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Chapter 1

Introduction

This chapter gives a short introduction to Shewhart control charts, an over-
view of new developments and an outline of the thesis.

1.1 Shewhart control charts

Processes are subject to variation. Whether or not a given process is func-
tioning normally can be evaluated with control charts. Such charts show
whether the variation is entirely due to common causes or whether some of
the variation is due to special causes. Variation due to common causes is
inevitable: it is generated by the design and standard operations of the pro-
cess. When the process variation is due to common causes only, the process
is said to be in statistical control. In this case, the process fluctuates within
a predictable bandwidth. Special causes of process variation may consist of
such factors as extraordinary events, unexpected incidents, or a new sup-
plier for incoming material. For optimal process performance, such special
causes should be detected as soon as possible and prevented from occurring
again. Control charts are used to signal the occurrence of a special cause.
The power of the control chart lies partly in its simplicity: it consists of a
graph of a process characteristic plotted through time. The control limits
in the graph provide easy checks on the stability of the process (i.e. no
special causes present). The concept of control charts originates with She-
whart (1931) and has been extensively discussed and extended in numerous
textbooks (see e.g. Duncan (1986), Does et al. (1999) and Montgomery
(2009)).

In the standard situation, 20-30 samples of about five units are taken
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2 Introduction

initially to construct a control chart. When a process characteristic is a
numerical variable, it is standard practice to control both the mean value of
the characteristic and its spread. The control limits of the statistic of interest
are calculated as the average of the sample mean or standard deviation plus
or minus a multiplier times the standard deviation of the statistic. The
spread parameter of the process is controlled first, followed by the location
parameter. An example of such a combined standard deviation and location
chart is given in Figure 1.1.

The general set-up of a Shewhart control chart for the dispersion param-
eter is as follows. Let Yij , i = 1, 2, 3, ... and j = 1, 2, ..., n, denote samples
of size n taken in sequence of the process variable to be monitored. We
assume the Yij ’s to be independent and N(μ, (λσ)2) distributed, where λ is
a constant. When λ = 1, the standard deviation of the process is in control;
otherwise the standard deviation has changed. Let σ̂i be an estimate of λσ
based on the i-th sample Yij , j = 1, 2, ..., n. Usually, λσ is estimated by the
sample standard deviation S. When the in-control σ is known, the process
standard deviation can be monitored by plotting σ̂i on a standard deviation
control chart with respective upper and lower control limits

UCL = Unσ, LCL = Lnσ, (1.1)

where Un and Ln are factors such that for a chosen type I error probability
α we have

P (Lnσ ≤ σ̂i ≤ Unσ) = 1− α.

When σ̂i falls within the control limits, the spread is deemed to be in control.
For the location control chart, the Yij ’s, i = 1, 2, 3, ... and j = 1, 2, .., n,

again denote samples of the process variable to be monitored. In this case,
we assume the Yij ’s to be independent and N(μ+ δσ, σ2) distributed, where
δ is a constant. When δ = 0, the mean of the process is in control; otherwise
the process mean has changed. Let Yi =

1
n

∑n
j=1 Yij be an estimate of μ+δσ

based on the i-th sample Yij , j = 1, 2, ..., n. When the in-control μ and σ
are known, the process mean can be monitored by plotting Ȳi on a location
control chart with respective upper and lower control limits

UCL = μ+ Cnσ/
√
n, LCL = μ− Cnσ/

√
n, (1.2)

where Cn is the factor such that for a chosen type I error probability α we
have

P (LCL ≤ Ȳi ≤ UCL) = 1− α.
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Figure 1.1: Standard deviation and location control chart
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When Ȳi falls within the control limits, the location of the process is deemed
to be in control.

The performance of the spread control chart is evaluated in the same
way as that of the location control chart. We define Ei as the event that
σ̂i (Ȳi) falls beyond the control limits, P (Ei) as the probability that σ̂i (Ȳi)
falls beyond the limits and RL as the run length, i.e. the number of samples
drawn until the first σ̂i (Ȳi) falls beyond the limits. When σ (μ, σ) is known,
the events Ei are independent, and therefore RL is geometrically distributed
with parameter p = P (Ei) = α. It follows that the average run length (ARL)
is given by 1/p and that the standard deviation of the run length (SDRL) is
given by

√
1− p/p.

In practice, the in-control process parameters are usually unknown. There-
fore, they must be estimated from k samples of size n taken when the pro-
cess is assumed to be in control. This stage in the control charting process
is called Phase I (cf. Woodall and Montgomery (1999) and Vining (2009)).
The monitoring stage is denoted by Phase II. The samples used to estimate
the process parameters are denoted by Xij , i = 1, 2, ..., k and j = 1, 2, ..., n.
Define σ̂ and μ̂ as the unbiased estimates of σ and μ respectively, based on
the Xij . The control limits are estimated by

̂UCL = Unσ̂, ̂LCL = Lnσ̂ (1.3)

for the standard deviation control chart and

̂UCL = μ̂+ Cnσ̂/
√
n, ̂LCL = μ̂− Cnσ̂/

√
n (1.4)

for the location control chart.
Note that Un, Ln and Cn in (1.3) and (1.4) are not necessarily the same

as in (1.1) and (1.2) and might be different even when the probability of
signaling is the same. Below, we describe how we evaluate the standard
deviation control chart with estimated parameters. The location chart with
estimated parameters is evaluated in the same way. Let Fi denote the event
that σ̂i is above ̂UCL or below ̂LCL. We define P (Fi|σ̂) as the probability
that sample i generates a signal given σ̂, i.e.

P (Fi|σ̂) = P (σ̂i < ̂LCL or σ̂i > ̂UCL|σ̂). (1.5)

Given σ̂, the distribution of the run length is geometric with parameter
P (Fi|σ̂). Consequently, the conditional ARL is given by

E(RL|σ̂) = 1

P (Fi|σ̂) . (1.6)
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In contrast with the conditional RL distribution, the unconditional RL
distribution takes into account the random variability introduced into the
charting procedure through parameter estimation. It can be obtained by
averaging the conditional RL distribution over all possible values of the pa-
rameter estimates. The unconditional p is

p = E(P (Fi|σ̂)), (1.7)

the unconditional average run length is

ARL = E(
1

P (Fi|σ̂)) (1.8)

and the unconditional standard deviation of the run length is determined by

SDRL =
√

V ar(RL)

=
√

E(V ar(RL|σ̂)) + V ar(E(RL|σ̂))
=

√
2E( 1

p(Fi|σ̂))
2 − (E 1

p(Fi|σ̂))
2 − E 1

p(Fi|σ̂) .
(1.9)

Quesenberry (1993) showed that for the X and X control charts the
unconditional ARL is higher than in the (μ,σ)-known case. Furthermore, a
higher in-control ARL is not necessarily better because the RL distribution
will reflect an increased number of short RL’s as well as an increased number
of long RL’s. He concluded that, if limits are to behave like known limits, the
number of samples (k) in Phase I should be at least 400/(n-1) for X control
charts and 300 for X control charts. Chen (1998) studied the unconditional
RL distribution of the standard deviation control chart under normality. He
showed that if the shift in the standard deviation in Phase II is large, the
impact of parameter estimation is small. In order to achieve a performance
comparable with known limits, he recommended taking at least 30 samples
of size 5 and updating the limits when more samples become available. For
permanent limits, at least 75 samples of size 5 should be used. Thus, the
situation is somewhat better than for the X control chart with both process
mean and standard deviation estimated.

1.2 Contributions and thesis outline

Jensen et al. (2006) conducted a literature survey of the effects of parame-
ter estimation on control chart properties and identified the following issue
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for future research: “The effect of using robust or other alternative estima-
tors has not been studied thoroughly. Most evaluations of performance have
considered standard estimators based on the sample mean and the standard
deviation and have used the same estimators for both Phase I and Phase II.
However, in Phase I applications it seems more appropriate to use an esti-
mator that will be robust to outliers, step changes and other data anomalies.
Examples of robust estimation methods in Phase I control charts include
Rocke (1989), Rocke (1992), Tatum (1997), Vargas (2003) and Davis and
Adams (2005). The effect of using these robust estimators on Phase II per-
formance is not clear, but it is likely to be inferior to the use of standard
estimates because robust estimators are generally not as efficient” (Jensen et
al. 2006, p. 360). This recommendation is the main subject of the thesis. In
particular, we will study alternative estimators in Phase I and we will study
the impact of these estimators on the performance of the Phase II control
chart.

Chen (1998) studied the standard deviation control chart when σ is es-
timated by the pooled sample standard deviation (S̃), the mean sample
standard deviation (S̄) or the mean sample range (R̄) under normality. He
showed that the performance of the charts based on S̃ and S is almost iden-
tical, while the performance of the chart based on R is slightly worse. Rocke
(1989) proposed robust control charts based on the 25% trimmed mean of the
sample ranges, the median of the sample ranges and the mean of the sample
interquartile ranges in contaminated Phase I situations. Moreover, he stud-
ied the use of a two-stage procedure whereby the initial chart is constructed
first and then subgroups that seem to be out of control are excluded. Rocke
(1992) gave the practical details for the construction of these charts. Wu
et al. (2002) considered three alternative statistics for the sample standard
deviation, namely the median of the absolute deviation from the median
(MDM), the average absolute deviation from the median (ADM) and the
median of the average absolute deviation (MAD), and investigated their ef-
fect on X control chart performance. They concluded that, if there are no or
only a few contaminations in the Phase I data, ADM performs best. Other-
wise, MDM is the best estimator. Riaz and Saghir (2007 and 2009) showed
that the statistics for the sample standard deviation based on Gini’s mean
difference and the ADM are robust against non-normality. However, they
only considered the situation where a large number of samples is available
in Phase I and did not consider contaminations in Phase I. Tatum (1997)
clearly distinguished two types of disturbances: diffuse and localized. Dif-
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fuse disturbances are outliers that are spread over multiple samples whereas
localized disturbances affect all observations in a single sample. He proposed
a method, constructed around a variant of the biweight A estimator, that is
resistant to both diffuse and localized disturbances. A result of the inclusion
of the biweight A estimator is, however, that the method is relatively com-
plicated in its use. Apart from several range-based methods, Tatum did not
compare his method with other methods for Phase I estimation. Finally,
Boyles (1997) studied the dynamic linear model estimator for individuals
charts (see also Braun and Park (2008)).

In Chapter 2 we compare an extensive number of Phase I estimators
that have been presented in the literature and a number of variants of these
statistics. We study their effect on the Phase II performance of the stan-
dard deviation control chart. The estimators considered are S̃, S, the 25%
trimmed mean of the sample standard deviations, the mean of the sample
standard deviations after trimming the observations in each sample, R, the
sample interquartile range, Gini’s mean difference, the MDM , the ADM ,
theMAD, and the robust estimator of Tatum (1997). Moreover, we propose
a robust estimation method based on the mean absolute deviation from the
median supplemented with a simple screening method. The performance
of the estimators is evaluated by assessing the mean squared error (MSE)
of the estimators under normality and in the presence of various types of
contaminations. Finally, we assess the Phase II performance of the control
charts by means of a simulation study.

Most of the standard deviation estimators presented in Chapter 2 are
robust against either diffuse disturbances, i.e. outliers spread over the sam-
ples, or localized disturbances, which affect an entire sample. In Chapter
3 we therefore propose an algorithm that is robust against both types of
disturbances. The method is compared with the pooled standard deviation
(because this estimator is most efficient under normality), the robust esti-
mator of Tatum (1997) and several adaptive trimmers. The performance of
the estimators is evaluated by assessing the MSE of the estimators in sev-
eral situations. Furthermore, we derive factors for the Phase II limits of the
standard deviation control chart and assess the performance of the Phase II
control charts by means of a simulation study.

As noted earlier, the dispersion parameter of the process is controlled
first, followed by the location parameter.

So far the literature has proposed several alternative robust location esti-
mators. Rocke (1989) proposed the 25% trimmed mean of the sample means,
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the median of the sample means and the mean of the sample medians. Rocke
(1992) followed with the practical details for the construction of the corre-
sponding charts. Alloway and Raghavachari (1991) constructed a control
chart based on the Hodges-Lehmann estimator. Tukey (1997) and Wang et
al. (2007) developed the trimean estimator, which is defined as the weighted
average of the median and the two other quartiles. Finally, Jones-Farmer et
al. (2009) proposed a rank-based Phase I location control chart. Based on
this control chart, they define the in-control state of a process and identify
an in-control reference dataset to estimate the location parameter.

In Chapter 4 we consider several robust location estimators as well as
several estimation methods based on a Phase I analysis, whereby a control
chart is used to study a historical dataset retrospectively and thus identify
disturbances. In addition, we propose a new type of Phase I analysis. The
methods are evaluated in terms of their MSE and their effect on X Phase II
control chart performance. We consider situations where the Phase I data
are uncontaminated and normally distributed, as well as various types of
contaminated Phase I situations.

The results of Chapter 4 indicate that the X Phase II control chart (with
σ known) based on the new estimation method performs well under normal-
ity and outperforms the other charts when contaminations are present in
Phase I. However, the results indicate that the effect of estimating the pro-
cess location on the performance of the X Phase II control chart is more lim-
ited than the effect of the standard deviation estimator. Chapter 5 therefore
looks at the effect of alternative standard deviation estimators under various
Phase I scenarios.

In Chapter 5 we develop an estimation method to derive the standard
deviation for the X control chart when both μ and σ are unknown. Apart
from the new method, several alternative estimation methods are included in
the comparison. The methods are evaluated in terms of their MSE and their
effect on X Phase II control chart performance. We again consider the situ-
ation where the Phase I data are uncontaminated and normally distributed,
as well as various types of contaminated Phase I situations.

The material presented in Chapters 2-5 has led to four papers in various
stages of publication. The analysis in Chapter 2 has been published in the
Journal of Quality Technology (Schoonhoven et al. (2011b)). A follow-up pa-
per based on Chapter 3 has been accepted for publication in Technometrics,
with minor revisions (Schoonhoven and Does (2011a)). The work in Chap-
ter 4 has been published in the Journal of Quality Technology (Schoonhoven
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et al. (2011a)) and a follow-up article based on the material in Chapter 5
has been submitted to the Journal of Quality Technology (Schoonhoven and
Does (2011b)).




