other W-R stars in the region. Guerrero & Chu (2008) also considered data from the Röntgen Satellite (ROSAT), but it did not detect R139 due to its lower sensitivity.

The X-ray luminosity and the bolometric luminosity of massive O stars are linked by the relationship \(L_X \approx 10^{-6.9} \, L_{\text{bol}} \).
O supergiant binary system yet discovered. Many of these systems contain stars as massive as those predicted here. The red circle indicates the best fit for the total luminosity of the R139 system, while the blue squares show the fit for the luminosity of the two components based on the mass ratio and assuming the objects are coeval. From these it is possible to infer the initial masses, see text for further details.

\[\log(L/L_\odot) = 6.4 \] for the combined system, an X-ray luminosity of \(1.2 \times 10^{33} \text{ erg s}^{-1} \) would be expected. This is slightly lower than Guerrero’s result of \(2.7 \times 10^{33} \text{ erg s}^{-1} \) in the 0.5–7 keV range – even considering the possible 25% error in the detected count rate. This slight excess emission might be associated with X-rays generated through the interaction of the system’s stellar winds. There is no evidence, however, for phase-dependent line profile variations, which would have also suggested colliding winds.

6. Discussion

Previous observations: in order to compare our result with the earlier work of Schnurr et al. (2008b), who found an insignificant radial velocity shift, our LR02 observations were degraded to the same resolving power as Schnurr’s \((R \sim 1000)\) and a number of lines were fit with a single Gaussian function. The radial velocity variation was found to be only 10.3 km s\(^{-1}\), while the FWHM of the profiles varied by around 40 km s\(^{-1}\). This suggests that even if the system had been observed near periastron, it would have been difficult to confirm its binary nature.

Comparison systems: some binary systems have been identified where both components are more massive than those of R139: NGC-3603-A1, a system comprised of a 116 \(M_\odot\) primary and a 89 \(M_\odot\) star (Schnurr et al. 2008a), and also WR20a, an \(83 M_\odot\) and \(82 M_\odot\) system (Rauw et al. 2004; Bonanos et al. 2004). However, there are not many systems with a pair of massive evolved O-stars. Closer analogs are the Cyg OB2-B17 system (Stroud et al. 2010), where the component stars are O7 and O6-7 supergiant (Rauw et al. 1999). It would appear that neither of these systems contain stars as massive as those predicted here. Consequently, it can be argued that R139 is the most massive O supergiant binary system yet discovered.

Evolutionary masses: Fig. 5 shows how the R139 system compares to evolutionary tracks from Friedrich et al. (in prep.), computed analogously to the models of Brott et al. (2011). The figure shows that the total luminosity and \(T_{\text{eff}}\) of the system equals that of a single star with an initial mass above 125 \(M_\odot\).

Assuming R139 consists of coeval stars with a mass ratio of 1.2, the estimates for the current masses are \(75 \pm 14 M_\odot\) for the (cooler) primary and \(62 \pm 11 M_\odot\) for the (hotter) secondary. These values were derived using a \(\chi^2\) method to fit the combined luminosity of the stars against that quoted for the system. The effective temperatures of the stars were fitted against the CMFGEN-derived temperatures of \(34 \pm 2\) K. Interestingly, these estimated masses closely agree with the lower-mass limits from the orbital solution. This implies that the system has a high inclination and supports the need for additional photometric observations.

In these models an initial equatorial velocity of 110 km s\(^{-1}\) was adopted in agreement with the current observed \(v\sin i\). The effect of rotation on the evolutionary tracks is very limited for initial rotation rates up to about 300 km s\(^{-1}\) (Brott et al. 2011). Nevertheless, these tracks are sensitive to uncertain physical processes such as internal mixing and mass loss. The errors on the mass estimates represent the formal 1-sigma confidence limits of the \(\chi^2\) fit and do not include systematic uncertainties in the model physics.

The best fit corresponds to an age of 2–2.5 Myr and implies that both stars have significantly evolved off the zero-age main sequence. As the stars are assumed to be coeval, the substantial mass ratio implies a large difference in temperature between the components (see Fig. 5). This is surprising given the similar spectral types; Martins et al. (2005) predict a temperature difference nearer to 1 K for a 0.5 variation in spectral types. This discrepancy may well reflect our still limited understanding of the physics of the most massive stars, illustrating the potential of massive binaries as tools to evaluate our models.

The high-quality, time-sampled VFTS observations have revealed that R139 is a binary system. The data suggest that it is the most massive evolved O-star binary system yet discovered: a result which additional observations around periastron would help to confirm. As demonstrated here, such a massive system has already presented challenges for theoretical models to reproduce its observed properties and it will likely provide a crucial test for evolutionary and atmospheric models in the future.

Acknowledgements. Thanks to the referee, Anthony Moffat, for his constructive comments. S.d.M. acknowledges NASA Hubble Fellowship grant HST-HF-51270.01-A awarded by STScI, operated by AURA for NASA, contract NAS 5-26555. A.Z.B. acknowledges support from the European Commission FP7 under the Marie Curie International Reintegration Grant PIRG04-GA-2908-239335. R.H.B. acknowledges partial support from DIULS Project PR09101.

References

Fig. 5. Hertzsprung-Russell diagram showing mass estimates derived from luminosity fits to evolutionary tracks (Brott et al. 2011; Friedrich et al., in prep.). The red circle indicates the best fit for the total luminosity of the R139 system, while the blue squares show the fit for the luminosity of the two components based on the mass ratio and assuming the objects are coeval. From these it is possible to infer the initial masses, see text for further details.

1 Institute for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh. EH9 3HJ, UK
e-mail: wdt@roe.ac.uk
2 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh. EH9 3HJ, UK
3 Astronomical Institute Anton Pannekoek, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
5 Department of Physics and Astronomy, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
6 FauKes Telescope Project, University of Glamorgan, Pontypridd, CF37 1DL, Wales, UK
7 European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago 19, Chile
8 Departamento de Física, Universidad de La Serena, Cisternas 1200 Norte, La Serena, Chile
9 Instituto de Ciencias Astronomicas, de la Tierra, y del Espacio(ICATE-CONICET), Av. España 1512 Sur, 5400 San Juan, Argentina
10 Armagh Observatory, College Hill, Armagh, BT61 9DG, Northern Ireland, UK
11 Institute of Astronomy & Astrophysics, National Observatory of Athens, I. Metaxa & Vas. Pavlou Street, P. Penteli 15236, Greece
12 Astronomical Institute, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
13 University of Vienna, Department of Astronomy, Türkenschanzstr. 17, 1180 Vienna, Austria
14 Dept. of Physics & Astronomy, Hounsfield Road, University of Sheffield, S3 7RH, UK
15 Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hugel 71, 53121 Bonn, Germany
16 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
17 Departamento de Astrofísica, Universidad de La Laguna, Astrofísico Francisco Sánchez, 38071 La Laguna, Tenerife, Spain
18 Instituto de Astrofísica de Andalucía-CSIC, Glorieta de la Astronomía s/n, 18008 Granada, Spain
19 Institute of Astronomy with National Astronomical Observatory, Bulgarian Academy of Sciences, PO Box 136, Smoljan, Bulgaria
20 Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena, Chile