Evolutionary selection of individual expectations and aggregate outcomes in asset pricing experiments
Anufriev, M.; Hommes, C.H.

Citation for published version (APA):
Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments

Mikhail Anufriev† Cars Hommes‡

CeNDEF, School of Economics, University of Amsterdam,
Roetersstraat 11, NL-1018 WB Amsterdam, Netherlands

Tinbergen Institute,
Gustav Mahlerplein 117, NL-1082 MS Amsterdam, the Netherlands

First Draft: July 2007; This draft: July 2011

*We thank the participants of the “Complexity in Economics and Finance” workshop, Leiden, October 2007, the “Computation in Economics and Finance” conference, Paris, June 2008, the “Learning and Macroeconomic Policy” workshop, Cambridge, September 2008, and seminar participants at the University of Amsterdam, Sant’Anna School of Advanced Studies (Pisa), University of New South Wales, Catholic University of Milan, University of Warwick, Paris School of Economics, and the European University Institute (Florence) for stimulating discussions. We benefited from helpful comments by Buz Brock, Cees Diks, John Duffy, Doyne Farmer, Frank Heinemann and Valentyn Panchenko and by two anonymous referees on earlier versions of this paper. This work is supported by the Complex Markets E.U. STREP project 516446 under FP6-2003-NEST-PATH-1 and by the EU 7th framework collaborative project “Monetary, Fiscal and Structural Policies with Heterogeneous Agents (POLHIA)”, grant no 225408.

†Tel.: +31-20-5254248; fax: +31-20-5254349; e-mail: M.Anufriev@uva.nl.
‡Tel.: +31-20-5254246; fax: +31-20-5254349; e-mail: C.H.Hommes@uva.nl.
Abstract

In recent ‘learning to forecast’ experiments with human subjects (Hommes, et al. 2005), three different patterns in aggregate price behavior have been observed: slow monotonic convergence, permanent oscillations and dampened fluctuations. We show that a simple model of individual learning can explain these different aggregate outcomes within the same experimental setting. The key idea of the model is the evolutionary selection among heterogeneous expectation rules, driven by the relative performance of the rules. Out-of-sample predictive power of our switching model is higher compared to the rational or other homogeneous expectations benchmarks. Our results show that heterogeneity in expectations is crucial to describe individual forecasting behavior as well as aggregate price behavior.

JEL codes: C91, C92, D83, D84, E3.

Keywords: Learning, Heterogeneous Expectations, Expectations Feedback, Experimental Economics
1 Introduction

In an economy today’s individual decisions crucially depend upon expectations or beliefs about future developments. For example, in speculative asset markets such as the stock market, an investor buys (sells) stocks today when she expects stock prices to rise (fall) in the future. Expectations affect individual decisions and the realized market outcome (e.g., prices and traded quantities) is an aggregation of individual behavior. A market is therefore an expectations feedback system: market history shapes individual expectations which, in turn, determine current aggregate market behavior and so on. How do individuals actually form market expectations, and what is the aggregate outcome of the interaction of individual market forecasts? To answer these questions in this paper we investigate individual learning behavior observed in the experiments of Hommes et al. (2005b) and Hommes et al. (2008) (HSTV05 and HSTV08, henceforth), specifically designed to study expectation feedback. On the basis of the experimental evidence we propose a behavioral model of heterogeneous expectations, which fits individual behavior as well as aggregate market outcomes in the experiments quite well.

After the seminal work by Muth (1961) and Lucas (1972), it is common for economic theory to assume that all individuals have rational expectations. In a rational world individual expectations coincide, on average, with market realizations, and markets are efficient with prices fully reflecting economic fundamentals (Samuelson, 1965; Fama, 1970). In the traditional view, there is no room for market psychology and “irrational” herding behavior. An important underpinning of the rational approach comes from an early evolutionary argument made by Friedman (1953), that “irrational” traders will not survive competition and will be driven out of the market by rational traders, who will trade against them and earn higher profits.

Following Simon (1957), many economists have argued that rationality imposes unrealistically strong informational and computational requirements upon individual behavior and it is more reasonable to model individuals as boundedly rational, using simple rules of thumb in decision making. Laboratory experiments indeed have shown that individual decisions
under uncertainty are at odds with perfectly rational behavior, and can be much better described by simple heuristics, which sometimes may lead to persistent biases (Tversky and Kahneman, 1974; Kahneman, 2003; Camerer and Fehr, 2006). Models of bounded rationality have also been applied to forecasting behavior, and several adaptive learning algorithms have been proposed to describe market expectations. For example, Sargent (1993) and Evans and Honkapohja (2001) advocate the use of adaptive learning in modeling expectations, where agents learn unknown parameters of the model using econometric techniques on the past observations. In some models (Bray and Savin, 1986) adaptive learning enforces convergence to rational expectations, while in others (Bullard, 1994) learning may not converge at all but instead lead to excess volatility and persistent deviations from rational equilibrium similar to real markets (Shiller, 1981; DeBondt and Thaler, 1989). While most of the initial adaptive learning models have been used in the macro-literature, several of them recently were applied to explain various phenomena of the financial markets. The results are mixed. Adam et al. (2008) show that when agents predict price return with least-square learning, the moments of different time series, such as return or price-dividend ratio, become significantly closer to the actual values than under rational expectations. On the other hand, Carceles-Poveda and Giannitsarou (2008) similarly study least-square learning in a general equilibrium framework and find that it is not sufficient to bring moments towards plausible values. Branch and Evans (2011) show that the model with least-square forecasting of return and the conditional variance of return generates repeated bubbles and crashes.

Recently, models with heterogeneous expectations and evolutionary selection among forecasting rules have been proposed, e.g., Brock and Hommes (1997) and Branch and Evans (2006), see Hommes (2006) for an extensive overview. By taking a larger deviation from the rational expectation framework, these models proved to be able to match moments of different financial variables and, therefore, generate several “stylized facts” of financial markets, such as excess volatility, volatility clustering, and fat tails of return distribution. See Gaunersdorfer et al. (2008); Anufriev and Panchenko (2009); Franke and Westerhoff (2011), among others. At the same time Boswijk et al. (2007) and de Jong et al. (2009) estimate the heterogeneous expectation models on real market data and find evidence of heterogeneity.
Fit of the model to ‘clean’ experimental data, which we perform in this paper, provide an important further test for the heterogeneous agent models. Furthermore, we will use the experimental data also to provide a micro-foundations for our model, since the forecasting rules which we employ were among rules estimated in the laboratory.

Laboratory experiments with human subjects are well suited to study individual expectations and how their interaction shapes aggregate market behavior (Marimon et al., 1993; Peterson, 1993). But the results from laboratory experiments are mixed. Early experiments by Smith (1962) show convergence to equilibrium, while more recent asset pricing experiments exhibit deviations from equilibrium with persistent bubbles and crashes, see, e.g., Smith et al. (1988) and Lei et al. (2001). It is important to recognize that in many earlier experiments expectations only play a secondary role, being intertwined with other aspects, such as market architecture and trading behavior of participants. In order to provide clean data on expectations and control all other underlying model assumptions, HSTV05 designed a so-called ‘learning to forecast’ experiment. In a typical session six human subjects had to predict the price of an asset for 50 periods, having knowledge of the fundamental parameters (mean dividend and interest rate) and previous price realizations. Trading is computerized, using an optimal demand schedule derived from maximization of myopic CARA mean-variance utility, given the subject’s individual forecast. Hence, subject’s only task in every period is to give a two period ahead point prediction for the price of the risky asset, and their earnings are inversely related to their prediction errors. Learning to forecast experimental data can be used as a test bed for various expectations hypotheses, such as rational expectations or adaptive learning models, in any benchmark dynamic economic model with all other assumptions controlled by the experimenter; see the discussion in Duffy

1See Hommes (2011) for an overview of learning to forecast experiments, where also earlier experiments on expectation formation are discussed, e.g., Williams (1987) and Hey (1994) among others. The experiments in HSTV05 and HSTV08, which we discuss in this paper, study expectations in financial markets. Experiments in Heemeijer et al. (2009), and Bao et al. (2010) consider markets of agricultural goods in a cobweb framework, while Adam (2007), Assenza et al. (2011) and Pfajfar and Zakelj (2010) ran experiments in a macroeconomic environment. Anufriev et al. (2010) fit a version of the heuristic switching model to Heemeijer et al. (2009) experiment.
HSTV05 ran 14 sessions of the learning to forecast experiment in three different treatments. In 7 sessions of one of the treatments, the outcomes were quite different, despite identical setting. While in some sessions price convergence did occur, in other sessions prices persistently fluctuated and temporary bubbles emerged (see Fig. 2(c) and the right panels of Fig. 3). HSTV08 ran 6 sessions in another treatment and show that a typical outcome of the experiment is the emergence of long-lasting bubbles followed by crashes (see Fig. 2(b)). Another striking and robust finding of the learning to forecast experiments is that in all sessions individuals were able to coordinate on a common prediction rule, without any knowledge about the forecasts of others (see Fig. 3, lower parts of the panels).

Anufriev and Hommes (2012) showed by three 50 periods ahead simulations that a simple learning model of heterogeneous expectations can generate dynamics qualitative similar to the three outcomes observed in some of the HSTV05 experiments. In this paper we fit the model to all 20 different market sessions in HSTV05 and HSTV08 experiments and perform one period ahead and out-of-sample forecasting. Our model is an extension of the evolutionary selection mechanism introduced in Brock and Hommes (1997), applied to simple predicting rules which individuals often used in the experiment. From the point of view of the experiment’s participant several behavioral rules can plausibly be used for price prediction at each time step. Participants can choose any of these rules, but at the aggregate level the rules which generated relatively good predictions in the past will be chosen more often. Participants also exhibit some inertia in their decisions, by temporarily sticking to their rule. Combining these ideas we arrive at a behavioral model of learning with only three free parameters. We show that this model fits the experimental data surprisingly well for a large range of parameters. The model outperforms several models with homogeneous expectations and a simple non-structural AR(2) model both in- and out-of-sample. Our model of individual learning can explain different observed aggregate patterns within the same experimental environment (Fig. 6) and is robust with respect to changes in the experimental environments (Fig. 8).

The fact that the model with heterogeneous expectations can explain different aggregate
outcomes observed within the same environment has a clear intuitive explanation. The key feature driving the result is the path-dependent property of the nonlinear switching model. If participants start to coordinate on an adaptive rule, the resulting (stable) price dynamics is such that the adaptive rule performs better than other rules, reinforcing the coordination and explaining converging and stable price behavior. When a majority of participants coordinate on a trend-following rule, price oscillations and temporary bubbles arise. In that case trend-following rules predict better than an adaptive rule, thus reinforcing and amplifying price trends and temporary bubbles.

The paper is organized as follows. In Section 2 we review the findings of the laboratory experiments of HSTV05 and HSTV08. Section 3 discusses individual behavior of participants in the experiments, and studies the price dynamics under homogeneous forecasting rules. A learning model based on evolutionary selection between simple forecasting heuristics is presented in Section 4. In Section 5 we discuss how our model fits the experimental data. Finally, Section 6 concludes.

2 Learning-to-forecast experiments

A number of computerized learning-to-forecast experiments (LtFEs) have been performed in the CREED laboratory at the University of Amsterdam, see Hommes (2011) for an overview. This paper proposes a theoretical explanation of the results obtained in 20 different sessions of the LtFEs based on the asset pricing model, see HSTV05 (Hommes et al., 2005b) and HSTV08 (Hommes et al., 2008). In each session of the experiment 6 participants were advisers to large pension funds and had to submit point forecasts for the price of a risky asset for 50 consecutive periods. There were two assets in the market, a risk-free asset paying a fixed interest rate r every period, and a risky asset paying stochastic IID dividends with mean \bar{y}. Subjects knew that the price of the risky asset is determined every period by market clearing, as an aggregation of individual forecasts of all participants. They were also informed that the higher the forecasts are, the larger the demand for the risky asset is. Stated differently, they knew that there was positive feedback from individual price forecasts.
to the realized market price. Trading had been computerized with the price p_t determined in accordance with a standard mean-variance asset pricing model with heterogeneous beliefs (Campbell et al., 1997; Brock and Hommes, 1998):

$$p_t = \frac{1}{1+r} \left(\bar{p}_{t+1} + \bar{y} + \varepsilon_t \right), \quad t = 0, \ldots, 50,$$

(1)

where $\bar{p}_{t+1} = \frac{1}{6} \sum_{i=1}^{6} p_{i,t+1}$ is an average of 6 individual forecasts, and a small stochastic term ε_t represents demand/supply shock. The same realizations of the shocks, drawn independently from a normal distribution with mean 0 and standard deviation 0.5, has been used in all sessions of HSTV05. An individual forecast, $p_{i,t+1}$, could be any number (with two decimals) in the range $[0, 100]$ to be submitted at the beginning of period t. After all forecasts were submitted, every participant was informed about the realized price p_t. The earnings per period were determined by a quadratic scoring rule

$$e_{i,t} = \begin{cases}
1 - \left(\frac{p_t - p_{i,t}}{7} \right)^2 & \text{if } |p_t - p_{i,t}| < 7, \\
0 & \text{otherwise},
\end{cases}$$

(2)

so that forecasting errors exceeding 7 would result in no reward at a given period. At the end of the session the accumulated earnings of every participant were converted to euros (1 point computed as in (2) corresponded to 50 cents). Subjects of the experiments neither knew the exact functional form of the market equilibrium equation (1) nor the number and identity of other participants. They were informed about scoring rule (2) and the values of the fundamental parameters, r and \bar{y}, at the beginning of the experiment. Participants could, therefore, compute the rational fundamental price of the risky asset, $p^f = \bar{y}/r$. The information set of participant i at period t consisted of past prices up to p_{t-1}, past own predictions up to $p_{i,t}$, the fundamental parameters r and \bar{y}, and past own earnings.

On the basis of variations in the implementation of the experiment, four different experimental settings (treatments) can be identified. The setup described above has been used in sessions 11 – 14 of HSTV05, with $\bar{y} = 3$ and $r = 0.05$, resulting in the fundamental price $p^f = 60$. For reasons which will become clear below, we use the acronym NoRo (no robots) for these 4 sessions. Fig. 1 shows the simulation of prices and prediction errors, which would
Figure 1: Simulation of price evolution and prediction errors in the HSTV05 experiment under RE fundamental expectations.

occur when all individuals use the fundamental forecasting rule, $p_{i,t+1}^e = 60$, for all i and t. Under rational expectations the realized price $p_t = 60 + \varepsilon_t/(1 + r)$ randomly fluctuates around the fundamental level with small amplitude. In the experiment, one can not expect rational behavior at the outset, but aggregate prices might converge to their fundamental value through individual learning. The actual price dynamics in the four sessions of the experiment are shown in Fig. 2(a). Interestingly, only in one session the price converges to the fundamental value, while in three other sessions constant or dampened price oscillations with high amplitude are observed.

HSTV08 ran 6 sessions of a different treatment of the LtFE, where the price is determined according to (1) without shocks ε_t, and where participants could submit their predictions in a much larger range $[0,1000]$. The experimental results in all six sessions are shown in Fig. 2(b) under the acronym LFR (large forecasting range). An increase of the allowable prediction range results in long-lasting bubbles.

In order to make long-lasting bubbles less likely, HSTV05 used a slightly different pricing
Figure 2: Aggregate market prices in 4 different variations of the LtFE.

\[
 p_t = \frac{1}{1+r} \left((1-n_t) \bar{p}_{t+1}^e + n_t p_f + \bar{y} + \epsilon_t \right),
\]

where \(n_t \) represents the weight of the robot trader, whose forecast is always \(p_f \); the average forecast \(p_f \) of the 6 participants has weight \(1-n_t \). In real markets, robot traders correspond to fundamentalists, who have a better understanding of the market environment than other traders. The weight of the robot traders increases in response to the deviations of the asset
price from its fundamental level:

\[n_t = 1 - \exp \left(-\frac{1}{200} |p_{t-1} - p_f| \right) \].

This mechanism reflects the feature that in real markets there is more agreement about over-
or undervaluation of an asset when the price deviation from the fundamental level is large.\(^2\)

Seven experimental sessions 1-7 had the fundamental parameters \(r = 0.05 \) and \(\bar{y} = 3 \) with
fundamental price 60. For this specification an acronym \textbf{Ro-HF} (robots, high fundamental)
is used. As Fig. 2(c) shows, in the presence of a stabilizing robot traders the amplitude of
the oscillations decreases. Finally, in the remaining sessions 8-10, the market had a smaller
dividend \(\bar{y} = 2 \), resulting in a smaller fundamental price 40, see Fig. 2(d). The oscillations
are quite large in this \textbf{Ro-LF} (robots and low fundamental) case.

A closer look at six different sessions of the LtFEs is given in Fig. 3. The left panels show
time series of prices (upper parts of panels), individual predictions (lower parts of panels)
and forecasting errors (inner frames) for three out of seven sessions in the \textbf{Ro-HF} treatment.
A striking feature of this experiment is that \textit{three different} qualitative patterns for aggregate
price behavior emerge within the same environment. The prices in session 5 (and 2; not
shown) converge slowly and almost monotonically to the fundamental price level. In session
6 (and 1; not shown) persistent oscillations are observed during the entire experiment. In
session 4 (and 7; not shown) prices are also fluctuating but their amplitude is decreasing.
The right panels of Fig. 3 show the price fluctuations in the typical sessions of the other
LtFEs: session 8 of \textbf{Ro-LF}, session 12 of \textbf{NoRo} and session 2 of \textbf{LFR}.\(^3\)

Individual predictions in Fig. 3 shows another striking result of the LtFEs. In all experi-
mental sessions participants were able to coordinate their forecasting activity. The forecasts
are dispersed in the first periods but then become very close to each other. The coordina-
tion of individual forecasts has been achieved in the absence of any communication between

\(^2\)In the experiments the fraction of robot trader never became larger than 0.25.

\(^3\)See Appendix A for similar plots in all remaining sessions. Sessions 2, 1 and 7 of \textbf{Ro-HF} experiment
have been analyzed in Anufriev and Hommes (2012). The dynamics in session 3 of \textbf{Ro-HF} was peculiar.
Similar to session 6 it started with moderate oscillations, then stabilized at a level below the fundamental,
suddenly falling significantly in period \(t = 40 \), probably due to a typing error of one of the participants.
Figure 3: Prices, predictions and forecasting errors in 6 sessions of the LtFEs. The left panels illustrate three qualitatively different outcomes for the same Ro-HF treatment. The right panels illustrate typical examples of the Ro-LF, NoRo and LFR treatments.
subjects and knowledge of past and present predictions of other participants.

LtFEs represent a tailored laboratory study to test different theories of expectation formation. A suitable model should be able to reproduce the following findings of the HSTV05 and HSTV08 learning-to-forecast experiments:

- participants have not learned the RE fundamental forecasting rule; only in some cases individual predictions slowly moved in the direction of the fundamental price towards the end of the experiment;

- three different price patterns were observed in the same Ro-HF experiment: (i) slow, (almost) monotonic convergence, (ii) persistent oscillations with almost constant amplitude, and (iii) large initial oscillations dampening towards the end of the experiment;

- LtFEs tend to produce long lasting bubbles followed by crashes in the LFR treatment;

The purpose of this paper is to explain these “stylized facts” simultaneously by a simple behavioral model of individual learning.

3 Individual Forecasting Behavior

In this section we will look closer at the individual forecasting behavior in the LtFEs in order to develop some behavioral foundations of the heterogeneous expectations model.

Which forecasting rules did individuals use in the learning to forecast experiment? Comparison of the RE benchmark in Fig. 1 with the lab experiments in Figs. 2 and 3 suggests that rational expectations is not a good explanation of individual forecasting and aggregate behavior. The REs cannot be reconciled with the oscillations of the HSTV05 experiment, especially not in the oscillating sessions. Using individual experimental data HSTV05 estimated the forecasting rules for each subject based on the last 40 periods (to allow for some learning phase). Simple linear rules of the form

\[
p_{i,t+1} = \alpha_i + \beta_i p_{t-1} + \gamma_i (p_{t-1} - p_{t-2}) + \delta_i p_{i,t}^e
\]

(5)
were estimated. These rules are so-called *first order heuristics*, since they only use the last own forecast, the last observed price and the last observed price change to predict the future price. Remarkably, individual forecasts are well explained by first order heuristics: for 63 out of $14 \times 6 = 84$ participants (i.e., for 75%) an estimated linear rule falls into this simple class with an R^2 typically higher than 0.80.

The experimental evidence suggests strong coordination on a common prediction rule. One can therefore suspect that this common rule (which, for whatever reason, turned out to be different in different sessions) generates the resulting pattern. It is therefore useful to first investigate price dynamics under *homogeneous expectations* when all participants use the same forecasting rule. The model with homogeneous expectations is obtained when the average \bar{p}_{t+1} is generated by the rule of type (5) and then plugged into the corresponding pricing equation: Eq. (1) for the experiment without robots or Eq. (3) for the experiments with robots. Fig. 4 illustrates deterministic (setting the noise term $\epsilon_t \equiv 0$) as well as stochastic simulations of the model with the same realization of the shocks as in the experiment.

Adaptive heuristic. Participants from the converging sessions often used an *adaptive expectations* rule of the form:

$$p_{t+1}^e = wp_{t-1} + (1 - w)p_t^e = p_t^e + w(p_{t-1} - p_t^e),$$

(6)

with weight $0 \leq w \leq 1$. Recall that at the moment when the forecast for the price p_{t+1} is submitted, the price p_t is still unknown, so that the last observed price is p_{t-1}. At the same time, the last forecast p_t^e is, of course, known when forecasting p_{t+1}. Notice also that for $w = 1$, we obtain the special case of *naive expectations*.\(^4\)

Assume that all participants use the same adaptive heuristic $p_{t+1}^e = wp_{t-1} + (1 - w)p_t^e$ in their forecasting activity. It is easy to show (see Appendix B) that in the absence of stochastic shock ϵ_t the dynamics will monotonically converge to the fundamental price, independently of initial conditions. This is illustrated in Fig. 4(a) for two different values of

\(^4\)The adaptive rule (6) was estimated for 5 out of 12 participants in sessions 2 and 5 of the HSTV05 experiment. Three participants had w insignificantly different from 1. Four other participants used an AR(1) rule, $p_{t+1}^e = a + bp_{t-1}$, conditioning only on the past price with a coefficient $b < 1$.

14
Figure 4: **Model with homogeneous expectations.** The trajectories of the deterministic skeleton (the curves) and stochastic simulations with the same realization of shocks as in the experiment (triangles and squares) for different forecasting heuristics.

The weight w assigned to the past price. Shocks slightly perturb the system, but the stochastic price series (shown by triangles and squares) still exhibit almost monotonic convergence. Coordination on adaptive expectations thus seem a good explanation of the aggregate price pattern observed in the experimental sessions with convergence.

Trend-following heuristic. Especially for the subjects in the permanent and the dampened oscillating sessions of the HSTV05, estimation revealed a *trend-following* forecasting
rule of the form:

\[p_{t+1}^e = p_{t-1} + \gamma (p_{t-1} - p_{t-2}) , \]

(7)

where \(\gamma > 0 \). This rule has a simple behavioral interpretation: the forecast uses the last price observation and adjusts in the direction of the last price change. The extrapolation coefficient \(\gamma \) measures the strength of the adjustment. The estimates of this coefficient ranged from relatively small extrapolation values, \(\gamma = 0.4 \), to quite strong extrapolation values, \(\gamma = 1.3 \).

The price in the homogeneous model may either converge or diverge under the trend-following rule (7), depending upon the parameter \(\gamma \). In the former case the trend-following rule is called weak (see Fig. 4(b)), whereas in the latter case it is referred as strong (see Fig. 4(c)). For the weak trend extrapolation, when the extrapolating coefficient is small (e.g., \(\gamma = 0.4 \)), convergence is monotonic; for larger \(\gamma \)-values (e.g., \(\gamma = 0.99 \)) convergence becomes oscillatory. For the strong trend extrapolation the price dynamics diverges from the fundamental steady state through oscillations of increasing amplitude. The speed of divergence and amplitude of the long run fluctuations increase with \(\gamma \), as shown by comparison of the cases \(\gamma = 1.1 \) and \(\gamma = 1.3 \).

Anchoring and adjustment heuristic. A number of participants, especially in the permanently oscillating sessions,\(^5\) used slightly more sophisticated rules of the form

\[p_{t+1}^e = 0.5 (p^f + p_{t-1}) + (p_{t-1} - p_{t-2}) . \]

(8)

This is an example of an *anchoring and adjustment* (AA) rule (Tversky and Kahneman, 1974), since it extrapolates the last price change from the reference point or anchor \((p^f + p_{t-1})/2\) describing the “long-run” price level. One could argue that the anchor for this rule, defined as an equally weighted average between the last observed price and the fundamental price, was unknown in the experiment, since subjects were not provided explicitly with the fundamental price. Therefore, in our evolutionary selection model in Section 4 one of the

\(^5\) For 4 out of 12 participants of sessions 1 and 6 of the HSTV05 the estimated rule was very close to (8).
rules will be a modification of (8) with the fundamental price p^f replaced by a proxy given by the (observable) sample average of past prices $p_{av,t-1} = \frac{1}{t} \sum_{j=0}^{t-1} p_j$, to obtain

$$p_{t+1} = 0.5 \left(p_{av,t-1} + p_{t-1} \right) + \left(p_{t-1} - p_{t-2} \right).$$

(9)

We will refer to this forecasting rule with an anchor learned through a sample average of past prices, as the \textit{learning anchoring and adjustment} (LAA) heuristic.

Applying results from Appendix B to the anchoring and adjustment rule (8) we conclude that the price dynamics of the homogeneous expectations model with AA heuristic converges to the fundamental steady-state, but the convergence is oscillatory and slow, see Fig. 4(d). For the stochastic simulation the convergence is even slower and the amplitude of the price fluctuations remains more or less constant in the last 20 periods, with an amplitude ranging from 55 to 65 comparable to that of the permanently oscillatory session 6 in the HSTV05 experiments. The small shocks ε_t added in the experimental design, to mimic (small) shocks in a real market, thus seem to be important to keep the price oscillations alive. Fig. 4(d) also shows the price dynamics of the learning anchoring and adjustment (LAA) rule (9). Simulations under homogeneous expectations given by the LAA heuristic (9) converge to the same fundamental steady-state as with the AA heuristic (8), but much slower and with less pronounced oscillations. In the presence of noise, the price fluctuations under the LAA heuristic are qualitatively similar to the fluctuations in the permanently oscillatory session 1 of the HSTV05 experiment (see, e.g., the lower left panel of Fig. 5) with prices fluctuating below the fundamental most of the time.

Homogeneity versus heterogeneity

Different homogeneous expectation models explain the three observed patterns in the HSTV05 experiments, monotonic convergence, constant oscillations and dampened oscillations can be reproduced. However, a model with homogeneous expectations leaves open the question \textit{why} different patterns in aggregate behavior emerged in different experimental sessions.

The behavioral model proposed in this paper is based on the idea of \textit{heterogeneity}, in the sense that several forecasting heuristics, those which we discussed above, could be used by the
participants in every session. Participants learn which forecasting rule to use by switching between different heuristics based upon relative past performance. Individual experimental forecasting data shows some evidence that this type of learning is exactly what occurred in the experiment. Fig. 5 shows time series of (lagged) individual forecasts from the HSTV05 experiment together with the realized price. The timing in the figure is important. For every time \(t \) on the horizontal axes we show the price \(p_t \) together with the individual two-period ahead forecast \(p_{i,t+2}^c \) of that price by some participant \(i \). In this way we can infer graphically how the two-period ahead forecast \(p_{i,t+2}^c \) uses the last observed price \(p_t \). For example, if they coincide, i.e., \(p_{i,t+2}^c = p_t \), it implies naive expectations in period \(t \).

Figure 5: **Switching of the experiment’s participants between simple rules.** For any point on the abscissa, representing time \(t \), the price \(p_t \) (red) and the forecast \(p_{i,t+2}^c \) (blue) are shown. This forecast, \(p_{i,t+2}^c \), was made immediately after the announcement of the price \(p_t \).
In session 2, subject 5 extrapolates price changes in the early stage of the experiment (see the upper left panel), but, starting from period $t = 6$, uses a simple **naive rule** $p_{t+2} = p_t$. In other words, in period 6, subject 5 switched from an extrapolative to a naive forecasting rule. Subject 1 from the same group used a “smoother”, **adaptive** forecasting strategy, always predicting a price between the previous forecast and the previous price realization. These graphs suggest individual heterogeneity in forecasting strategies in the same session.

In the oscillating group 6, subject 1 used naive expectations in the first half of the experiment (until period 24, see the upper right panel). Naive expectations however, lead to prediction errors in an oscillating market, especially when the trend reverses. In period 25 subject 1 switches to a different, trend extrapolating prediction strategy. Thereafter, this subject uses a trend extrapolating strategy switching back to the naive rule at periods of expected trend reversal (e.g., in periods 27–28, 32–33, 37–38, 42–44, and 47).

Interestingly, participant 3 from another oscillating session 1 starts out predicting the fundamental price, i.e., $p_{t+1}^f = p_f^f = 60$ in the first four periods of the experiments (see the lower left panel). But since the majority in session 1 predicted a lower price, the realized price is much lower than the fundamental, causing participant 3 to switch to a different, trend extrapolating strategy. Trend extrapolating predictions overshoot the realized market price at the moments of trend reversal. Towards the end of the experiment participant 3 learned to anticipate the trend changes to some extent.

Finally, in session 7 with dampened price oscillations subject 3 started out with a strong trend extrapolation (see the lower right panel). Despite very large prediction errors (and thus low earnings) at the turning points, this participant sticks to strong trend extrapolation; only in the last 4 periods some kind of adaptive expectations strategy was used.

Fig. 5 therefore suggests that **individual heterogeneity in expectations** within the same session\(^6\) plays a role for explaining the observed phenomena at the aggregate level.

\(^6\)Of course, high coordination of expectations means that the individual expectations were not spread over the entire space. Appendix C provides additional details (in terms of eigenvalues) of the variety of heuristics used in the same experimental session.
4 Heuristics Switching Model

In this section we present a simple model with evolutionary selection between different simple forecasting heuristics. Before describing the model, we recall the most important “stylized facts” which we found in the individual and aggregate experimental data:

- participants tend to base their predictions on past observations following simple forecasting heuristics;
- individual learning has a form of switching from one heuristic to another;
- in every session some form of coordination of individual forecasts occurs; the rule on which individuals coordinate may be different in different sessions;
- coordination of individual forecasting rules is not perfect and some heterogeneity of the applied rules remains at every time period.

The main idea of the model is simple. Assume that there exists a pool of simple prediction rules (e.g., adaptive or trend-following heuristics) commonly available to the participants of the experiment. At every time period these heuristics deliver forecasts for next period’s price, and the realized market price depends upon these forecasts. However, the impacts of different forecasting heuristics upon the realized prices are changing over time because the participants are learning based on evolutionary selection: the better a heuristic performed in the past, the higher its impact in determining next period’s price. As a result, the realized market price and impact of the forecasting heuristics co-evolve in a dynamic process with mutual feedback. This nonlinear evolutionary model exhibits path dependence explaining coordination on different forecasting heuristics leading to different aggregate price behavior.

The Model

Let \mathcal{H} denote a set of H heuristics which participants can use for price prediction. In the beginning of period t every rule $h \in \mathcal{H}$ gives a two-period ahead point prediction for the price.

\footnote{Our model is built upon the Adaptive Belief Scheme proposed in Brock and Hommes (1997) but with memory and asynchronous updating.}
\[p_{t+1} \]. The prediction is described by a deterministic function \(f_h \) of available information:

\[
p_{h,t+1}^e = f_h(p_{t-1}, p_{t-2}, \ldots ; p_{h,t}^e, p_{h,t-1}^e, \ldots).
\] (10)

The price in period \(t \) is computed on the base of these predictions according to Eq. (1), when the model is applied to the environment without robot traders, or to Eq. (3), when it is applied in the environment with robots. In the latter case the fractions of robots is determined by (4) as before. The average forecast \(\bar{p}_{t+1}^e \) in the price equations becomes, in an evolutionary model, a population weighted average of the different forecasting heuristics

\[
\bar{p}_{t+1}^e = \sum_{h=1}^{H} n_{h,t} p_{h,t+1}^e,
\] (11)

with \(p_{h,t+1}^e \) defined in (10). The weight \(n_{h,t} \) assigned to the heuristic \(h \) is called the *impact* of this heuristic. The impact is evolving over time and depends on the past relative performance of all \(H \) heuristics, with more successful heuristics attracting more followers.

Similar to the incentive structure in the experiment, the performance measure of a forecasting heuristic in a given period is based on its squared forecasting error. More precisely, the *performance measure* of heuristic \(h \) up to (and including) time \(t - 1 \) is given by

\[
U_{h,t-1} = -(p_{t-1} - p_{h,t-1}^e)^2 + \eta U_{h,t-2}.
\] (12)

The parameter \(0 \leq \eta \leq 1 \) represents the *memory*, measuring the relative weight agents give to past errors of heuristic \(h \). In the special case \(\eta = 0 \), the impact of each heuristic is completely determined by the most recent forecasting error; for \(0 < \eta \leq 1 \) all past prediction errors, with exponentially declining weights, affect the impact of the heuristics.

Given the performance measure, the impact of rule \(h \) is updated according to a *discrete choice model with asynchronous updating*

\[
n_{h,t} = \delta n_{h,t-1} + (1 - \delta) \exp(\beta U_{h,t-1}) \frac{Z_{t-1}}{Z_{t-1}},
\] (13)

where \(Z_{t-1} = \sum_{h=1}^{H} \exp(\beta U_{h,t-1}) \) is a normalization factor. In the special case \(\delta = 0 \), (13) reduces to the *the discrete choice model with synchronous updating* used in Brock and Hommes (1997) to describe endogenous selection of expectations. The more general case,
$0 \leq \delta \leq 1$, gives some persistence or inertia in the impact of rule h, reflecting the fact (consistent with the experimental data) that not all the participants update their rule in every period or at the same time (see Hommes et al. (2005a) and Diks and van der Weide (2005)). Hence, δ may be interpreted as the average per period fraction of individuals who stick to their previous strategy. In the extreme case $\delta = 1$, the initial impacts of the rules never change, no matter what their past performance was. If $0 < \delta \leq 1$, in each period a fraction $1 - \delta$ of participants update their rule according to the discrete choice model. The parameter $\beta \geq 0$ represents the intensity of choice measuring how sensitive individuals are to differences in strategy performance. The higher the intensity of choice β, the faster individuals will switch to more successful rules. In the extreme case $\beta = 0$, the impacts in (13) move to an equal distribution independent of their past performance. At the other extreme $\beta = \infty$, all agents who update their heuristic (i.e., a fraction $1 - \delta$) switch to the most successful predictor.

Initialization. The model is initialized by a sequence of initial prices, whose length τ is long enough to allow any forecasting rule in \mathcal{H} to generate its prediction, as well as an initial distribution $\{n_{h,0}\}, 1 \leq h \leq H$ of the impacts of different heuristic (summing to 1).

Given initial prices, the heuristic’s forecasts for price at time $\tau + 2$ can be computed and, using the initial impacts of the heuristics, the price $p_{\tau+1}$ is determined. In the next period, the forecasts of the heuristics are updated, the fraction of robot traders is computed if necessary, while the same initial impacts $n_{h,0}$ for the individual rules are used, since past performance is not well defined yet. Thereafter, the price $p_{\tau+2}$ is computed and the initialization stage is finished. After this initialization state the evolution of the model is well defined: first the performance measure in (12) is updated, then, the new impacts of the heuristics are computed according to (13), and the new prediction of the heuristics are obtained according to (10). Finally, the new average forecast (11) and (if necessary) the new fraction of robot traders (4) are computed, and a new price is determined by (1) or (3), respectively.
Table 1: **Heuristics used in the evolutionary model.** In simulations in Figs. 6–8 the first four heuristics are used. The LAA heuristic is obtained from the simpler AA heuristic, by replacing the (unknown) fundamental price p_f by the sample average p_{av}^{t-1}.

<table>
<thead>
<tr>
<th>Heuristic</th>
<th>Description</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADA</td>
<td>adaptive heuristic</td>
<td>$p^e_{1,t+1} = 0.65 p_{t-1} + 0.35 p^e_{1,t}$</td>
</tr>
<tr>
<td>WTR</td>
<td>weak trend-following rule</td>
<td>$p^e_{2,t+1} = p_{t-1} + 0.4 (p_{t-1} - p_{t-2})$</td>
</tr>
<tr>
<td>STR</td>
<td>strong trend-following rule</td>
<td>$p^e_{3,t+1} = p_{t-1} + 1.3 (p_{t-1} - p_{t-2})$</td>
</tr>
<tr>
<td>LAA</td>
<td>anchoring and adjustment rule with learned anchor</td>
<td>$p^e_{4,t+1} = 0.5 (p_{av}^{t-1} + p_{t-1}) + (p_{t-1} - p_{t-2})$</td>
</tr>
<tr>
<td>AA</td>
<td>anchoring and adjustment rule with fixed anchor</td>
<td>$p^e_{4,t+1} = 0.5 (p^f + p_{t-1}) + (p_{t-1} - p_{t-2})$</td>
</tr>
</tbody>
</table>

Example with Four Heuristics

The evolutionary model can be simulated with an arbitrary set of heuristics. Since one of our goals is to explain the three different observed patterns in aggregate price behavior – monotonic convergence, permanent oscillations and dampened oscillations – we keep the number of heuristics as small as possible and consider a model with only four forecasting rules. These rules, referred to as ADA, WTR, STR and LAA and given in Table 1, were obtained as simple descriptions of typical individual forecasting behavior observed and estimated in the experiments. As discussed in Section 3 these heuristics generate qualitatively different dynamics, which allows one to get some non-trivial interaction between different heuristics, so that qualitatively different patterns can be obtained.

With the four forecasting heuristics fixed, matched by experimental individual forecasting data, there are only three free “learning” parameters in the model: β, η and δ. Provided that these parameters are given, the HSM with four heuristics is initialized with two initial prices, p_0 and p_1, and four initial impacts $n_{h,0}$ used in periods $t = 2$ and $t = 3$.

23
5 Empirical Validation

The Heuristic Switching Model exhibits *path-dependence* and is capable of reproducing different qualitative patterns within the same experimental environment. Anufriev and Hommes (2012) simulate 50-period ahead forecasts (so-called “simulated paths”) of the HSM in three sessions of the HSTV05 experiment. For a specific choice of the parameters, \(\beta = 0.4, \eta = 0.7 \) and \(\delta = 0.9 \) (obtained after some trial and error simulations), but with different initial prices and impacts of heuristics, the HSM *qualitatively* reproduces price behavior in sessions 2, 1 and 7, i.e., monotonic convergence, permanent oscillations and dampened oscillations.\(^8\) In those 50-period ahead simulations the frequency and amplitude of the oscillations were difficult to match.

In this section we investigate the forecasting performance of the HSM model *quantitatively* both in-sample and out-of-sample. We fit the model to 20 experimental sessions of 4 different treatments in HSTV05 and HSTV08, providing an important test of generality of the model. The HSM model fits all 20 sessions quite well. The section is divided in three parts. We, first, illustrate the one-period ahead forecasts of the model visually. Then we proceed to the rigorous evaluation of the in-sample performance of the model, and, finally, look at out-of-sample forecasts made by the model.

5.1 One-period ahead simulations

The left panels in Fig. 6 suggest that the switching model with four heuristics fits the experimental data from the **Ro-HF** HSTV05 experiments quite nicely. The upper parts of the panels compare the experimental data with the one-step ahead predictions of the HSM for the benchmark values of parameters \(\beta = 0.4, \eta = 0.7 \) and \(\delta = 0.9 \). We stress that, at this

\(^8\)The initial distribution of agents over the four heuristics, i.e., initial impacts \(\{n_{1,0}, n_{2,0}, n_{3,0}, n_{4,0}\} \), played a crucial role for these price patterns. When the initial impacts of heuristics are distributed almost uniformly, the monotonic convergence of session 2 is reproduced. Oscillations of session 1 are obtained when both WTR and STR heuristics have relatively high initial weights (35% each). The dampened price oscillation in session 7 are reproduced when the STR rule has a large initial impact (66%).
stage, no fitting exercise has been performed. In each session and every period experimental data (dots) are quite close to the prediction given by the HSM (line with squares).

In all these simulations the initial prices are chosen to coincide with the initial prices in the first two periods of the corresponding experimental group, while the initial impacts of all heuristics are equal to 0.25. At each step, in order to compute the heuristics’ forecasts and update their impacts, past experimental price data are used, which is exactly the same information that was available to participants in the experiments. The one-period ahead forecasts can follow easily the monotonically converging patterns as well as the sustained or dampened oscillatory patterns, starting out from a uniform initial distribution of forecasting rules.

The lower parts of the left panels in Fig. 6 show that the heuristics forecasts are correlated, so that the model reproduces coordination of expectations of the participants. The frames of the lower panels display the prediction errors of the four heuristics. These errors are of the same order as in the experiment (cf. Fig. 3).

The right panels of Fig. 6 show the transition paths of the impacts of each of the four forecasting heuristics. In the case of monotonic convergence (session 5, upper panel), the impacts of all four heuristics remain relatively close, although the impact of adaptive expectations gradually increases and slightly dominates the other rules in the last 25 periods. In contrast to the previous case, in experimental session 6 the two initial prices exhibited an increasing trend. Consequently the trend-following rules and the learning anchor and adjustment heuristic increase their impacts (middle panels). However, the trend rule misses the turning points and its impact gradually decreases. The LAA heuristic with a more flexible anchor predicts price oscillations better than the static STR and WTR rules. The impact of the LAA heuristic gradually increases, rising to more than 80% after 40 periods. The HSM thus explains coordination of individual forecasts on a LAA rule enforcing persistent price oscillations around the long run equilibrium level.

Finally, in the simulations for session 4 with dampened oscillations (lower panels) the initial price trend is so strong that the STR rule clearly dominates during the first 20 periods of simulation. To some extent this rule enforces a trend in prices, but the presence of other
Figure 6: Laboratory experiments and the HSM in 3 sessions with different qualitative dynamics from Ro-HF HSTV05 experiment. The upper parts of left panels show prices for experiments with corresponding one-step ahead predictions of the HSM. The lower parts show predictions and forecasting errors (inner frames) of the four heuristics. The right panels show the evolution of the impacts of the four heuristics.
Figure 7: Laboratory experiments and the HSM in session 3 of the Ro-HF HSTV05 experiment. The upper part of the left panel shows prices for laboratory experiment with corresponding one-step ahead predictions of the HSM. The lower part shows predictions and forecasting errors (inner frames) of the four heuristics. The right panel shows the evolution of the impacts of the four heuristic.

heuristics and the impact of the robot traders lead to a trend reversal around period 12. The STR misses this turning point and the LAA rule starts to increase its share, eventually overcoming the STR rule. The mixture of the LAA and STR rules produces time series which gives some space to other rules as well, and the price oscillations slowly dampen. As a result, the ADA rule, which was the worst until period 30, starts to increase its impact. Eventually it overcomes the LAA rule explaining price stabilization.

The dynamics in sessions 5, 6 and 7 of the Ro-HF HSTV05 experiment were qualitatively similar to the dynamics in sessions 2, 1 and 4, respectively. It is not surprising, therefore, that the fit by the HSM and the dynamics of impacts is similar, see Appendix D. Fig. 7 illustrates the fit of the HSM for the remaining session 3 of the Ro-HF experiment. The price in this session started with moderate oscillations, then stabilized at a level below the fundamental price 60, but suddenly fell in period \(t = 41 \) likely due to a typing error by one of the participants.\(^9\) Our nonlinear switching model, of course, misses the typing error, but

\(^9\)In fact one of the participants predicted 5.25 for period 42, whereas his/her five previous predictions all
nevertheless matches the overall pattern before and after the unexpected price drop.

We demonstrated that the Heuristic Switching Model fits all sessions of the Ro-HF environment quite nicely. How robust are these results? Fig. 8 shows the fit and the evolution of impacts for typical sessions from the three other treatments with modified experimental environments. The upper panels display session 8 of the Ro-LF HSTV05 experiment with fundamental price of 40 instead of 60. Slowly increasing price oscillations are dominated by the STR rule, but when the frequency of trend-reversals increases, the LAA rule takes over again. The middle panel illustrates the HSM for session 12 of the NoRo HSTV05 experiment without robot traders. Large amplitude price oscillations, with prices almost reaching their maximum 100 and minimum 0, arise, but prices stabilize towards the end of the experiment. The evolution of the impacts of the four forecasting heuristics is similar to the case of dampening price oscillations considered before (see the lower panels of Figure 6), with the STR rule initially dominating the market, followed by the LAA rule taking over around period 25 during price oscillations, and the ADA rule finally dominating towards the end, when the price stabilizes. Finally, the lower panel displays session 2 of the LFR HSTV08 experiment with large forecasting range. The asset price oscillates with very large amplitude, with a long lasting trend of more than 25 periods with prices rising close to their maximum 1000, after which a crash follows to values close to their minimum 0, and the market starts oscillating. The evolution of the impacts of the four forecasting heuristics is similar as before, with the STR rule taking the lead, increasing its share to more than 90% after 25 periods during the long lasting price bubble. When the upper forecasting bound is met, the trend cannot be sustained any longer and the share of the STR rule declines fast. The LAA rule takes over and large amplitude oscillations are observed. The fact that our nonlinear switching model nicely captures all patterns in these different groups shows that the model is robust concerning changes of the asset pricing market environment.

To summarize, the one-step ahead simulations of the HSM match both converging and oscillating prices closely and produce clear differences in the evolution of impacts. In the case were between 55.00 and 55.40. Perhaps an intention was to type 55.25.

Appendix D contains analogous plots for all other groups of the HSTV05 and HSTV08 experiments.
Figure 8: Laboratory experiments and one-step ahead predictions of the HSM in 3 sessions from different experiments: Ro-LF HSTV05 (top panels), NoRo HSTV05 (middle panels) and LFR HSTV08 (bottom panels). The upper parts of left panels show prices for laboratory experiments with corresponding one-step ahead predictions of the HSM. The lower parts show predictions and forecasting errors (inner frames) of the four heuristics. The right panels show the evolution of the impacts of the four heuristics.
of monotone convergence and constant oscillations we observe a self-confirming property:
more coordination on one rule (ADA in the case of convergence and LAA in the case of
oscillations) leads to the price dynamics which reinforce this rule. For the sessions with
the dampened oscillations, one step ahead forecast produces a rich evolutionary selection
dynamics. These sessions go through three different phases where the STR, the LAA and
the ADA heuristics subsequently dominate. The STR dominates during the initial phase of
a strong trend in prices, but starts declining after it misses the first turning point of the
trend. The LAA does a better job in predicting the trend reversal but if it fails to keep the
amplitude of oscillations constant it may be taken over by a stabilizing rule as ADA.

5.2 Forecasting performance

A measure of model fit is the mean of squared errors over a simulation of the model for
one-step ahead predictions. Table 2 compares these mean squared errors (MSEs) for sev-
eral experimental sessions\(^\text{11}\) for 9 different models: the RE fundamental prediction, five
homogeneous expectations models (naive expectations, and each of the four heuristics of the
switching model), and three heterogeneous expectations models with 4 heuristics, namely,
the model with fixed fractions (corresponding to \(\delta = 1\)), the switching model with benchmark
parameters \(\beta = 0.4, \eta = 0.7\) and \(\delta = 0.9\), and, finally, the “best” switching model fitted by
minimization of the MSE over the parameter space (the last three lines in Table 2 show the
corresponding optimal parameter values).\(^\text{12}\) The MSEs for the benchmark switching model
are shown in bold and, for comparison, for each session the MSEs for the best among the
four heuristics are also shown in bold. The best among 9 models for each session is shown
in italic and it is always the best fitted HSM.

\(^{11}\text{The MSEs are computed over 47 periods for } t = 4, \ldots, 50 \text{ in the sessions of HSTV05 experiment and over 46 periods, for } t = 4, \ldots, 49, \text{ in the sessions of HSTV08 experiments. We skip the errors of the first four periods in order to minimize the impact of the initial conditions (i.e., the initial impacts of the heuristics) for the HSM. Period } t = 4 \text{ is the first period when the prediction is computed with both the heuristics’ forecasts and the heuristics’ impacts being updated based on the experimental data. For comparison, in all other models we compute errors also from } t = 4.}\)

\(^{12}\text{Analogous tables for the remaining sessions can be found in Appendix D.}\)
Table 2: MSE of the one-step ahead forecast for 7 sessions of different Learning to Forecast experiments. 9 different model specifications are compared.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Ro-HF</th>
<th>Ro-LF</th>
<th>NoRo</th>
<th>LFR*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 6 4 3</td>
<td>8 12 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamental prediction</td>
<td>10.82</td>
<td>9.32</td>
<td>300.99</td>
<td>49.54</td>
</tr>
<tr>
<td>Naive heuristic</td>
<td>0.05</td>
<td>2.45</td>
<td>141.06</td>
<td>2.38</td>
</tr>
<tr>
<td>ADA heuristic</td>
<td>0.04</td>
<td>4.61</td>
<td>210.33</td>
<td>3.59</td>
</tr>
<tr>
<td>WTR heuristic</td>
<td>0.14</td>
<td>1.13</td>
<td>92.22</td>
<td>1.84</td>
</tr>
<tr>
<td>STR heuristic</td>
<td>0.66</td>
<td>0.81</td>
<td>90.59</td>
<td>3.40</td>
</tr>
<tr>
<td>LAA heuristic</td>
<td>0.48</td>
<td>0.66</td>
<td>66.26</td>
<td>1.92</td>
</tr>
<tr>
<td>4 heuristics (δ = 1)</td>
<td>0.17</td>
<td>0.66</td>
<td>67.66</td>
<td>1.55</td>
</tr>
<tr>
<td>4 heuristics (Figs. 6-7)</td>
<td>0.11</td>
<td>0.29</td>
<td>41.34</td>
<td>1.48</td>
</tr>
<tr>
<td>4 heuristics (best fit)</td>
<td>0.03</td>
<td>0.16</td>
<td>35.35</td>
<td>1.46</td>
</tr>
</tbody>
</table>

\[\beta \in [0, 10] \]
\[\eta \in [0, 1] \]
\[\delta \in [0, 1] \]

\(*\) For the LFR HSTV08 experiment MSE is computed over 46 periods.

An immediate observation from Table 2 is that, for all sessions, the fundamental prediction rule is by far the worst. This is due to the fact that in all the experiments realized prices deviate persistently from the fundamental benchmark. Another observation is that, all models explain the monotonically converging groups very well, with very low MSE. The homogeneous expectations models with naive, adaptive or WTR expectations fit the monotonic converging group 5 particularly well. However, only naive expectations outperform the benchmark switching model. For the permanent as well as the dampened oscillatory sessions 6 and 8, the flexible LAA rule is the best homogeneous expectations benchmark, but the benchmark switching model has an even smaller MSE. In session 8 from the Ro-LF HSTV05 experiment with low fundamental price, the WTR heuristic is the best among ho-
mogeneous rules but the HSM outperforms also this model. In the sessions without robots, as in the NoRo HSTV05 treatment and especially in the LFR HSTV08 treatment, all homogeneous models produce very large MSEs. The models often under- or overestimate the trend and also miss the turning points of trend-reversal. The MSEs of the switching model are much smaller in the sessions of the NoRo HSTV05 treatment and comparable with the best homogeneous model (STR heuristic) in the LFR HSTV08 treatment. When the learning parameters of the HSM model are chosen to minimize the MSE for the corresponding session, the model produces the smallest MSE over all alternative specifications\(^\text{13}\), though an improvement of fit with respect to the benchmark HSM is not as large as when the benchmark HSM is compared with the best homogeneous model. This suggest that the good fit of the switching model is fairly robust w.r.t. the model parameters.

We stress that the evolutionary Heuristic Switching Model is able to make the best out of different heuristics. Indeed, in different sessions (and treatments) of the learning to forecast experiment different homogeneous expectations models produce the best fit of the price dynamics. However, the switching model produces even better fit than the best homogeneous model.

5.3 Out-of-sample forecasting

Let us now turn to the out-of-sample validation of the model. In order to evaluate the out-of-sample forecasting performance of the model, we first perform a grid search to find the parameters of the model minimizing the MSE for periods \(t = 4, \ldots, 43 \) and then compute the forecasting errors of the fitted model for the remaining periods (7 in the case of the HSTV05 experiments and 6 in the case of the HSTV05 experiments). The results are reported in the upper part of Table 3 for each session. The first two lines show the in-sample MSE of the fitted model and the corresponding values of the parameters. The next lines give the values of the forecasting errors. In the middle part of the table, we report the results of the same procedure performed for the switching model with benchmark parameters. Finally,\(^\text{13}\)This holds for all 20 sessions of HSTV05 and HSTV08 experiments, except session 5 in the LFR HSTV08 treatment, where the STR heuristic outperforms the HSM. See Appendix D.
we compare our structural behavioral learning model with a simple non-structural model with three parameters. To this purpose we estimate an AR(2) model to the data up to period \(t = 43 \) and show in the bottom part of Table 3 the in-sample MSE and out-of-sample prediction errors.

For the converging groups of the Ro-HF treatment (e.g., session 5) the prediction errors typically increase with horizon but remain very low and comparable with the errors computed in-sample. This is not surprising given that the qualitative property of the data (i.e., monotonic convergence) does not change in the last periods, and that the adaptive heuristic, which generates such convergence, takes the lead already around period 25. In the oscillating groups (session 6 of the Ro-HF and session 8 of the Ro-LF) the out-of-sample errors gener-
ated by the switching model are varying with the time horizon and typically larger than the in-sample error. Even if the switching model with leading LAA heuristic captures oscillations qualitatively, the prediction errors can become large when the oscillations predicted by the model have different frequency than the oscillations in the experimental session, so that the prediction goes out of phase. The prediction errors for sessions with damping oscillations (session 4 of the **Ro-HF** and session 12 of the **NoRo**) are not very high when compared with the in-sample errors. This is because the price in these sessions converges towards the end of the experiment. At the end of the in-sample period, i.e., at $t = 43$, the switching model already selects the ADA heuristic, which generates the same behavior as in the experiment.

Comparing the forecasting errors of the switching and AR(2) models we conclude that the former model is better than the latter, on average. More specifically, in the converging session 5 and oscillating session 6 of the **Ro-HF** treatment the out-of-sample performances are very similar, but in all other sessions (including those which are not shown in Table 3) the different variations of the switching model outperform the AR(2) model out-of-sample. The non-linearity and behavioral foundation allows the HSM adapt faster than the AR(2) model to the change in the price dynamics. In session 8 of the **Ro-LF** the oscillations become more pronounced towards the end of the experiment. The HSM model captures this effect, while AR(2) does not. As a result, the AR(2) model produces errors larger than 7 in absolute value, which would lead to 0 earnings in the experiment, see Eq. (2), whereas the HSM does not have such large errors.

The largest out-of-sample errors are observed in the sessions of the **LFR** treatment, see also Table 8 from Appendix D. However, in all the sessions the out-of-sample errors of the HSM are comparable and often even smaller than the in-sample errors. Furthermore, the errors of the HSM are smaller than the analogous prediction errors of the AR(2) model.

To further investigate one- and two-period ahead out-of-sample forecasting performance, we fit the model on a moving sample and compute an average of the corresponding squared prediction errors. The results of this exercise for the same three models (best fit, benchmark, and AR(2)) are presented in Table 4. The smallest forecasting errors within the same class (e.g., one-period ahead in session 4) are shown in italic. It turns out that our nonlinear
switching model predicts the experimental data better than the simple AR(2) model for both one- and two-period ahead predictions in almost all sessions.14 In many cases the difference in performance is substantial.

6 Conclusion and Discussion

The time evolution of aggregate economic variables, such as stock prices, is affected by market expectations of individual agents. Neo-classical economic theory assumes that individuals

14The AR(2) model outperforms both the benchmark and the best-fitted HSMs in session 7 of the Ro-HF treatment (1 period ahead), session 14 of the NoRo treatment (2 periods ahead), session 3 of the LFR treatment (1 period ahead) and session 5 of the LFR treatment (both 1 and 2 periods ahead).

Table 4: Out-of-sample performance of the heuristic learning model and of the AR(2) model. The averaged (over moving window of 40 periods) in-sample MSE and averaged (over 7 forecasts) 1– and 2– periods ahead squared forecasting errors are shown.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Ro-HF</th>
<th>Ro-LF</th>
<th>NoRo</th>
<th>LFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Fit Switching Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average MSE\textsubscript{40}</td>
<td>0.04</td>
<td>0.17</td>
<td>45.19</td>
<td>1.75</td>
</tr>
<tr>
<td>1 p ahead</td>
<td>0.03</td>
<td>0.15</td>
<td>5.75</td>
<td>0.38</td>
</tr>
<tr>
<td>2 p ahead</td>
<td>0.09</td>
<td>0.92</td>
<td>12.17</td>
<td>0.40</td>
</tr>
<tr>
<td>Benchmark Switching Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average MSE\textsubscript{40}</td>
<td>0.10</td>
<td>0.29</td>
<td>50.74</td>
<td>1.78</td>
</tr>
<tr>
<td>1 p ahead</td>
<td>0.15</td>
<td>0.41</td>
<td>7.69</td>
<td>0.42</td>
</tr>
<tr>
<td>2 p ahead</td>
<td>0.23</td>
<td>1.90</td>
<td>16.22</td>
<td>0.56</td>
</tr>
<tr>
<td>AR(2) Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average MSE\textsubscript{44}</td>
<td>0.24</td>
<td>0.25</td>
<td>65.75</td>
<td>1.99</td>
</tr>
<tr>
<td>1 p ahead</td>
<td>0.44</td>
<td>0.56</td>
<td>13.46</td>
<td>1.43</td>
</tr>
<tr>
<td>2 p ahead</td>
<td>0.40</td>
<td>1.49</td>
<td>44.65</td>
<td>2.33</td>
</tr>
</tbody>
</table>
form expectations rationally, thus enforcing prices to track economic fundamentals and leading to an efficient allocation of resources. Laboratory experiments with human subjects have shown however that individuals do not behave fully rational, but instead follow simple heuristics. In laboratory markets prices may show persistent deviations from fundamentals similar to the large swings observed in real stock prices.

Our results show that performance-based evolutionary selection among simple forecasting heuristics can explain coordination of individual forecasting behavior leading to three different aggregate outcomes observed in identically organized treatments of the recent laboratory market forecasting experiments: slow monotonic price convergence, oscillatory dampened price fluctuations and persistent price oscillations. Furthermore, we show that the same model fits reasonably well also other learning to forecast experiments.

In our Heuristic Switching Model forecasting strategies are selected every period from a small population of plausible heuristics, such as adaptive expectations and trend following rules. Individuals adapt their strategies over time, based on the relative forecasting performance of the heuristics. As a result, the nonlinear evolutionary switching mechanism exhibits path dependence and matches individual forecasting behavior as well as aggregate market outcomes in the experiments. We showed that none of the homogeneous expectation models constituting the HSM fits all different observed patterns. Instead different heuristics fit better dynamics in different sessions. The HSM not only provide a simultaneous explanation for the aggregate outcomes in all different sessions, but also outperforms the best homogeneous model in almost every session. Our results are in line with recent work on agent-based models of interaction and contribute to a behavioral explanation of market fluctuations.

The HSM is one of the first learning models explaining different time series patterns in the same laboratory environment. Our approach of doing this is similar to many game-theoretical learning models (often referred as “reinforcement learning”), see, e.g., Arthur (1991), Erev and Roth (1998) and Camerer and Ho (1999). These models were developed as a response to experimental evidence that individuals often do not play or learn to play equilibrium predictions such as Nash Equilibrium, or different refinements. Our market envi-
environment is quite different from the strategic environments studied in game theory, however. For example, agents in our framework do not have a well defined strategies, other than predicting a number between 0 and 100 in two decimals. Other important differences are that the strategies used in our switching model are state dependent and that individuals do not know the “payoff matrix”, which moreover is changing over time in a pathdepending manner.

The model presented in this paper is one of the first models to explain individual micro-behavior as well as aggregate macro behavior. Recently Fuster et al. (2010) propose a somewhat similar model of “natural expectations”, which are the weighted average of a so-called intuitive, extrapolative expectations and rational expectations. Their model can successfully explain a number of stylized facts of macro-economic time series. Our heuristics correspond to different plausible parametrization of their intuitive expectations, but our approach to discipline bounded rationality is different. Instead of fixing the intuitive rule on the basis of a mis-specified estimation of the true model as in Fuster et al. (2010), we fix the heuristics’ parameters on the basis of experimental estimations but allow agents to change their heuristics dynamically. Of course, fundamental expectations can be also included into the set of the rules. In a related paper, Hommes and Lux (2011) explain learning to forecast experiments in the classical cobweb (hog-cycle) market environment, using a heterogeneous expectations model, where individual agents use a genetic algorithm. The GA-learning model captures all stylized facts of the cobweb markets, both at the individual and at the aggregate level, quite nicely across different experimental treatments.

A more systematic investigation in which market environments other than the asset pricing framework our nonlinear heuristics switching model can explain individual forecasting behavior as well as aggregate price behavior is beyond the scope of this paper. We conjecture, however, that the simple Heuristics Switching Model analyzed in this paper works well in market environments with some structure and persistence in price fluctuations, either in the form of converging prices or in the presence of price oscillations and (temporary) trends.

In future work we intend to apply our HSM to financial data with highly irregular and persistent time series. For this application, the set of heuristics should be augmented by
more sophisticated rules, those which are applied in real financial markets. Allen and Taylor (1990) and Frankel and Froot (1990) provide evidence based on survey data, that simple extrapolation heuristics similar to those we employ, are used in real markets. Given that the HSM would still be able to pick and temporary amplify the self-confirming patterns in prices such as trends, we hope that more sophisticated versions of the model could improve the forecasting of financial markets.
References

This Appendix consists of five sections. In Section A we illustrate aggregate price dynamics and individual forecasting behavior in all the sessions of the HSTV05 and HSTV08 experiments not covered in the main part of the paper. Section B collects a few results about existence and stability of the steady states for dynamics of the models with homogeneous expectations determined by the heuristics constituting the HSM. In Section C we return to the HSTV05 experiment and provide an evidence of heterogeneity within sessions and between sessions on the basis in terms of stability analysis of Section B. Finally, Section D complements Section 5 by providing the fitting results of the HSM for all the sessions of the HSTV05 and HSTV08 experiments not covered in the main part of the paper.

A Price and Prediction Dynamics in the Experiments

This Appendix provides a detailed view on the individual and aggregate dynamics in the HSTV05 and HSTV08 experiments. Fig. 2 of the main text provides an illustration of observed aggregate dynamics of price in all 20 sessions. Fig. 3 of the main text displays the detailed dynamics in 6 out of 20 sessions. The dynamics of the remaining 14 sessions is shown in Figs. 9-11. For every panel an upper part shows prices in the experiment (line) in comparison with the fundamental level (dotted line). A lower part shows individual predictions of 6 participants with forecasting errors in an inner frame.

The left panels of Fig. 9 show sessions 2, 1 and 7 of the HSTV05 experiment with high fundamental price and robots. The patterns of monotone convergence, constant oscillations and dampened oscillations are similar with the corresponding patterns in sessions 5, 6 and 4 (cf. the left panels of Fig. 3). The top right panel shows session 3 of the HSTV05 experiment, where one of the participants presumably made a typing error. Two remaining right panels show sessions 9 and 10 from the HSTV05 experiment with robots and low fundamental price.

Fig. 10 shows sessions 11, 13 and 14 of the HSTV05 experiment with high fundamental price \(p^f = 60 \) without “robots”.

Fig. 11 shows sessions 1 and 3 – 6 of the HSTV08 experiment with large forecasting range \([0, 1000]\). In all the sessions except session 1 the large price bubble has been observed.
Figure 9: Prices, predictions and forecasting errors in 6 sessions of the HSTV05 experiment. In sessions 2, 1, 7 and 3 the fundamental price $p^f = 60$, in sessions 9 and 10 the fundamental price $p^f = 40$.
Figure 10: Prices, predictions and forecasting errors in 3 sessions of the HSTV05 experiment without robots.
Figure 11: Prices, predictions and forecasting errors in 3 sessions of the HSTV08 experiment with large forecasting range. Occasional “spoilers” are clearly visible.
B Homogeneous Expectations Model

The model with homogeneous expectations is given by

\[
\begin{align*}
 p_{t+1}^e &= f(p_{t-1}, p_{t-2}, p_t^f), \\
 n_t &= 1 - \exp \left(-\frac{1}{200} |p_{t-1} - p_f| \right), \\
 p_t &= \frac{1}{1+r} \left((1-n_t)p_{t+1}^e + n_t p_f + \bar{y} + \varepsilon_t \right).
\end{align*}
\]

for the experiments with robots. The first equation describes forecasting behavior with a simple first order heuristic \(f \) as in (5), which can be either adaptive expectations (in which case \(f \) does not depend on \(p_{t-2} \)) or trend following expectations (in which case \(f \) does not depend on \(p_{t}^e \)).

Two other equations give the evolution of the share of “robot” traders and prices, identical to the equations used in the experiment, cf. (3) and (4). When the robots are not present, the second equation should be omitted and Eq. (1) should be used in place of the third.

We present below an analysis of the so-called deterministic skeleton model, setting term \(\varepsilon_t \) in (14) to zero. Stochastic simulations with the same realizations of the shocks, \(\varepsilon_t \), as in the experiment are given in Fig. 4 of the main text, in order to illustrate how the noise affects price fluctuations.

In terms of deviations from the fundamental price the model can be rewritten as

\[
p_t - p_f = \frac{1}{1+r} \left((1-n_t)p_{t+1}^e + n_t p_f - p_f \right) = \frac{1-n_t}{1+r} \left(p_{t+1}^e - p_f \right),
\]

Adaptive Expectations. Under adaptive expectations \(f \) is given by (6). The following result describes the behavior of system (14) in this case.

Proposition 1. Consider the deterministic skeleton of (14) with the adaptive prediction rule (6).

This system has a unique steady-state with price equal to fundamental price, i.e., \(p^* = p_f \). The steady-state is globally stable for \(0 < w \leq 1 \), with a real eigenvalue \(\lambda \), \(0 < \lambda < 1 \), so that the convergence is monotonic.

Proof. From the general relation (15) it follows that

\[
p_{t+1}^e - p_f = w (p_{t-1} - p_f^t) + (1-w) (p_{t}^e - p_f) = (p_{t}^e - p_f) \left(w \frac{1-n_{t-1}}{1+r} + 1-w \right).
\]

The expression in the last parenthesis is a convex combination of 1 and \((1-n_{t-1})/(1+r) < 1 \). For positive weight \(w \) such combination is always less than 1. Therefore, the dynamical system defines
a contraction of expectations, which then must globally converge to \(p^f \). The price realization in this point is uniquely defined from (6) as \(p^* = p^f \). Finally, the evolution of robot traders implies that \(n^* = 0 \) in this fixed-point.

Extrapolative Expectations. Consider now the dynamics of the homogeneous expectations model with a rule given by

\[
p^{e}_{t+1} = \alpha + \beta_1 p_{t-1} + \beta_2 p_{t-2}.
\]

This *extrapolative* rule incorporates both the trend following and the anchor and adjustment heuristic as special cases. Indeed, setting \(\alpha = 0, \beta_1 = 1 + \gamma \) and \(\beta_2 = -\gamma \), the trend-following heuristics (7) is obtained, while \(\alpha = p^f/2, \beta_1 = 1.5 \) and \(\beta_2 = -1 \) correspond to the anchoring and adjustment heuristic (8).

The rules for which the forecasts are not consistent with realizations will be disregarded by the participants, sooner or later. Therefore, we confine our attention to the rules satisfying the following simple steady-state consistency requirement:

Definition B.1. The extrapolative rule (16) is called *consistent* in the steady-state \(p^* \), if it predicts \(p^* \) in this steady-state.

In other words, consistent rules give unbiased predictions at the steady-state. Obviously, the extrapolative rule is consistent in \(p^* \) if and only if \(\alpha = (1 - \beta_1 - \beta_2) p^* \). Notice that, the trend-following heuristic (7) is consistent at any steady-state, while the anchoring and adjustment heuristic (8) is consistent only at the steady state with \(p^* = p^f \).

The following result describes all possible steady-states of the asset-pricing dynamics with consistent extrapolative heuristic, as well as their local stability.

Proposition 2. Consider the dynamics of the deterministic skeleton of (14) with extrapolative prediction rule (16).

There exists a unique steady-state in which the rule is consistent. In this steady-state, \(p^* = p^f \) and the fraction of robot traders \(n^* = 0 \). The “fundamental” steady-state is locally stable if the following three conditions are met

\[
\beta_2 < (1 + r) - \beta_1, \quad \beta_2 < (1 + r) + \beta_1, \quad \beta_2 > -(1 + r).
\]

49
The steady-state generically exhibits a pitch-fork, period-doubling or Neimark-Sacker bifurcation, if the first, second or third inequality in (17) turns into an equality, respectively. Moreover, the dynamics is oscillating (i.e., the eigenvalues of the linearized system are complex) when

$$\beta_1^2 + 4\beta_2(1 + r) < 0.$$

Proof. Consider the steady-state \((p^*, n^*)\) with consistent forecasting rule, and notice that (15) implies that either \(p^* = p^f\) or \(1 - n^* = 1 + r\). The second case is impossible, so \(p^* = p^f\) and, therefore, \(n^* = 0\).

Using (15), the dynamics in deviations is given by

$$p_t - p^f = \exp\left(-|p_{t-1} - p^f|/200\right) \left(\frac{\beta_1}{1 + r}(p_{t-1} - p^f) + \frac{\beta_2}{1 + r}(p_{t-2} - p^f)\right).$$

The first term in the right hand-side is never greater than 1. Thus, dynamics of (18) is a superposition of contraction with linear process of second order

$$\begin{align*}
(1 + r)x_t &= \beta_1 x_{t-1} + \beta_2 x_{t-2}
\end{align*}$$

with \(x_t = p_t - p^f\). If the latter dynamics is locally stable, the steady-state \(p^f\) of original dynamics (18) will be also locally stable. Furthermore, since the exponential term in (18) is equal to 1 in the steady-state, the linear parts of the dynamics of the last two processes are the same. Thus, processes (18) and (19) lose stability simultaneously and through the same bifurcation type.

The Jacobian matrix of (19) in the steady-state is given by

$$J = \begin{bmatrix}
\frac{\beta_1}{1 + r} & \frac{\beta_2}{1 + r} \\
1 & 0
\end{bmatrix}.$$

The standard conditions for the stability can be expressed through the trace \(\text{Tr}(J)\) and the determinant \(\text{Det}(J)\) of this matrix, and are given by

$$\begin{align*}
\text{Tr}(J) &< \text{Det}(J) + 1, \\
\text{Tr}(J) &> -1 - \text{Det}(J), \\
\text{Det}(J) &< 1.
\end{align*}$$

Furthermore, the dynamics is oscillatory if \(\text{Tr}(J)^2 - 4\text{Det}(J) = 0\). The substitution of the values of trace and determinant gives inequalities (17) and condition \(\beta_1^2 + 4\beta_2(1 + r_f) < 0\) for the oscillations.

The bifurcation types can be determined from (20), since when one of these inequalities turns to equality, the unit circle is crossed by a corresponding eigenvalue of the system.
inequality is violated when an eigenvalue becomes equal to -1, which implies the period-doubling bifurcation. The violation of the last inequality in (20) implies that two complex eigenvalues cross the unit circle. This happens under the Neimark-Sacker bifurcation. Finally, consider the first inequality, which is violated when one eigenvalue becomes equal to 1. It turns out that at this occasion two new steady-states are emerging, which implies that the system exhibits pitchfork bifurcation. Indeed, any steady-state (p^*, n^*) should satisfy to

\[
(1 + r)p^* = (1 - n^*)(1 - \beta_1 - \beta_2)p^f + (\beta_1 + \beta_2)p^* + n^*p^f + \bar{y}
\]

\[
(1 + r)p^* = p^f + (\beta_1 + \beta_2)(p^* - p^f)(1 - n^*) + \bar{y}
\]

\[
(1 + r)(p^* - p^f) = (\beta_1 + \beta_2)(p^* - p^f)(1 - n^*)
\]

Thus, in any non-fundamental steady-state, the fractions of robots $n^* = 1 - (1 + r)/\beta_1$. Only if this fraction belongs to the interval $(0, 1)$ two other steady-states exist with

\[
p^*_\pm = p^f \pm 200 \log(1 - n^*)
\]

(The prediction rule is, of course, inconsistent in both steady-states.) When the first inequality in (20) is satisfied, these two steady-state do not exist, but they appear at the moment when the inequality changes it sign.

In general, the dynamical system (14) with homogeneous extrapolative expectations (16) may have multiple steady-states. Proposition 2 asserts, however, that the extrapolative rule is consistent only in the fundamental steady state p^f. The stability conditions (17) are illustrated in Fig. 12 in the parameter space (β_1, β_2). The dark regions contain all rules for which the extrapolative heuristic (16) generates stable dynamics. For the pairs lying below the parabolic curve, the dynamics are oscillating. A loss of (local) stability occurs when the pair (β_1, β_2) leaves the stability area and crosses the boundary formed by the triangle. The dynamics immediately after the bifurcation are determined by the type of bifurcation through which stability is lost. For instance, after the pitchfork bifurcation the price diverges from its fundamental level and converges to one of two new stable steady-states. The Neimark-Sacker bifurcation implies existence of (quasi-)periodic price fluctuations right after the bifurcation.
Figure 12: Stability of the fundamental steady-state in an asset-pricing model with homogeneous extrapolative expectations. The dynamics converge to the fundamental steady-state if the pair of coefficients \((\beta_1, \beta_2)\) of extrapolative rule belongs to the union of light and dark grey regions. The edges of the triangle at the border of the stability region correspond to pitchfork, period-doubling and Neimark-Sacker bifurcations. The price dynamics is oscillating if the pair \((\beta_1, \beta_2)\) lies below the parabolic curve. The three dots correspond to two trend-following heuristics (labeled \(\gamma = 0.4\) and \(\gamma = 1.3\)) and an anchoring and adjustment heuristic (labeled AA), which are combined in the Heuristic Switching Model of Section 4.

The three dots shown in Fig. 12 correspond to three extrapolative forecasting rules estimated from individual experimental data. Two trend-following heuristic (7) with different values of the extrapolation coefficient \(\gamma\) are labeled as \(\gamma = 0.4\) and \(\gamma = 1.3\). The anchoring and adjustment heuristic (8) is labeled as AA.
C Heterogeneity in HSTV05 Experiment

HSTV05 estimated individual forecasting rules and found that many of them can be described by the extrapolative first order heuristics

\[
p_{t+1} = \alpha + \beta_1 p_{t-1} + \beta_2 p_{t-2}.\]

Fig. 13 illustrates an extent of heterogeneity found in the HSTV05 experiment. For six different sessions of the Ro-HF treatment we show all individuals whose behavior was found to be consistent with the extrapolative heuristic. The dots represent the coefficients of the estimated heuristics, with coefficient \(\beta_1\) shown on the horizontal axis and coefficient \(\beta_2\) on the vertical axis. Different regions of the space correspond to different qualitative dynamics of the model with corresponding homogeneous expectation rule as derived in Appendix B. The dynamics converge to the fundamental steady-state if the pair of coefficients \((\beta_1, \beta_2)\) belongs to the union of light and dark grey regions and diverge otherwise. The price dynamics is oscillating if the pair \((\beta_1, \beta_2)\) lies below the parabolic curve.

While the dispersion of individual forecasting rules is clear, the figure suggests some regularities. In the converging sessions 2 and 5, the majority of rules belongs to the region of monotonic convergence. In contrast, in the oscillating sessions almost all individual rules lie in the oscillatory region (i.e., the linear forecasting rule has complex eigenvalues). Furthermore, in sessions 1 and 6 with constant price oscillations at least two individual rules in every group are very close to the stability border of the Neimark-Sacker bifurcation (i.e., are close to complex unit roots), while in groups 4 and 7 with dampened oscillations both stable and unstable rules were present.

\[15\] In every group there were rules which cannot be represented by the extrapolative prediction, e.g., an adaptive heuristic or linear rules with three lags.
Figure 13: Stability of homogeneous expectations model with extrapolative rules estimated in the experiment.
D Empirical Validation

D.1 One-period ahead simulations

The plots of this section illustrate the one-period ahead forecast by the HSM for different groups of the learning to forecast asset pricing experiment. The left panels of the plots show the prices in experiment (line with points) with corresponding one-step ahead predictions of the HSM (points). The right panels show the corresponding evolution of fractions of the four heuristics: adaptive expectations (ADA), weak trend followers (WTR), strong trend followers (STR) and learning anchoring and adjustment heuristic (LAA).

Fig. 14 (which complement Fig. 6 of the main text) shows the fit for three groups of the HSTV05 experiment with “robots” and high fundamental price, $p_f = 60$. These groups illustrate three qualitative features of aggregate data observed in this experiment: almost monotonic convergence (group 2), oscillations with constant amplitude (group 1) and damping oscillations (group 7). These are the groups for which Anufriev and Hommes (2012) made a 50-periods ahead simulations.

Notice, that the domination of the LAA rule happens much faster in simulations for group 1, than for group 6. (For instance, 80% impact is reached by the LAA rule after 20 periods for group 1 and after 40 periods for group 6.) This difference reflects the fact that the frequency of oscillations in the two experimental groups were not the same. During the experiment we observe about 6 “cycles” in group 1, but only about 4 and a half “cycles” in group 6.

Two lower panels of Fig. 15 give the examples with a low fundamental price of 40, whose strong oscillations are captured by an initially dominating STR rule, until the LAA rule becomes dominating after period 40. This figure complements the top panels of Fig. 8 of the main text.

Fig. 16 is an example of the environment without robot traders. (It complements the middle panels of Fig. 8 of the main text.) Large amplitude price oscillations, with prices almost reaching their maximum 100 and minimum 0, arise, but prices stabilize towards the end of the experiment. The evolution of the impacts of the four forecasting heuristics is similar to the case of dampening price oscillations, with the strong trend rule (STR) initially dominating the market, followed by the anchor and adjustment rule (LAA) taking over around period 25, and the adaptive expectations (AA) rule finally dominating towards the end.

Finally, Figs. 17 and 18 in the “bubble experiments” of the HSTV08 is another example without
Figure 14: Laboratory experiments and the HSM in 3 sessions with different qualitative dynamics from Ro-HF HSTV05 experiment.
Figure 15: Laboratory experiments and the HSM in session 3 from Ro-HF HSTV05 experiment (top panel), and two sessions from Ro-LF HSTV05 experiment (middle and bottom panels).
Figure 16: Laboratory experiments and the HSM in three sessions from NoRo HSTV05 experiment.
robot traders, this time with a much larger upper-bound of 1000 (instead of 100). (See also the bottom panel of Fig. 8 of the main text.) The asset price oscillates with very large amplitude, with a long lastingrend of 25 periods with prices rising close to their maximum 1000, after which a crash follows to values close to their minimum 0, and the market starts oscillating. The evolution of the impacts of the four forecasting heuristics is similar as before, with the STR rule taking the lead, increasing its share to more than 80% after 25 periods, then slowly declining and finally dominated by the LAA rule with more than 60% of the share after 50 periods.

We summarize the corresponding evolution of heuristics’ impacts in Table 5.
Figure 17: Laboratory experiments and the HSM in three sessions from LFR HSTV08 experiment.
Figure 18: Laboratory experiments and the HSM in two sessions from LFR HSTV08 experiment.
Table 5: Heuristic Switching Model in the Learning to Forecast Experiments.

<table>
<thead>
<tr>
<th>type</th>
<th>paper</th>
<th>evolution of heuristics’ fractions</th>
<th>figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ro-HF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSTV05, sess. 5, 2</td>
<td>All heuristics have similar impacts leading to the monotone convergence of price</td>
<td>6 (top); 14 (App. D)</td>
<td></td>
</tr>
<tr>
<td>HSTV05, sess. 6, 1</td>
<td>WTR, STR and LAA trigger weak initial trend with LAA taking over and leading to permanent oscillations</td>
<td>6 (middle); 14 (App. D)</td>
<td></td>
</tr>
<tr>
<td>HSTV05, sess. 4, 7</td>
<td>STR dominates in the beginning leading to the strong trend. When bubble bursts LAA takes over, but towards the end of the experiment ADA performs even better explaining convergence</td>
<td>6 (bottom); 14 (App. D)</td>
<td></td>
</tr>
<tr>
<td>HSTV05, sess. 3</td>
<td>WTR and STR overestimate strong initial trend, so that LAA takes over. When oscillations die out, the WTR takes over but sudden 'spoiler' (caused, presumably, by typing error) brings LAA back to dominate</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Ro-LF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSTV05, sess. 8</td>
<td>Initially WTR and LAA perform better leading to weak oscillations but the STR takes over and faster oscillations occur. Towards the end LAA again takes a momentum</td>
<td>8 (top)</td>
<td></td>
</tr>
<tr>
<td>HSTV05, sess. 9, 10</td>
<td>Initially STR and LAA perform better leading to strongly oscillating dynamics. At the end LAA takes over</td>
<td>15 (App. D)</td>
<td></td>
</tr>
<tr>
<td>NoRo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSTV05, sess. 12</td>
<td>STR takes over but when the upper prediction is reached the bubble bursts and LAA rule increases its weight and takes over</td>
<td>8 (middle)</td>
<td></td>
</tr>
<tr>
<td>HSTV05, sess. 11, 13, 14</td>
<td>Initially ADA and WTR performs better preventing a big bubble to occur. No heuristic takes more than 50%</td>
<td>16 (App. D)</td>
<td></td>
</tr>
<tr>
<td>LFR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSTV08, sess. 2</td>
<td>ADA dominates over all simulations. Occasional spoilers trigger WTR and STR rules, but only to the end STR takes over</td>
<td>8 (bottom)</td>
<td></td>
</tr>
<tr>
<td>HSTV08, sess. 1</td>
<td>STR takes over from the beginning and bubble grows and explodes. Fast crash and new bubbles favor flexible LAA rule which takes over to the end of the experiment: the second bubble is formed and burst much faster</td>
<td>17 (App. D)</td>
<td></td>
</tr>
<tr>
<td>HSTV08, sess. 3-6</td>
<td>STR takes over but bubble stops. LAA rules start to increase its weight and prevents the highest possible bubble</td>
<td>18 (App. D)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

62
D.2 Forecasting performance

The tables of this section supplement the results of Sections 5.2 and 5.3. We investigate the forecasting performance of the HSM with benchmark learning parameters $\beta = 0.4$, $\eta = 0.7$ and $\delta = 0.9$, and compare it with the performance of other models.

Table 6 (which complements Table 2 of the main text) shows the mean squared prediction errors of the one-step ahead forecast for different homogeneous and heterogeneous expectation models. The best model has smallest MSE. The best among four homogeneous model corresponding to four different heuristics is shown in bold. Also in bold we show the MSE for the HSM with benchmark parameters. The best among all the model is shown in italic, and it is often the HSM where learning parameters are chosen to minimize the MSE.

Tables 7 and 8 complement Table 3 of the main text. They show the out-of-sample forecasting errors from 1- to 7-periods ahead of three different model: the HSM optimizied in-sample, the HSM with the benchmark parameters and the AR(2) model optimized in-sample.

Finally, Table 9 (which complements Table 4 of the main text) shows the 1- and 2-periods ahead forecasting errors averaged over moving window for the same three models. The smallest forecasting errors within the same class are shown in italic.
Table 6: MSE over 47 periods of the one-step ahead forecast for 7 sessions of HSTV05 experiment and 5 session of HSTV08 experiment. 9 different model specifications are compared.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Ro-HF</th>
<th>Ro-LF</th>
<th>NoRo</th>
<th>LFR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Fundamental prediction</td>
<td>16.62</td>
<td>15.76</td>
<td>21.91</td>
<td>108.91</td>
</tr>
<tr>
<td></td>
<td>309.62</td>
<td>631.89</td>
<td>16.65</td>
<td>5577.12</td>
</tr>
<tr>
<td></td>
<td>6560.01</td>
<td>159202.38</td>
<td>67411.56</td>
<td>67956.61</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>10</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>20.05</td>
<td>122.50</td>
<td>297.92</td>
<td>251.31</td>
</tr>
<tr>
<td></td>
<td>0.53</td>
<td>1057.02</td>
<td>12452.97</td>
<td>26736.05</td>
</tr>
<tr>
<td></td>
<td>6905.15</td>
<td>7634.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>5.67</td>
<td>19.52</td>
<td>38.98</td>
</tr>
<tr>
<td></td>
<td>197.59</td>
<td>452.77</td>
<td>376.74</td>
<td>1.20</td>
</tr>
<tr>
<td>ADA heuristic</td>
<td>1075.93</td>
<td>20362.17</td>
<td>42040.69</td>
<td>12866.66</td>
</tr>
<tr>
<td></td>
<td>1075.93</td>
<td>14028.66</td>
<td>7634.30</td>
<td>5120.32</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>2.91</td>
<td>14.72</td>
<td>4.10</td>
</tr>
<tr>
<td></td>
<td>80.67</td>
<td>112.65</td>
<td>209.37</td>
<td>0.41</td>
</tr>
<tr>
<td>STR heuristic</td>
<td>2958.17</td>
<td>4804.10</td>
<td>7844.27</td>
<td>2198.91</td>
</tr>
<tr>
<td></td>
<td>2406.21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.46</td>
<td>0.46</td>
<td>5.86</td>
<td>16.47</td>
</tr>
<tr>
<td></td>
<td>48.11</td>
<td>150.73</td>
<td>138.29</td>
<td>4.77</td>
</tr>
<tr>
<td>LAA heuristic</td>
<td>1837.39</td>
<td>9183.66</td>
<td>15038.59</td>
<td>10763.49</td>
</tr>
<tr>
<td></td>
<td>9028.54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>1.24</td>
<td>7.10</td>
<td>7.43</td>
</tr>
<tr>
<td></td>
<td>52.20</td>
<td>156.83</td>
<td>135.91</td>
<td>0.65</td>
</tr>
<tr>
<td>4 heuristics ($\delta = 1$)</td>
<td>1376.33</td>
<td>5931.38</td>
<td>12086.66</td>
<td>3399.96</td>
</tr>
<tr>
<td></td>
<td>3408.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>0.47</td>
<td>4.32</td>
<td>2.44</td>
</tr>
<tr>
<td></td>
<td>26.58</td>
<td>70.25</td>
<td>82.73</td>
<td>0.33</td>
</tr>
<tr>
<td>4 heuristics (Figs. 6-7)</td>
<td>1133.89</td>
<td>3312.38</td>
<td>4846.44</td>
<td>2887.84</td>
</tr>
<tr>
<td></td>
<td>1832.65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>0.44</td>
<td>2.92</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>23.82</td>
<td>68.43</td>
<td>72.39</td>
<td>0.21</td>
</tr>
<tr>
<td>4 heuristics (best fit)</td>
<td>1033.03</td>
<td>3075.22</td>
<td>4795.97</td>
<td>2203.65</td>
</tr>
<tr>
<td></td>
<td>1421.88</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta \in [0, 10]$</td>
<td>10.00</td>
<td>0.10</td>
<td>0.23</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>1.84</td>
<td>0.54</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
<td>1.00</td>
<td>0.51</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>5.93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\eta \in [0, 1]$</td>
<td>0.42</td>
<td>1.00</td>
<td>0.45</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>0.72</td>
<td>0.70</td>
<td>0.95</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>0.80</td>
<td>1.00</td>
<td>0.70</td>
<td>0.39</td>
</tr>
<tr>
<td></td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\delta \in [0, 1]$</td>
<td>0.89</td>
<td>0.45</td>
<td>0.46</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>0.84</td>
<td>0.00</td>
<td>0.06</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7: Out-of-sample performance of the heuristic switching model and the AR(2) model for 8 sessions of HSTV05 experiment.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Ro-HF</th>
<th>Ro-LF</th>
<th>Ro-LF</th>
<th>NoRo</th>
<th>NoRo</th>
<th>NoRo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.44</td>
<td>3.34</td>
<td>0.70</td>
<td>16.73</td>
<td>49.31</td>
</tr>
<tr>
<td>1</td>
<td>0.06</td>
<td>0.44</td>
<td>3.34</td>
<td>0.70</td>
<td>16.73</td>
<td>49.31</td>
</tr>
<tr>
<td>2</td>
<td>0.06</td>
<td>0.44</td>
<td>3.34</td>
<td>0.70</td>
<td>16.73</td>
<td>49.31</td>
</tr>
<tr>
<td>3</td>
<td>0.06</td>
<td>0.44</td>
<td>3.34</td>
<td>0.70</td>
<td>16.73</td>
<td>49.31</td>
</tr>
<tr>
<td>4</td>
<td>0.06</td>
<td>0.44</td>
<td>3.34</td>
<td>0.70</td>
<td>16.73</td>
<td>49.31</td>
</tr>
<tr>
<td>5</td>
<td>0.06</td>
<td>0.44</td>
<td>3.34</td>
<td>0.70</td>
<td>16.73</td>
<td>49.31</td>
</tr>
<tr>
<td>6</td>
<td>0.06</td>
<td>0.44</td>
<td>3.34</td>
<td>0.70</td>
<td>16.73</td>
<td>49.31</td>
</tr>
<tr>
<td>7</td>
<td>0.06</td>
<td>0.44</td>
<td>3.34</td>
<td>0.70</td>
<td>16.73</td>
<td>49.31</td>
</tr>
</tbody>
</table>

MSE₄₀ (β, η, δ) (0.4, 0.7, 0.9) (0.4, 0.7, 0.9) (0.4, 0.7, 0.9) (0.4, 0.7, 0.9) (0.4, 0.7, 0.9) (0.4, 0.7, 0.9) (0.4, 0.7, 0.9) (0.4, 0.7, 0.9)
Table 8: Out-of-sample performance of the heuristic switching model and the AR(2) model for 5 sessions of HSTV08 experiment.

<table>
<thead>
<tr>
<th>Specification</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Fit Switching Model</td>
<td>LFR</td>
<td>LFR</td>
<td>LFR</td>
<td>LFR</td>
<td>LFR</td>
</tr>
<tr>
<td>MSE_{40}</td>
<td>1257.89</td>
<td>2680.41</td>
<td>4680.75</td>
<td>1829.27</td>
<td>1123.66</td>
</tr>
<tr>
<td>(β, η, δ)</td>
<td>(0.1, 7, 0.6)</td>
<td>(10.0, 1, 0.0)</td>
<td>(0.5, 7, 0.9)</td>
<td>(0.0, 0, 0.7)</td>
<td>(9.5, 0, 0.9)</td>
</tr>
<tr>
<td>1 p ahead</td>
<td>5.94</td>
<td>-1.07</td>
<td>-65.58</td>
<td>35.40</td>
<td>23.04</td>
</tr>
<tr>
<td>2 p ahead</td>
<td>3.57</td>
<td>-10.22</td>
<td>-60.92</td>
<td>98.61</td>
<td>192.53</td>
</tr>
<tr>
<td>3 p ahead</td>
<td>1.30</td>
<td>-192.17</td>
<td>-5.62</td>
<td>174.59</td>
<td>269.56</td>
</tr>
<tr>
<td>4 p ahead</td>
<td>-3.71</td>
<td>-176.31</td>
<td>-52.46</td>
<td>232.32</td>
<td>151.23</td>
</tr>
<tr>
<td>5 p ahead</td>
<td>-14.09</td>
<td>-61.11</td>
<td>-97.41</td>
<td>246.92</td>
<td>-23.35</td>
</tr>
<tr>
<td>6 p ahead</td>
<td>-5.19</td>
<td>48.49</td>
<td>-249.95</td>
<td>214.37</td>
<td>-21.07</td>
</tr>
<tr>
<td>Benchmark Switching Model</td>
<td>LFR</td>
<td>LFR</td>
<td>LFR</td>
<td>LFR</td>
<td>LFR</td>
</tr>
<tr>
<td>MSE_{40}</td>
<td>1295.50</td>
<td>2725.92</td>
<td>4708.56</td>
<td>3031.62</td>
<td>1667.05</td>
</tr>
<tr>
<td>(β, η, δ)</td>
<td>(0.4, 0.7, 0.9)</td>
</tr>
<tr>
<td>1 p ahead</td>
<td>5.79</td>
<td>110.39</td>
<td>-54.46</td>
<td>31.66</td>
<td>-53.46</td>
</tr>
<tr>
<td>2 p ahead</td>
<td>3.62</td>
<td>271.03</td>
<td>-35.51</td>
<td>97.62</td>
<td>-14.42</td>
</tr>
<tr>
<td>3 p ahead</td>
<td>-0.48</td>
<td>199.30</td>
<td>24.19</td>
<td>177.89</td>
<td>-40.86</td>
</tr>
<tr>
<td>4 p ahead</td>
<td>-7.96</td>
<td>37.63</td>
<td>-51.93</td>
<td>244.78</td>
<td>-47.88</td>
</tr>
<tr>
<td>5 p ahead</td>
<td>-20.99</td>
<td>-60.19</td>
<td>-120.49</td>
<td>270.41</td>
<td>-18.70</td>
</tr>
<tr>
<td>6 p ahead</td>
<td>-14.60</td>
<td>-34.22</td>
<td>-291.43</td>
<td>240.07</td>
<td>-65.18</td>
</tr>
<tr>
<td>AR(2) Model</td>
<td>LFR</td>
<td>LFR</td>
<td>LFR</td>
<td>LFR</td>
<td>LFR</td>
</tr>
<tr>
<td>MSE_{41}</td>
<td>1000.42</td>
<td>5592.63</td>
<td>9088.40</td>
<td>2992.46</td>
<td>1676.52</td>
</tr>
<tr>
<td>(β, η, δ)</td>
<td>(39.4, 0.7, -0.0)</td>
<td>(39.0, 1.6, -0.8)</td>
<td>(73.3, 1.6, -0.8)</td>
<td>(23.8, 1.7, -0.8)</td>
<td>(23.0, 1.8, -0.9)</td>
</tr>
<tr>
<td>1 p ahead</td>
<td>23.47</td>
<td>81.06</td>
<td>4.21</td>
<td>13.29</td>
<td>38.29</td>
</tr>
<tr>
<td>2 p ahead</td>
<td>29.85</td>
<td>249.65</td>
<td>148.35</td>
<td>38.88</td>
<td>245.99</td>
</tr>
<tr>
<td>3 p ahead</td>
<td>29.60</td>
<td>286.43</td>
<td>354.32</td>
<td>76.27</td>
<td>403.34</td>
</tr>
<tr>
<td>4 p ahead</td>
<td>23.57</td>
<td>264.61</td>
<td>283.81</td>
<td>116.87</td>
<td>404.23</td>
</tr>
<tr>
<td>5 p ahead</td>
<td>10.76</td>
<td>218.66</td>
<td>96.59</td>
<td>152.12</td>
<td>331.11</td>
</tr>
<tr>
<td>6 p ahead</td>
<td>16.90</td>
<td>102.07</td>
<td>-263.00</td>
<td>174.68</td>
<td>237.97</td>
</tr>
</tbody>
</table>
Table 9: Out-of-sample performance of the heuristic learning model and of the AR(2) model. The averaged (over moving window of 40 periods) in-sample MSE and averaged (over 7 forecasts) 1− and 2− periods ahead squared forecasting errors are shown.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Ro-HF 2</th>
<th>1</th>
<th>7</th>
<th>Ro-LF 9</th>
<th>10</th>
<th>NoRo 11</th>
<th>13</th>
<th>14</th>
<th>LFR 1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best Fit Switching Model</td>
<td></td>
</tr>
<tr>
<td>average MSE$_{40}$</td>
<td>0.04</td>
<td>0.45</td>
<td>3.61</td>
<td>0.92</td>
<td>20.60</td>
<td>53.96</td>
<td>76.38</td>
<td>0.22</td>
<td>962.02</td>
<td>2490.96</td>
<td>4072.88</td>
<td>1859.03</td>
<td>1272.65</td>
</tr>
<tr>
<td>1 p ahead</td>
<td>0.01</td>
<td>0.48</td>
<td>1.00</td>
<td>8.71</td>
<td>68.19</td>
<td>205.98</td>
<td>245.80</td>
<td>0.21</td>
<td>226.32</td>
<td>5337.18</td>
<td>1842.47</td>
<td>872.87</td>
<td>5422.88</td>
</tr>
<tr>
<td>2 p ahead</td>
<td>0.02</td>
<td>1.86</td>
<td>2.06</td>
<td>30.92</td>
<td>167.47</td>
<td>447.70</td>
<td>209.61</td>
<td>0.75</td>
<td>533.68</td>
<td>11852.30</td>
<td>9773.12</td>
<td>6023.03</td>
<td>17784.76</td>
</tr>
<tr>
<td>Benchmark Switching Model</td>
<td></td>
</tr>
<tr>
<td>average MSE$_{40}$</td>
<td>0.06</td>
<td>0.52</td>
<td>5.01</td>
<td>1.89</td>
<td>23.57</td>
<td>60.24</td>
<td>86.33</td>
<td>0.32</td>
<td>1004.55</td>
<td>2766.88</td>
<td>4104.92</td>
<td>2417.27</td>
<td>1646.40</td>
</tr>
<tr>
<td>1 p ahead</td>
<td>0.04</td>
<td>0.48</td>
<td>0.79</td>
<td>7.15</td>
<td>66.68</td>
<td>213.73</td>
<td>302.08</td>
<td>0.35</td>
<td>32.79</td>
<td>6939.89</td>
<td>1773.06</td>
<td>1589.48</td>
<td>2515.84</td>
</tr>
<tr>
<td>2 p ahead</td>
<td>0.08</td>
<td>1.59</td>
<td>1.93</td>
<td>16.55</td>
<td>172.54</td>
<td>486.85</td>
<td>303.45</td>
<td>1.69</td>
<td>79.31</td>
<td>17961.73</td>
<td>10655.95</td>
<td>11460.28</td>
<td>1660.34</td>
</tr>
<tr>
<td>AR(2) Model</td>
<td></td>
</tr>
<tr>
<td>average MSE$_{44}$</td>
<td>0.23</td>
<td>0.69</td>
<td>4.79</td>
<td>1.11</td>
<td>31.84</td>
<td>32.02</td>
<td>115.80</td>
<td>0.40</td>
<td>817.85</td>
<td>4899.39</td>
<td>7814.59</td>
<td>1996.57</td>
<td>1771.46</td>
</tr>
<tr>
<td>1 p ahead</td>
<td>0.37</td>
<td>1.00</td>
<td>0.67</td>
<td>22.05</td>
<td>100.97</td>
<td>592.02</td>
<td>322.33</td>
<td>0.34</td>
<td>148.71</td>
<td>4498.08</td>
<td>1055.11</td>
<td>246.99</td>
<td>6993.26</td>
</tr>
<tr>
<td>2 p ahead</td>
<td>0.51</td>
<td>3.58</td>
<td>2.01</td>
<td>136.57</td>
<td>315.18</td>
<td>2126.39</td>
<td>706.77</td>
<td>0.50</td>
<td>290.64</td>
<td>14417.60</td>
<td>51732.39</td>
<td>1785.64</td>
<td>34802.26</td>
</tr>
</tbody>
</table>