Searching for very-high-energy electromagnetic counterparts to gravitational-wave events with the Cherenkov Telescope Array

Patricelli, B.; CTA Consortium

DOI
10.48550/arXiv.2108.00691
10.22323/1.395.0998

Publication date
2022

Document Version
Final published version

Published in
Proceedings of Science

License
CC BY-NC-ND

Citation for published version (APA):
Searching for very-high-energy electromagnetic counterparts to gravitational-wave events with the Cherenkov Telescope Array

Barbara Patricelli, Alessandro Carosi, Lara Nava, Monica Seglar-Arroyo, Fabian Schüssler, Antonio Stamerra, Andrea Adelfio, Halim Ashkar, Andrea Bulgarelli, Tristano Di Girolamo, Ambra Di Piano, Thomas Gasparetto, Jarred Green, Francesco Longo, Ivan Agudo, Alessio Berti, Elisabetta Bissaldi, Giancarlo Cella, Antonio Circiello, Stefano Covino, Giancarlo Ghirlanda, Brian Humensky, Susumu Inoue, Julien Lefaucheur, Miroslav Filipovic, Massimiliano Razzano, Deivid Ribeiro, Olga Sergijenko, Giulia Stratta and Susanna Vergani on behalf of the CTA Consortium

(a complete list of authors can be found at the end of the proceedings)

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

https://pos.sissa.it/
The detection of electromagnetic (EM) emission following the gravitational wave (GW) event GW170817 opened the era of multi-messenger astronomy with GWs and provided the first direct evidence that at least a fraction of binary neutron star (BNS) mergers are progenitors of short Gamma-Ray Bursts (GRBs). GRBs are also expected to emit very-high energy (VHE, > 100 GeV) photons, as proven by the recent MAGIC and H.E.S.S. observations. One of the challenges for future multi-messenger observations will be the detection of such VHE emission from GRBs in association with GWs. In the next years, the Cherenkov Telescope Array (CTA) will be a key instrument for the EM follow-up of GW events in the VHE range, owing to its unprecedented sensitivity, rapid response, and capability to monitor a large sky area via scan-mode operation. We present the CTA GW follow-up program, with a focus on the searches for short GRBs possibly associated with BNS mergers. We investigate the possible observational strategies and we outline the prospects for the detection of VHE EM counterparts to transient GW events.
1. Introduction

The joint observation of gravitational waves (GWs) from the binary neutron star (BNS) merger GW170817 [1] by Advanced LIGO [2] and Advanced Virgo [3] and of the short Gamma-Ray Burst GRB 170817A by Fermi-GBM [4] and INTEGRAL [5] marked the beginning of multi-messenger astronomy with GWs and provided the first direct evidence that at least a fraction of BNS mergers are progenitors of short GRBs [6]. The intense electromagnetic (EM) follow-up campaign performed after this joint detection also allowed to detect an optical/infrared counterpart to the GW event (the kilonova), hosted in the galaxy NGC 4993; X-ray and radio counterparts have also been observed, and later identified as the GRB afterglow emission (see [7] and references therein). GRBs are also known to emit very-high-energy (VHE, $E > 100$ GeV) photons, as shown by the observations of GRB 190114C and GRB 160821B by MAGIC [8, 9] and GRB 180720B and GRB 190829A by H.E.S.S. [10, 11]. A VHE EM follow-up of GW170817 was performed by H.E.S.S., that started the observations 5.3 hr after the GW event, but no EM counterpart was found [12]. A search for a possible VHE EM counterparts has been performed also with HAWC, whose observations started ~ 8 hr after GW170817, but no significant gamma-ray emission was found [13].

In the coming years, the Cherenkov Telescope Array (CTA, [14]) will play a fundamental role in the follow-up of GWs at VHE, thanks to its unprecedented sensitivity, its rapid slewing capabilities, and its large field-of-view (FOV). CTA will be composed of two arrays, one in the northern hemisphere and one in the southern hemisphere, which together will provide full-sky coverage; it will be an order of magnitude more sensitive and will have a greater energy coverage (from a few tens of GeV to above 100 TeV) with respect to current Imaging Atmospheric Cherenkov Telescopes (IACTs). The two arrays will consist of a combination of large (LST), medium (MST) and small (SST) size telescopes, covering different energy ranges: 20 GeV - 150 GeV, 150 GeV - 5 TeV and 5 TeV - 300 TeV, respectively. In the scheme of the CTA Key Science Project on transients, GW transient events are ranked as the highest priority ones to be studied [15]. As a result, the GW follow-up strategies with CTA, also investigated in previous studies (see, e.g. 16–20), are currently being defined.

In this paper, we present the EM follow-up program proposed for CTA and investigate the capability of CTA to detect VHE EM counterparts to GW transient events, based on detailed simulations of BNS mergers accompanied by short GRBs.

2. The population of astrophysical sources

To investigate the capability of CTA to follow-up GW transient events and detect possible VHE EM counterparts, we simulate a catalog of short GRBs associated with GW signals from BNS mergers. This catalog of simulated BNS mergers and their GW detection was produced in expectation of the fourth observing run of current GW detectors (O4). Available in the public database GWCOSMoS [21], the catalog is based on the work by [16, 22]. It has been built starting from a simulated, realistic ensemble of BNS merging systems evenly distributed in space up to a maximum distance of 500 Mpc, and contains only the events expected to be detected by Advanced LIGO and Advanced Virgo in O4; for these events, the 2-dimensional GW skymaps are also available. We associate VHE emission to each simulated BNS merger, adopting the following
empirical approach. According to the few available detections of VHE radiation from long GRBs [8, 10, 11], the VHE lightcurve looks similar to the soft X-ray lightcurve in terms of luminosity and temporal behaviour. Time-resolved spectral analysis of the brightest VHE event, GRB 190114C, showed that the spectra are consistent with a power law (PL) with photon index $\alpha \sim -2.2$ with no strong evidence for temporal evolution [8]. Assuming that short GRBs also produce VHE radiation similarly to long GRBs (see [9]), we simulate its temporal and spectral properties as follows. Each BNS merger is assumed to successfully launch a relativistic jet, whose isotropic equivalent prompt emission energy E_{iso} follows the E_{iso} distribution of short GRBs derived in [25]. The afterglow X-ray luminosity at 11 h is assigned by adopting the $E_{\text{iso}} - L_{X,11h}$ correlation found for short GRBs in [26]. We then assume $L_{\text{VHE,11h}} \sim L_{X,11h}$, allowing for a dispersion of 0.3 dex. The full VHE lightcurve is built by assuming that it decays as a PL with an index extracted from the distribution of decay indices of X-ray afterglows of short GRBs; considering a sample of 22 short GRBs, we find that this distribution is well described by a Gaussian function with mean value $\langle \alpha_2 \rangle = -1.45$ and $\sigma_{\alpha_2} = 0.48$. The initial Lorentz factor, assigned from a lognormal distribution centered around ~ 200, determines the lightcurve peak time. Before the peak time, the light curve rises as $L_{\text{VHE}} \propto t^2$. The off-axis lightcurve at viewing angle θ_{view} is calculated following [28] and [29], and adopting a structured (Gaussian) jet with opening angle of the core taken from the distribution inferred in [27].

3. CTA observations: exposure time versus latency time

The VHE EM emission is expected to start shortly after the BNS merger, but the starting time of the EM follow-up observations typically doesn’t coincide with the onset of the GRB emission. This is due to several factors: i) the latency needed to send the GW alert to astronomers (during the third observing run of Advanced LIGO and Advanced Virgo the typical latency was of the order of minutes, see https://gracedb.ligo.org/superevents/public/O3/, but in the future the latency could be shorter, see https://emfollow.docs.ligo.org/userguide/early_warning.html); ii) the time needed to point the telescopes in the region of the sky of interest (for instance, the slewing time of the LSTs is 30 s); iii) the uncertainty in the sky location of the GW event, that is typically of the order of tens/hundreds of square degrees (see, e.g., [23]). This last point means that several consecutive pointings are needed to cover the GW localization region, and subsequently to pinpoint the sky location of the GRB (see, e.g., [16]). As a consequence, the exposure time needed to eventually detect the source can also vary, depending on the GRB luminosity and on the shape of its light curve.

As a first step for our investigations, we estimate the exposure time needed to detect the GRBs in our simulated catalog with CTA as a function of the latency t_0 from the onset of the GRB emission and the starting of the observation of the sky region containing the source. Specifically, following the approach used in [16], we estimate the exposure time needed to detect the source (T_{exp}) as the time required to make a 5σ detection, i.e. the time such that the following condition is fulfilled:

$$\int_{t_0}^{t_0+T_{\text{exp}}} F(t) \, dt \geq F_{5\sigma} (T_{\text{exp}}),$$

where $F(t)$ is the GRB flux and $F_{5\sigma} (T_{\text{exp}})$ is the minimum fluence detectable by CTA for the exposure time T_{exp} at a 5σ significance level. This last term is computed for different exposure
times using the ctools\(^1\) function \texttt{cssens}, with the Instrument Response Functions (IRFs) computed by the CTA consortium from detailed Monte Carlo simulations, in the so-called “Production 3” \cite{24}. The IRFs for the two arrays\(^2\) “North_0.5h” and “South_0.5h” have been generated by assuming a 30-minute observation of a point source situated at zenith angle 20°. We assumed an offset between the position of the source and the center of the FOV of 1°.

Figure 1 shows the percentage of GRBs that could be detected by CTA for different exposure times, as a function of \(t_0\), for GRBs seen at a viewing angle \(\theta_{\text{view}} < 10°\) (these are mostly on-axis GRBs) and GRBs seen at \(\theta_{\text{view}} < 45°\). When considering only on-axis GRBs and \(t_0 \sim 10\) min, \(\sim 92\%\) of the sources can be detected with \(T_{\text{exp}}\) of the order of a few hours, by either CTA North of South alone; when considering a shorter delay of \(t_0 \sim 30\) s, \(\sim 94\%\) of the sources can be detected with \(T_{\text{exp}} \leq 30\) minutes. When including off-axis GRBs for which \(\theta_{\text{view}} < 45°\), \(\sim 54\%\) of the sources can be detected within a few hours, considering \(t_0 \sim 10\) min; with the shorter delay \(t_0 \sim 30\) s, \(\sim 52\%\) of these sources can be detected with \(T_{\text{exp}} \leq 30\) minutes.

4. The CTA observational strategy

The larger uncertainties on the source localization in GW events add an extra layer of complexity to the EM follow-up, i.e. to have a detection, the GW skymap region needs to be covered first. With the goal of studying the prospects for CTA and understanding how to maximise the chances of detecting a source, we study the most optimistic scenario: that is, to know \textit{a priori} the spectral and temporal evolution of the GRB, so the derived observation scheduling is optimal for each source (see, e.g., \cite{16}). Then, by scanning the parameter space, we can derive the strategy which presents the best compromise for the input population described in Section 2.

4.1 EM follow-up observations: the scheduler

Several observation scheduling algorithms have been developed to derive optimal pointing patterns which cover the largest total GW uncertainty region possible, an approach based on \cite{30}. These algorithms are part of realistic observation scheduling simulations, which include the consideration of visibility conditions of both the North and South sites, i.e. darkness and moonlight conditions for each GW alert time. Other optimizations are performed regarding the prioritization of observations in low zenith angle conditions in order to achieve lower energy thresholds during observations.

Whereas in \cite{20} the main characteristics of this scheduler were introduced, we went a step further with these realistic simulations by considering the connection between the zenith angle evolution of the source, the computation of the exposure time from Eq. 1, and the probability coverage maximisation in each iteration of the scheduler. This means that we are maximising our chances to detect the source, since the selected region is defined as being the one which encloses the highest GW source sky-position probability in each iteration of the observation strategy. The exposure is selected following Eq. 1 while considering zenith angle evolution as well, which is key for long exposure times.

\(^1\)http://cta.irap.omp.eu/ctools/; in this work we used the version 1.6.3.

\(^2\)In this work we considered the baseline array layouts: \url{https://www.cta-observatory.org/science/cta-performance/}.
searching for VHE EM counterparts to GWs with CTA

Figure 1: Percentage of short GRBs with $\theta_{\text{view}} < 10^\circ$ (left panels) and $\theta_{\text{view}} < 45^\circ$ (right panels) detected with CTA South (upper panels) and North (lower panels) with a given exposure time as a function of the delay time from the onset of the GRB emission and the starting of the observation of the sky region containing the source. A zenith angle of 20° has been assumed for all the GRBs.

5. A test case

The complete algorithm described in Subsection 4.1 is currently being used to investigate the GRB catalog associated with the simulated GW events from the GWCOSMoS database. Here we show one example corresponding to a simulated BNS merger located at a distance of ~ 270 Mpc and whose GW sky localization area\(^3\) is ~ 40 deg\(^2\); the associated GRB is on-axis.

The injection time is 2016-04-15 00:15:30 UTC and has been selected so that the observations can be scheduled by at least one site, in this case CTA North. Four observations are scheduled,\(^2\)

\(^3\)Here we refer to the 90% credible region, i.e., the area enclosing 90% of the total posterior GW probability.
covering a 92% of the uncertainty region in the localization of the source (see Fig. 2). For this simulation, we consider the latency of the arrival of the GW alert to be 210 seconds, and the slewing time of the telescopes to be 30 seconds. The inter-slewing time to reach each position and the start of data acquisition between observations are estimated to be of 20 seconds. Thanks to this observation strategy, the source is covered and detected twice, in the first and third observation.

Figure 2: Observational scheduling of the test case from the GWCosmos catalog, for which four observations are scheduled and total of 92% of the uncertainty region is covered. The blue star marks the sky location of the BNS merger. For each observation, we quote the number, the time, the % uncertainty region covered and the zenith angle. The exposure times are selected such that a 5 σ detection is achieved, which in this case correspond to $T_{\text{exp}} = 10$ s for all four observations. The injection time is 2016-04-15 00:15:30 UTC and CTA-North is selected due to the 90% C.R. region. A total of 210 seconds are considered as latency for the GW alert to be received, 30 seconds for the first slewing of the telescopes, and 20 seconds for the final slewing before starting data acquisition. The simulated observation schedule is overlaid on the lightcurve of the test case GRB. We assumed a conservative FOV of 2.5° (see [20]).

6. Conclusions

We have presented a study on the capability of CTA to detect VHE EM counterparts to GWs and discussed the possible observational strategies to follow-up GW transient events. We have shown that CTA represents a promising instrument to identify the VHE emission from GRBs associated with BNS mergers. Detailed estimates of the joint GW and VHE EM detection rates will be presented in a future work.

Acknowledgments

We gratefully acknowledge financial support from the agencies and organizations listed here: http://www.cta-observatory.org/consortium_acknowledgments.

References

Searcog for VHE counterparts with GTA

Barbara Patricelli
Searching for VHE EM counterparts to GWs with CTA

Barbara Patricelli

Searching for VHE EM counterparts to GWs with CTA

Barbara Patricelli
Searching for VHE EM counterparts to GWS with CTA

Barbara Patricelli

76: INAF - Osservatorio Astronomico di Padova, Vicolo dell'Osservatorio 5, 35122 Padova, Italy
77: INAF - Osservatorio Astronomico di Palermo "G.S. Vaiana", Piazza del Parlamento 1, 90134 Palermo, Italy
78: School of Physics, University of Sydney, Sydney NSW 2006, Australia
79: Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies, LPNHE, 4 Place Jussieu, F-75005 Paris, France
80: Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400 - CEP 13566-590, São Carlos, SP, Brazil
81: Departamento de Física Quântica i Astrofísica, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès, 1, 08028, Barcelona, Spain
82: Department of Physics, Washington University, St. Louis, MO 63130, USA
83: Saha Institute of Nuclear Physics, Bhubanaghat, Kolkata-700 064, India
84: INAF - Osservatorio Astronomico di Capodimonte, Via Salita Moscaresi 16, 80131 Napoli, Italy
85: Université de Paris, CNRS, Astroparticule et Cosmologie, 10, rue Alice Domon et Léonie Duquet, 75013 Paris Cedex 13, France
86: Astronomy Department of Faculty of Physics, Sofia University, 5 James Bourchier Str., 1164 Sofia, Bulgaria
87: Institut de Recherche en Astrophysique et Planétologie, CNRS-INSU, Université Paul Sabatier, 9 avenue Colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
88: School of Physics and Astronomy, University of Minnesota, 116 Church Street S.E. Minneapolis, Minnesota 55455-0112, USA
89: IRFU, CEA, Université Paris-Saclay, Bât 141, 91191 Gif-sur-Yvette, France
90: INAF - Istituto di Radioastronomia, Via Gobetti 101, 40129 Bologna, Italy
91: INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Via U. La Malfa 153, 90146 Palermo, Italy
92: Astronomical Observatory, Department of Physics, University of Warsaw, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
93: Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, United Kingdom
94: INFN Sezione di Catania, Via S. Sofia 64, 95123 Catania, Italy
95: INAF - Osservatorio Astronomico di Brera, Via Brera 28, 20121 Milano, Italy
96: Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
97: Universidade Cruzeiro do Sul, Núcleo de Astrofísica Teórica (NAT/UCS), Rua Galvão Bueno 8687, Bloco B, sala 16, Liberdade 01506-000 - São Paulo, Brazil
98: Universidad de Valparaíso, Blanco 951, Valparaíso, Chile
99: INAF - Istituto di Astrofisica e Planetologia Spaziali (IASP), Via del Fosso del Cavaliere 100, 00133 Roma, Italy
100: Lund Observatory, Lund University, Box 43, SE-22100 Lund, Sweden
101: The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Cracow, Poland
102: Escola de Engenharia de Lorena, Universidade de São Paulo, Área I - Estrada Municipal do Campinho, s/nº, CEP 12602-810, Pte. Nova, Lorena, Brazil
103: INFN Sezione di Trieste e Università degli Studi di Udine, Via delle Scienze 206, 33100 Udine, Italy
104: Palacky University Olomouc, Faculty of Science, RCPTM, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
105: Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany
106: CENBG, Univ. Bordeaux, CNRS-IN2P3, UMR 5797, 19 Chemin du Solarium, CS 10120, F-33175 Gradignan Cedex, France
107: Dublin City University, Glasnevin, Dublin 9, Ireland
108: Dipartimento di Fisica - Università degli Studi di Torino, Via Pietro Giuria 1, 10125 Torino, Italy
109: Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
110: Università degli Studi di Napoli “Federico II” - Dipartimento di Fisica “E. Pancini”, Complesso universitario di Monte Sant’Angelo, Via Cintia - 80126 Napoli, Italy
111: Oskar Klein Centre, Department of Physics, University of Stockholm, AlbaNova, SE-10691, Sweden
112: Yale University, Department of Physics and Astronomy, 260 Whitney Avenue, New Haven, CT 06520-8101, USA
113: CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
114: University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom
115: School of Physics & Astronomy, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
116: Department of Physics and Technology, University of Bergen, Maseplass 1, 5007 Bergen, Norway
117: Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
118: School of Physical Sciences, University of Adelaide, Adelaide SA 5005, Australia
119: INFN Sezione di Roma La Sapienza, P.le Aldo Moro, 2 - 00185 Roma, Italy
120: INFN Sezione di Bari, via Orabona 4, 70126 Bari, Italy
121: University of Rijeka, Department of Physics, Radmile Matejcic 2, 51000 Rijeka, Croatia
122: Institute for Theoretical Physics and Astrophysics, Universität Würzburg, Campus Hubland Nord, Emil-Fischer-Str. 31, 97074 Würzburg, Germany
123: Universidade Federal Do Paraná - Setor Palotina, Departamento de Engenharias e Exatas, Rua Primeiro, 2153, Jardim Dallas, CEP: 85930-000 Palotina, Paraná, Brazil
124: Dept. of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, United Kingdom
125: Univ. Grenoble Alpes, CNRS, IPAG, 414 rue de la Piscine, Domaine Universitaire, 38041 Grenoble Cedex 9, France

13
Searching for VHE EM counterparts to GWs with CTA

Barbara Patricelli
Searching for VHE EM counterparts to GWs with CTA

Barbara Patricelli

178: Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
179: Graduate School of Science and Engineering, Saitama University, 255 Saitama-Okubo, Sakura-ku, Saitama city, Saitama 338-8570, Japan
180: Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
181: Centre for Quantum Technologies, National University Singapore, Block S15, 3 Science Drive 2, Singapore 117543, Singapore
182: Institute of Particle and Nuclear Studies, KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba, 305-0801, Japan
183: Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom
184: Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 3001, CEP: 09.210-580, Santo André - SP, Brazil
185: Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Università di Catania, Via S. Sofia 78, 1-95123 Catania, Italy
186: Department of Physics, Humboldt University Berlin, Newtonstr. 15, 12489 Berlin, Germany
187: Texas Tech University, 2500 Broadway, Lubbock, Texas 79409-1035, USA
188: University of Zielona Góra, ul. Liceulna 9, 65-417 Zielona Góra, Poland
189: Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 72 boul. Tsarigradsko chaussee, 1784 Sofia, Bulgaria
190: University of Białystok, Faculty of Physics, ul. K. Ciolkowskiego 1L, 15-254 Białystok, Poland
191: Faculty of Physics, National and Kapodestrian University of Athens, Panepistimiopolis, 15771 Ilissia, Athens, Greece
192: Universidad de Chile, Av. Libertador Bernardo O’Higgins 1058, Santiago, Chile
193: Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
194: Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibana-dai Nishi, Miyazaki, 889-2192, Japan
195: School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 228-8555, Japan
196: Departamento de Astronomía, Universidad de Concepción, Barrio Universitario S/N, Concepción, Chile
197: Charles University, Institute of Particle & Nuclear Physics, V Holešovických 2, 180 00 Prague 8, Czech Republic
198: Astronomical Observatory of Ivan Franko National University of Lviv, 8 Kryyla i Mephotida Street, Lviv, 79005, Ukraine
199: Kobayashi-Maskawa Institute (KMI) for the Origin of Particles and the Universe, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
200: Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima 770-8506, Japan
201: Space Research Centre, Polish Academy of Sciences, ul. Bartycka 18A, 00-716 Warsaw, Poland
202: Instituto de Física - Universidade de São Paulo, Rua do Matão Traversa R Nr.187 CEP 05508-900 Ciudad Universitaria, São Paulo, Brazil
203: International Institute of Physics at the Federal University of Rio Grande do Norte, Campus Universitário, Lagoa Nova CEP 59078-970 Rio Grande do Norte, Brazil
204: University College Dublin, Belfield, Dublin 4, Ireland
205: Centre for Astro-Particle Physics (CAPP) and Department of Physics, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
206: Departamento de Física, Facultad de Ciencias Básicas, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
207: Núcleo de Formação de Professores - Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 CEP 13565-905 - SP-310 São Carlos - São Paulo, Brazil
208: Physik-Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
209: Department of Physical Sciences, Aoyama Gakuin University, Fuchinobe, Sagamihara, Kanagawa, 252-5258, Japan
210: University of the Free State, Nelson Mandela Avenue, Bloemfontein, 9300, South Africa
211: Faculty of Electronics and Information, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
212: Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb, Croatia
213: Department of Physics, Konan University, Kobe, Hyogo, 658-8501, Japan
214: Kumamoto University, 2-39-1 Karokami, Kumamoto, 860-8555, Japan
215: University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy
216: Aalto University, Otakaari 1, 00076 Aalto, Finland
217: Agenzia Spaziale Italiana (ASI), 00133 Roma, Italy
218: Observatoire de la Cote d’Azur, Boulevard de l’Observatoire CS34229, 06304 Nice Cedex 4, Franc