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Chapter 4

Location Estimators for X Control
Charts

4.1 Introduction

This chapter studies estimation methods for the location parameter. We con-
sider several robust location estimators as well as several estimation methods
based on a Phase I analysis (recall that this is the use of a control chart to
study a historical dataset retrospectively to identify disturbances). In addi-
tion, we propose a new type of Phase I analysis. The estimation methods
are evaluated in terms of their MSE and their effect on the X control charts
used for real-time process monitoring (Phase II). It turns out that the Phase
I control chart based on the trimmed trimean far outperforms the existing
estimation methods. This method has therefore proven to be very suitable
for determining X Phase II control chart limits.

The remainder of the chapter is organized as follows. First, we present
several Phase I sample statistics for the process location and compare their
MSE. Then we describe some existing Phase I control charts and present
a new algorithm for Phase I analysis. Following that, we present the de-
sign schemes for the X Phase II control chart and derive the control limits.
Next, we describe the simulation procedure and present the effect of the
proposed methods on Phase II performance. The final section offers some
recommendations.
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66 Location Estimators for X Control Charts

4.2 Proposed location estimators

To understand the behavior of the estimators it is again useful to distin-
guish diffuse and localized disturbances (cf. Tatum (1997)). As explained in
Section 1.2, diffuse disturbances are outliers that are spread over all of the
samples whereas localized disturbances affect all observations in one sample.
We look at various types of estimators (both robust estimators and several
estimation methods based on the principle of control charting) in Section
4.2.1 and compare their MSE in Section 4.2.2.

4.2.1 Location estimators

Recall that Xij , i = 1, 2, ..., k and j = 1, 2, ..., n, denote the Phase I data.
The Xij ’s are assumed to be independent and largely N(μ, σ2) distributed.
We denote by Xi,(v), v = 1, 2, ..., n, the v-th order statistic in sample i.

The first estimator that we consider is the mean of the sample means

X =
1

k

k∑
i=1

Xi =
1

k

k∑
i=1

(
1

n

n∑
j=1

Xij

)
.

This estimator is included to provide a basis for comparison, as it is the most
efficient estimator for normally distributed data. However, it is well known
that this estimator is not robust against outliers.

We also consider three robust estimators proposed earlier by Rocke (1989).
They are the median of the sample means

M(X) = median(X1, X2, ..., Xk),

the mean of the sample medians

M =
1

k

k∑
i=1

Mi,

with Mi the median of sample i, and the trimmed mean of the sample means

Xα =
1

k − 2�kα�×
[ k−�kα�∑
v=�kα�+1

X(v)

]
,

where α denotes the percentage of samples to be trimmed, �z� denotes the
ceiling function, i.e. the smallest integer not less than z, and X(v) denotes
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the v-th ordered value of the sample means. In our study, we consider the
20% trimmed mean, which trims the six smallest and the six largest sample
means when k = 30. Of course other trimming percentages could have been
used. In fact, we have also used 10% and 25% but the results with 20% are
representative for this estimator.

Furthermore, our analysis includes the Hodges-Lehmann estimator (Hod-
ges and Lehmann (1963)), an estimator based on the so-called Walsh aver-
ages. The h (= n(n+ 1)/2) Walsh averages of sample i are

Wi,k,l = (Xi,k +Xi,l)/2, k = 1, 2, ..., n, l = 1, 2, ..., n, k ≤ l.

The Hodges-Lehmann estimate for sample i, denoted by HLi, is defined as
the median of the Walsh averages. Alloway and Raghavachari (1991) con-
ducted a Monte Carlo simulation to determine whether the mean or the me-
dian of the sample Hodges-Lehmann estimates should be used to determine
the final location estimate. They concluded that the mean of the sample
values should be used

HL =
1

k

k∑
i=1

HLi

and that the resulting estimate is unbiased.

We also include the trimean statistic. The trimean of sample i is the
weighted average of the sample median and the two other quartiles

TMi = (Qi,1 + 2Qi,2 +Qi,3)/4,

where Qi,q is the q-th quartile of sample i, q = 1, 2, 3 (cf. Tukey (1997)
and Wang et al. (2007)). It also equals the average of the median and the

midhinge 1/2

(
Qi,2+

Qi,1+Qi,3

2

)
(cf. Weisberg (1992)). We use the following

definitions for the quartiles: Qi,1 = Xi,(a) and Qi,3 = Xi,(b) with a = �n/4�
and b = n− a+ 1. This means that Qi,1 and Qi,3 are defined as the second
smallest and the second largest observations respectively for 5 ≤ n ≤ 8,
and as the third smallest and the third largest values respectively for 9 ≤
n ≤ 12. Like the median and the midhinge, but unlike the sample mean,
the trimean is a statistically resistant L-estimator (a linear combination of
order statistics), with a breakdown point of 25% (see Wang et al. (2007)).
According to Tukey (1977), using the trimean instead of the median gives
a more useful assessment of location or centering. According to Weisberg



68 Location Estimators for X Control Charts

(1992), the “statistical resistance” benefit of the trimean as a measure of the
center of a distribution is that it combines the median’s emphasis on center
values with the midhinge’s attention to the extremes. The trimean is almost
as resistant to extreme scores as the median and is less subject to sampling
fluctuations than the arithmetic mean in extremely skewed distributions.
Asymptotic distributional results of the trimean can be found in Wang et
al. (2007). The location estimate analyzed below is the mean of the sample
trimeans, i.e.

TM =
1

k

k∑
i=1

TMi.

Finally, we consider a statistic that is expected to be robust against both
diffuse and localized disturbances, namely the trimmed mean of the sample
trimeans, defined by

TMα =
1

k − 2�kα�×
[ k−�kα�∑
v=�kα�+1

TM(v)

]
,

where TM(v) denotes the v-th ordered value of the sample trimeans. We
consider the 20% trimmed trimean, which trims the six smallest and the six
largest sample trimeans when k = 30.

The estimators outlined above are summarized in Table 4.1.

Estimator Notation

Mean of sample means X
Median of sample means M(X)
Mean of sample medians M

20% trimmed mean of sample means X20

Mean of sample Hodges-Lehmann HL
Mean of sample trimeans TM
20% trimmed mean of sample trimeans TM20

Table 4.1: Proposed location estimators
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4.2.2 Efficiency of proposed estimators

As in Chapters 2 and 3, we follow Tatum (1997) and evaluate the estimators
in terms of their MSE. In this case, the MSE is estimated as

MSE =
1

N

N∑
i=1

(
μ̂i − μ

σ

)2

.

We include the uncontaminated case, i.e. the situation where all the Xij ’s
are from the N(0, 1) distribution, as well as five types of disturbances. They
are the four models described in Section 2.2.2 and

5. A model for localized mean disturbances in which observations in
3 out of 30 samples are drawn from the N(a, 1) distribution, with a =
0.5, 1.0, ..., 5.5, 6.0.
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Figure 4.1: MSE of estimators when symmetric diffuse variance disturbances
are present for k = 30 (a) n = 5 (b) n = 9
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Figure 4.2: MSE of estimators when asymmetric diffuse variance distur-
bances are present for k = 30 (a) n = 5 (b) n = 9
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Figure 4.3: MSE of estimators when localized variance disturbances are
present for k = 30 (a) n = 5 (b) n = 9
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Figure 4.4: MSE of estimators when diffuse mean disturbances are present
for k = 30 (a) n = 5 (b) n = 9
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Figure 4.5: MSE of estimators when localized mean disturbances are present
for k = 30 (a) n = 5 (b) n = 9
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The figures show that in the uncontaminated situation the most efficient
estimator is X as was to be expected. The estimators HL, X20 and TM
are slightly less efficient followed by TM20, M and M(X), the reason being
that they use less information.

When diffuse symmetric variance disturbances are present (Figure 4.1),
the best performing estimators are HL and TM . The reason why TM
performs well in this situation is that it filters out the extreme high and low
values in each sample. HL also performs well because it obtains the sample
statistic using the median of the Walsh averages, which is not sensitive to
outliers. M and TM20 are as efficient in the contaminated situation as
in the uncontaminated situation but they are outperformed by HL and
TM because the latter estimators use more information. It is worth noting
that the traditional estimator X shows relatively bad results despite the
symmetric character of the outliers. M(X) andX20 do not perform very well
because these estimators focus on extreme samples whereas in the present
situation the outliers are spread over all of the samples so that the non-
trimmed samples are also infected.

When asymmetric variance disturbances are present (Figure 4.2), the
most efficient estimators are TM , TM20, HL and M , performing partic-
ularly well relative to the other estimators for larger sample sizes. As for
the symmetric diffuse case, the estimators that include a method to trim
observations within a sample perform better than the methods that focus
on sample trimming.

In the case of localized variance disturbances (Figure 4.3), the estimators
based on the principle of trimming sample means rather than within-sample
observations - X20, TM20 andM(X) - have the lowest MSE . The estimators

X, HL, TM and in particular M are less successful because these statistics
only perform well if no more than a few observations in a sample are infected
rather than all observations, as is the case here.

When diffuse mean disturbances are present (Figure 4.4), the results are
comparable to the situation where there are diffuse asymmetric variance
disturbances: M , TM20 and TM perform best, followed by HL. Note that
in this situation X, M(X) and X20 perform badly.

When localized mean disturbances are present (Figure 4.5), the results
are comparable to the situation where there are localized variance distur-
bances: the estimators based on the principle of trimming sample means,
namely X20, M(X) and TM20, perform best.

To summarize, M , TM and TM20 have the lowest MSE when there are
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diffuse disturbances. M and TM lose their efficiency advantage when con-
taminations take the form of localized mean or variance disturbances. In
such situations, M(X), X20 and TM20, which involve trimming the sam-
ple means, perform relatively well. TM20 has the best performance overall
because it is reasonably robust against all types of contaminations.

4.3 Proposed control chart location estimators

In-control process parameters can be obtained not only via robust statistics
but also via Phase I control charting. In the latter case, control charts are
used retrospectively to study a historical dataset and identify samples that
are deemed out of control. The process parameters are then estimated from
the in-control samples. In this section, we consider several Phase I analyses
which apply the principle of control charting in order to generate robust
estimates of process location. We study a Phase I control chart based on the
commonly used estimator X and a Phase I control chart based on the mean
rank proposed by Jones-Farmer et al. (2009). Moreover, we propose two
new types of Phase I analyses. The next section presents the various Phase
I control charts and the following section shows the MSE of the proposed
estimation methods.

4.3.1 Phase I control charts

The standard procedure in practice is to use the estimator X for construct-
ing the X Phase I control chart limits. The respective upper and lower
control limits of the Phase I chart are given by ̂UCL ¯̄X = X + 3σ̂/

√
n and

̂LCL ¯̄X = X − 3σ̂/
√
n, where we estimate σ by the robust standard devia-

tion estimator proposed by Tatum (1997), using the corrected normalizing

constants presented in Chapter 2. The samples whose Xi fall above ̂UCL ¯̄X

or below ̂LCL ¯̄X are eliminated from the Phase I dataset. The final location
estimate is the mean of the sample means of the remaining samples

X
′
=

1

k′
∑
iεK

Xi × I
̂LCL ¯̄X

≤X̄i≤̂UCL ¯̄X

(Xi),

with K the set of samples which are not excluded, k′ the number of non-
excluded samples and I the indicator function. This adaptive trimmed mean
estimator is denoted by ATM ¯̄X .
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We also consider a Phase I analysis that is based on the mean rank
proposed by Jones-Farmer et al. (2009). It is a nonparametric estimation
method which treats the observations from the k mutually exclusive samples
of size n as a single sample of N = n× k observations. Let Rij = 1, 2, ..., N
denote the integer rank of observation Xij in the pooled sample of size N .
Let R̄i = (

∑n
j=1Rij)/n be the mean of the ranks in sample i. If the process

is in control, the ranks should be distributed evenly throughout the samples.
For an in-control process, the mean and variance of R̄i are

E(R̄i) =
N + 1

2

and

V ar(R̄i) =
(N − n)(N + 1)

12n
.

According to the central limit theorem, the random variable

Zi =
R̄i − E(R̄i)√

var(R̄i)

follows approximately a standard normal distribution for large values of n.
A control chart for these Zi’s can be constructed with center line equal to
0, upper control limit 3 and lower control limit -3. The samples with Zi

outside the Phase I control limits are considered to be out of control and
are excluded from the dataset. The location estimate is obtained from the
mean of the remaining sample means

X
∗
=

1

k∗
∑
iεK∗

Xi × I−3≤Zi≤3(Zi),

with K∗ the set of samples which are not excluded and k∗ the number of
non-excluded samples. This estimation method is denoted by ATMMR.

We now present two new Phase I analyses based on the principle of
control charting. For the first method, we build a Phase I control chart using
a robust estimator. The advantage of a robust estimator over a sensitive
estimator like X is that the Phase I control limits are not affected by any
disturbances so that the correct out-of-control observations are filtered out in
Phase I. An estimator shown to be very robust by the MSE study in Section
4.2.2 is TM20. A disadvantage is that the estimator is not very efficient
under normality. To address this, we use TM20 to construct the Phase I
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limits with which we screen Xi for disturbances, but then use the efficient
estimator X to obtain the location estimate from the remaining samples.
The Phase I control limits are given by ̂UCL ¯TM20

= TM20 + 3σ̂/
√
n and

̂LCL ¯TM20
= TM20 − 3σ̂/

√
n, where we estimate σ by Tatum’s estimator.

We then plot the Xi’s on the Phase I control chart. The samples whose Xi

falls outside the limits are regarded as out of control and removed from the
dataset. The remaining samples are used to determine the grand sample
mean

X
#
=

1

k#

∑
iεK#

Xi × I
̂LCL ¯TM20

≤X̄i≤̂UCL ¯TM20

(Xi),

with K# the set of samples which are not excluded and k# the number of
non-excluded samples. The resulting estimator is denoted by ATM ¯TM20

.

The fourth type of Phase I control chart resembles the chart presented
above, but employs a different method to screen for disturbances. The pro-
cedure consists of two steps.

In the first step we construct the control chart with limits as we did just
before. Note that, for the sake of practical applicability, we use the same
factor, namely 3, to derive the X and TM charts. We then plot the TMi’s
of the Phase I samples on the control chart. Charting the TMi’s instead of
the Xi’s ensures that localized disturbances are identified and samples that
contain only one single outlier are retained. A location estimator that is
expected to be robust against localized mean disturbances is the mean of
the sample trimeans of the samples that fall between the control limits

TM ′ =
1

k∧
∑
iεK∧

TMi × I
̂LCL ¯TM20

≤TMi≤̂UCL ¯TM20

(TMi),

with K∧ the set of samples which are not excluded and k∧ the number of
non-excluded samples.

Although the remaining Phase I samples are expected to be free from
localized mean disturbances, they could still contain diffuse disturbances.
To eliminate such disturbances, the second step is to screen the individual
observations using a Phase I individuals control chart with respective upper
and lower control limits given by ̂UCL ¯TM

′ = TM ′ + 3σ̂ and ̂LCL ¯TM
′ =

TM ′ − 3σ̂, where σ is estimated by Tatum’s estimator. The observations
Xij that fall above ̂UCL ¯TM

′ or below ̂LCL ¯TM
′ are considered out of control

and removed from the Phase I dataset. The final estimate is the mean of
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the sample means and is calculated from the observations deemed to be in
control

X
′′
=

1

k′′
∑
iεK′′

1

n′i

∑
jεN ′

i

Xij × I
̂LCL ¯TM′≤Xij≤̂UCL ¯TM′ (Xij),

with K ′′ the set of samples which are not excluded, k′′ the number of non-
excluded samples, N ′

i the set of non-excluded observations in sample i and
n′i the number of non-excluded observations in sample i. Note that we could
also have used the double sum, divided by the sum of the n′i. The advantage
of our procedure is that, when a sample is infected by a localized disturbance,
the disturbance will have a lower impact on the final location estimate when
it is not detected. This estimation method is denoted by ATM ¯TM

′ .
The proposed Phase I analyses are summarized in Table 4.2.

Phase I analysis Notation

X control chart with screening ATM ¯̄X
Mean rank control chart with screening ATMMR

TM20 control chart with screening ATM ¯TM20

TM ′ control chart with screening ATM ¯TM ′

Table 4.2: Proposed Phase I analyses
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4.3.2 Efficiency of proposed Phase I control charts

To determine the efficiency of the proposed Phase I control charts, we con-
sider the five types of contaminations defined in our MSE study of the statis-
tics presented in Section 4.2.2. The MSE results for the Phase I control
charts are given in Figures 4.6-4.10. To facilitate comparison, we have also
included the MSE of the estimators X and TM20.
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Figure 4.6: MSE of estimators when symmetric diffuse variance disturbances
are present for k = 30 (a) n = 5 (b) n = 9
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Figure 4.7: MSE of estimators when asymmetric diffuse variance distur-
bances are present for k = 30 (a) n = 5 (b) n = 9
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Figure 4.8: MSE of estimators when localized variance disturbances are
present for k = 30 (a) n = 5 (b) n = 9
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Figure 4.9: MSE of estimators when diffuse mean disturbances are present
for k = 30 (a) n = 5 (b) n = 9
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The figures show that the standard Phase I analysis method, ATM ¯̄X ,

performs almost as well as X under normality when no contaminations are
present and seems to be robust against localized variance disturbances. How-
ever, the method loses efficiency in the other situations. Since X, the initial
estimate of μ, is highly sensitive to disturbances, the Phase I limits are biased
and fail to identify the correct out-of-control samples.

The mean rank method, denoted by ATMMR, performs well under nor-
mality and when there are localized mean disturbances. The reason is that
this estimator screens for samples with a mean rank significantly higher than
that of the other samples. On the other hand, ATMMR performs badly when
diffuse outliers are present. The mean rank is not influenced by occasional
outliers so that samples containing only one outlier are not filtered out and
hence are included in the calculation of the grand sample mean.

The third method, ATM ¯TM20
, which uses the robust estimator TM20 to

construct a Phase I control chart, seems to be more efficient under normality
than TM20 itself. The gain in efficiency can be explained by the use of an
efficient estimator to obtain the final location estimate, once screening is
complete. Thus, an efficient Phase I analysis does not require the use of an
efficient estimator to construct the Phase I control chart.

The final method, ATM ¯TM
′ , which first screens for localized disturbances

and then for occasional outliers, far outperforms all estimation methods. The
method is particularly powerful in the presence of diffuse disturbances, be-
cause its use of an individuals control chart in Phase I to identify single
outliers increases the probability that such disturbances will be detected.
For example, Figure 4.9 represents the situation where diffuse mean distur-
bances are present. The efficiency of the estimator improves for high b values
because the disturbances are more likely to fall outside the control limits and
are therefore more likely to be detected.

4.4 Derivation of Phase II control limits

We now turn to the effect of the proposed location estimators on the X
control chart performance in Phase II. The formulae for the X control limits
with estimated parameters are given by (1.4). For the Phase II control limits,
we only estimate the in-control mean μ; we treat the in-control standard
deviation σ as known because we want to isolate the effect of estimating the
location parameter. The factor Cn that is used to obtain accurate control
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limits when the process parameters are estimated is derived such that the
probability of a false signal equals the desired probability of a false signal.
Except for the estimator X, Cn can not be obtained easily in analytic form
and is therefore obtained by means of simulation. The factors are chosen
such that p is equal to 0.0027 under normality. 50,000 simulation runs are
used. For k = 30 n = 5 and n = 9, the resulting factors are equal to 3.05
for X, ATM ¯̄X , ATM ¯TM20

and ATM ¯TM
′ ; 3.06 for X20 and TM and 3.07 for

M(X), M , HL, TM20 and ATMM̄R.

4.5 Control chart performance

In this section we evaluate the effect on X Phase II performance of the
proposed location statistics and estimation methods based on Phase I control
charting. We consider the same Phase I situations as those used to assess the
MSE with a, b and the multiplier equal to 4 to simulate the contaminated
cases (see Section 4.2.2).

We use the unconditional run length distribution to assess performance.
Specifically, we look at several characteristics of that distribution, namely
the average run length (ARL) and the standard deviation of the run length
(SDRL). We also report the probability that one sample gives a signal (p).
We compute these characteristics in an in-control and several out-of-control
situations. We consider different shifts of size δσ in the mean, setting δ
equal to 0, 0.5, 1 and 2. The performance characteristics are obtained by
simulation. Section 4.5.1 describes the simulation method and Section 4.5.2
gives simulation results identifying which control charts perform best in the
uncontaminated and various contaminated situations.

4.5.1 Simulation procedure

The performance characteristics p and ARL for estimated control limits are
determined by averaging the conditional characteristics, i.e. the character-
istics for a given set of estimated control limits, over all possible values
of the control limits. The corresponding definitions of p(Fi|μ̂), E(RL|μ̂),
p = E(p(Fi|μ̂)) and ARL = E( 1

p(Fi|μ̂)) are obtained from (1.5)-(1.8), with
all variables conditioned on μ̂ rather than σ̂ and σ̂ = σ. These expectations
are obtained by simulation: numerous datasets are generated and for each
dataset p(Fi|μ̂) and E(RL|μ̂) are computed. By averaging these values we
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obtain the unconditional values. The unconditional standard deviation is
determined by (1.9).

Enough replications of the above procedure were performed to obtain
sufficiently small relative estimated standard errors for p and ARL. The
relative standard error of the estimates is never higher than 0.60%.

4.5.2 Simulation results

First, we consider the situation where the process follows a normal distribu-
tion and the Phase I data are not contaminated. We investigate the impact
of the estimator used to estimate μ in Phase I. Table 4.3 presents p and the
ARL when the process mean equals μ + δσ. When the process is in con-
trol (δ = 0), we want p to be as low as possible and ARL to be as high as
possible. In the out-of-control situation (δ �= 0), we want to achieve the op-
posite. We can see that in the absence of any contamination (Table 4.3), the
efficiency of the estimators is very similar. We can therefore conclude that
using a more robust location estimator does not have a substantial impact
on control chart performance in the uncontaminated situation.

The Phase II control charts based on the estimation methods M(X),

X20, TM20, ATM ¯̄X and ATMMR perform relatively well when localized
disturbances are present, while the charts based on M , HL, TM and TM20

perform relatively well when diffuse disturbances are present (see Tables
4.4-4.8).

The Phase II chart based on ATM ¯TM
′ performs best: this chart is as

efficient as X in the uncontaminated normal situation and its performance
does not change much when contaminations come into play. Moreover, the
chart outperforms the other methods in all situations because it success-
fully filters out both diffuse and localized disturbances. In the presence of
asymmetric disturbances, in particular, the added value of this estimation
method is substantial.

When localized mean disturbances are present, we see a strange phe-
nomenon for the X, M , HL and TM charts: the in-control ARL is lower
than the out-of-control ARL for δ = 0.5. In other words, these charts are
more likely to give a signal in the in-control situation than in the out-of-
control situation for δ = 0.5 and hence, in the presence of disturbances, are
highly ARL-biased (cf. Jensen et al. (2006)).
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p ARL and SDRL
n μ̂ δ = 0 δ = 0.5 δ = 1 δ = 2 δ = 0 δ = 0.5 δ = 1 δ = 2

5 X 0.0027 0.029 0.21 0.92 384 (392) 41.7 (49.4) 5.03 (4.90) 1.09 (0.32)
M(X) 0.0027 0.028 0.21 0.91 390 (406) 46.2 (59.9) 5.31 (5.43) 1.10 (0.33)
M 0.0027 0.028 0.21 0.91 392 (407) 45.9 (59.0) 5.29 (5.37) 1.10 (0.33)

X20 0.0027 0.028 0.21 0.92 391 (401) 43.3 (52.4) 5.14 (5.08) 1.09 (0.32)
HL 0.0027 0.029 0.21 0.92 380 (389) 42.0 (50.4) 5.05 (4.94) 1.09 (0.32)
TM 0.0027 0.028 0.21 0.92 390 (400) 43.4 (53.0) 5.14 (5.09) 1.09 (0.32)
TM20 0.0027 0.028 0.21 0.92 396 (410) 45.3 (56.9) 5.26 (5.29) 1.09 (0.33)
ATM ¯̄X

0.0027 0.029 0.21 0.92 383 (392) 41.8 (49.6) 5.04 (4.92) 1.09 (0.32)
ATMMR 0.0027 0.029 0.21 0.92 383 (391) 41.5 (49.1) 5.04 (4.89) 1.09 (0.32)
ATM ¯TM20

0.0027 0.029 0.21 0.92 382 (391) 41.8 (49.9) 5.04 (4.92) 1.09 (0.32)

ATM ¯TM′ 0.0027 0.029 0.21 0.92 381 (390) 42.0 (50.3) 5.06 (4.96) 1.09 (0.32)

9 X 0.0027 0.064 0.48 1.00 384 (393) 17.9 (20.0) 2.13 (1.62) 1.00 (0.043)
M(X) 0.0027 0.063 0.47 1.00 390 (405) 19.5 (23.5) 2.19 (1.74) 1.00 (0.046)
M 0.0027 0.063 0.47 1.00 390 (405) 19.5 (23.6) 2.19 (1.74) 1.00 (0.046)

X20 0.0027 0.063 0.48 1.00 391 (401) 18.5 (21.1) 2.15 (1.66) 1.00 (0.044)
HL 0.0027 0.064 0.48 1.00 380 (389) 18.0 (20.4) 2.13 (1.63) 1.00 (0.043)
TM 0.0027 0.063 0.48 1.00 390 (400) 18.6 (21.4) 2.16 (1.67) 1.00 (0.045)
TM20 0.0027 0.062 0.47 1.00 395 (409) 19.3 (22.7) 2.18 (1.71) 1.00 (0.046)
ATM ¯̄X

0.0027 0.064 0.48 1.00 382 (391) 17.9 (20.1) 2.13 (1.63) 1.00 (0.043)
ATMMR 0.0027 0.064 0.48 1.00 382 (391) 17.9 (20.1) 2.13 (1.63) 1.00 (0.043)
ATM ¯TM20

0.0027 0.064 0.48 1.00 382 (391) 18.0 (20.2) 2.13 (1.63) 1.00 (0.043)

ATM ¯TM′ 0.0027 0.064 0.48 1.00 380 (390) 18.0 (20.5) 2.13 (1.64) 1.00 (0.043)

Table 4.3: p, ARL and (in parentheses) SDRL of corrected limits under
normality for k = 30
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p ARL and SDRL
n μ̂ δ = 0 δ = 0.5 δ = 1 δ = 2 δ = 0 δ = 0.5 δ = 1 δ = 2

5 X 0.0030 0.030 0.21 0.92 358 (375) 45.0 (60.9) 5.21 (5.44) 1.09 (0.33)
M(X) 0.0029 0.029 0.21 0.91 375 (395) 48.4 (67.7) 5.41 (5.77) 1.10 (0.34)
M 0.0028 0.029 0.21 0.91 387 (403) 46.5 (61.5) 5.34 (5.52) 1.10 (0.33)

X20 0.0028 0.029 0.21 0.92 376 (392) 45.1 (58.8) 5.23 (5.35) 1.09 (0.33)
HL 0.0029 0.029 0.21 0.92 370 (383) 43.2 (54.5) 5.13 (5.15) 1.09 (0.32)
TM 0.0027 0.029 0.21 0.92 384 (396) 44.2 (55.6) 5.19 (5.21) 1.09 (0.32)
TM20 0.0027 0.028 0.21 0.91 390 (405) 46.0 (59.2) 5.29 (5.38) 1.10 (0.33)
ATM ¯̄X

0.0030 0.030 0.21 0.92 362 (378) 44.4 (58.8) 5.18 (5.33) 1.09 (0.32)
ATMMR 0.0030 0.030 0.21 0.92 357 (374) 45.1 (61.6) 5.21 (5.44) 1.09 (0.33)
ATM ¯TM20

0.0029 0.030 0.21 0.92 364 (379) 44.3 (58.3) 5.18 (5.31) 1.09 (0.32)

ATM ¯TM′ 0.0028 0.029 0.21 0.92 375 (386) 42.7 (52.8) 5.09 (5.06) 1.09 (0.32)

9 X 0.0030 0.066 0.48 1.00 358 (375) 19.1 (24.0) 2.17 (1.73) 1.00 (0.045)
M(X) 0.0030 0.065 0.47 1.00 371 (393) 20.6 (27.5) 2.23 (1.83) 1.00 (0.048)
M 0.0028 0.063 0.47 1.00 386 (403) 19.8 (24.5) 2.20 (1.75) 1.00 (0.047)

X20 0.0029 0.064 0.48 1.00 373 (389) 19.4 (24.1) 2.18 (1.74) 1.00 (0.046)
HL 0.0028 0.064 0.48 1.00 373 (385) 18.4 (21.5) 2.14 (1.66) 1.00 (0.044)
TM 0.0027 0.063 0.48 1.00 384 (397) 18.8 (22.1) 2.16 (1.69) 1.00 (0.045)
TM20 0.0027 0.063 0.47 1.00 391 (406) 19.4 (23.3) 2.19 (1.74) 1.00 (0.046)
ATM ¯̄X

0.0030 0.066 0.48 1.00 358 (375) 19.2 (24.0) 2.17 (1.73) 1.00 (0.046)
ATMMR 0.0031 0.066 0.48 1.00 356 (374) 19.1 (24.1) 2.17 (1.73) 1.00 (0.046)
ATM ¯TM20

0.0030 0.066 0.48 1.00 360 (376) 19.0 (23.5) 2.16 (1.71) 1.00 (0.046)

ATM ¯TM′ 0.0028 0.064 0.48 1.00 375 (386) 18.3 (21.3) 2.14 (1.65) 1.00 (0.044)

Table 4.4: p, ARL and (in parentheses) SDRL of corrected limits when
symmetric variance disturbances are present for k = 30
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p ARL and SDRL
n μ̂ δ = 0 δ = 0.5 δ = 1 δ = 2 δ = 0 δ = 0.5 δ = 1 δ = 2

5 X 0.0076 0.012 0.12 0.82 233 (295) 143 (210) 12.8 (24.0) 1.23 (0.60)
M(X) 0.0034 0.019 0.16 0.88 347 (378) 77.0 (110) 7.34 (8.26) 1.14 (0.41)
M 0.0029 0.022 0.18 0.90 374 (395) 61.6 (82.4) 6.32 (6.73) 1.12 (0.37)

X20 0.0034 0.018 0.16 0.88 337 (366) 75.9 (103) 7.22 (7.91) 1.14 (0.41)
HL 0.0033 0.020 0.17 0.89 340 (363) 67.3 (90.4) 6.73 (7.36) 1.13 (0.39)
TM 0.0030 0.021 0.17 0.89 365 (384) 61.2 (69.2) 6.33 (6.61) 1.12 (0.37)
TM20 0.0029 0.022 0.18 0.90 379 (398) 60.4 (78.7) 6.26 (6.56) 1.12 (0.37)
ATM ¯̄X

0.0034 0.020 0.17 0.89 334 (359) 70.0 (95.0) 6.86 (7.51) 1.13 (0.39)
ATMMR 0.0076 0.012 0.12 0.82 232 (294) 143 (209) 13.0 (26.7) 1.24 (0.61)
ATM ¯TM20

0.0032 0.021 0.17 0.89 347 (367) 62.9 (82.9) 6.46 (6.84) 1.12 (0.38)

ATM ¯TM′ 0.0028 0.025 0.20 0.91 373 (385) 48.9 (60.2) 5.53 (5.55) 1.10 (0.34)

9 X 0.011 0.020 0.27 0.99 175 (239) 89.5 (148) 4.58 (6.42) 1.01 (0.12)
M(X) 0.0044 0.035 0.36 0.99 299 (346) 42.1 (63.4) 3.04 (2.89) 1.01 (0.077)
M 0.0031 0.048 0.42 1.00 366 (389) 26.8 (34.1) 2.51 (2.12) 1.00 (0.058)

X20 0.0047 0.033 0.35 0.99 280 (324) 42.7 (61.0) 3.09 (2.89) 1.01 (0.078)
HL 0.0033 0.044 0.41 1.00 336 (358) 27.9 (33.9) 2.57 (2.15) 1.00 (0.059)
TM 0.0031 0.046 0.42 1.00 356 (378) 26.4 (31.9) 2.51 (2.08) 1.00 (0.057)
TM20 0.0030 0.047 0.42 1.00 368 (391) 26.8 (33.2) 2.52 (2.11) 1.00 (0.058)
ATM ¯̄X

0.0046 0.035 0.36 0.99 282 (322) 39.6 (57.4) 2.98 (2.76) 1.01 (0.074)
ATMMR 0.011 0.021 0.27 0.99 175 (240) 89.3 (148) 4.58 (6.41) 1.01 (0.12)
ATM ¯TM20

0.0039 0.039 0.38 1.00 307 (339) 33.3 (44.1) 2.77 (2.44) 1.00 (0.066)

ATM ¯TM′ 0.0028 0.055 0.45 1.00 370 (383) 21.4 (24.9) 2.30 (1.83) 1.00 (0.050)

Table 4.5: p, ARL and (in parentheses) SDRL of corrected limits when
asymmetric variance disturbances are present for k = 30
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p ARL and SDRL
n μ̂ δ = 0 δ = 0.5 δ = 1 δ = 2 δ = 0 δ = 0.5 δ = 1 δ = 2

5 X 0.0034 0.032 0.22 0.91 337 (361) 48.7 (73.0) 5.42 (6.09) 1.10 (0.34)
M(X) 0.0028 0.029 0.21 0.91 382 (400) 47.4 (64.2) 5.40 (5.66) 1.10 (0.33)
M 0.0037 0.033 0.22 0.91 335 (372) 57.2 (98.5) 5.90 (7.45) 1.11 (0.36)

X20 0.0028 0.029 0.21 0.92 382 (395) 44.3 (55.8) 5.21 (5.25) 1.09 (0.32)
HL 0.0035 0.032 0.22 0.91 332 (358) 50.0 (76.8) 5.46 (6.22) 1.10 (0.34)
TM 0.0035 0.032 0.22 0.91 338 (368) 52.3 (83.4) 5.62 (6.63) 1.10 (0.35)
TM20 0.0028 0.029 0.21 0.91 387 (403) 46.6 (61.7) 5.36 (5.55) 1.10 (0.33)
ATM ¯̄X

0.0028 0.029 0.21 0.92 371 (382) 43.1 (53.7) 5.12 (5.13) 1.09 (0.32)
ATMMR 0.0033 0.031 0.22 0.92 342 (364) 47.7 (69.5) 5.34 (5.83) 1.10 (0.33)
ATM ¯TM20

0.0028 0.029 0.21 0.92 371 (384) 42.9 (53.8) 5.12 (5.13) 1.09 (0.32)

ATM ¯TM′ 0.0028 0.029 0.21 0.92 372 (384) 43.0 (53.7) 5.11 (5.10) 1.09 (0.32)

9 X 0.0034 0.068 0.48 1.00 337 (362) 20.4 (28.6) 2.21 (1.84) 1.00 (0.048)
M(X) 0.0028 0.064 0.47 1.00 381 (400) 19.9 (25.0) 2.21 (1.78) 1.00 (0.047)
M 0.0038 0.069 0.47 1.00 332 (370) 24.0 (40.4) 2.32 (2.12) 1.00 (0.054)

X20 0.0028 0.064 0.48 1.00 382 (395) 18.9 (22.3) 2.17 (1.69) 1.00 (0.045)
HL 0.0035 0.069 0.48 1.00 333 (359) 20.8 (30.1) 2.22 (1.88) 1.00 (0.049)
TM 0.0035 0.068 0.48 1.00 338 (368) 21.8 (32.7) 2.25 (1.94) 1.00 (0.051)
TM20 0.0028 0.063 0.47 1.00 385 (402) 19.7 (24.2) 2.20 (1.76) 1.00 (0.047)
ATM ¯̄X

0.0028 0.065 0.48 1.00 372 (384) 18.4 (21.6) 2.15 (1.67) 1.00 (0.044)
ATMMR 0.0033 0.068 0.48 1.00 342 (364) 20.0 (27.2) 2.20 (1.81) 1.00 (0.048)
ATM ¯TM20

0.0028 0.065 0.48 1.00 372 (384) 18.4 (21.7) 2.15 (1.67) 1.00 (0.044)

ATM ¯TM′ 0.0029 0.065 0.48 1.00 368 (381) 18.6 (22.2) 2.15 (1.68) 1.00 (0.045)

Table 4.6: p, ARL and (in parentheses) SDRL of corrected limits when
localized variance disturbances are present for k = 30
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p ARL and SDRL
n μ̂ δ = 0 δ = 0.5 δ = 1 δ = 2 δ = 0 δ = 0.5 δ = 1 δ = 2

5 X 0.0061 0.011 0.11 0.83 224 (271) 137 (182) 10.9 (12.9) 1.22 (0.53)
M(X) 0.0048 0.014 0.13 0.85 289 (340) 115 (168) 9.57 (12.2) 1.19 (0.49)
M 0.0033 0.019 0.16 0.88 351 (380) 74.6 (103) 7.12 (7.89) 1.14 (0.41)

X20 0.0049 0.013 0.13 0.85 271 (316) 115 (158) 9.52 (11.2) 1.19 (0.49)
HL 0.0042 0.015 0.14 0.86 290 (326) 93.0 (126) 8.22 (9.18) 1.16 (0.45)
TM 0.0035 0.017 0.15 0.88 333 (361) 77.8 (103) 7.33 (7.95) 1.14 (0.41)
TM20 0.0032 0.019 0.16 0.88 356 (383) 72.5 (97.0) 7.00 (7.57) 1.13 (0.40)
ATM ¯̄X

0.0055 0.012 0.12 0.84 245 (392) 123 (167) 10.0 (12.0) 1.20 (0.51)
ATMMR 0.0061 0.011 0.11 0.83 224 (272) 136 (182) 10.9 (12.9) 1.21 (0.53)
ATM ¯TM20

0.0052 0.013 0.12 0.85 257 (302) 116 (159) 9.58 (11.2) 1.19 (0.49)

ATM ¯TM′ 0.0031 0.024 0.19 0.90 356 (374) 57.0 (78.1) 6.01 (6.39) 1.11 (0.36)

9 X 0.0089 0.018 0.26 0.99 161 (208) 77.3 (107) 4.17 (4.16) 1.01 (0.11)
M(X) 0.0074 0.023 0.29 0.99 212 (274) 71.7 (111) 3.96 (4.17) 1.01 (0.10)
M 0.0035 0.041 0.39 1.00 339 (371) 32.4 (42.7) 2.72 (2.39) 1.00 (0.065)

X20 0.0075 0.021 0.28 0.99 193 (246) 68.9 (98.5) 3.91 (3.90) 1.01 (0.10)
HL 0.0046 0.033 0.35 0.99 272 (310) 39.6 (51.4) 3.00 (2.69) 1.01 (0.074)
TM 0.0037 0.038 0.38 1.00 317 (349) 33.6 (42.7) 2.79 (2.43) 1.00 (0.067)
TM20 0.0035 0.039 0.38 1.00 336 (368) 32.9 (42.0) 2.75 (2.40) 1.00 (0.066)
ATM ¯̄X

0.0081 0.020 0.28 0.99 177 (227) 71.0 (99.9) 3.98 (3.96) 1.01 (0.10)
ATMMR 0.0089 0.019 0.26 0.99 162 (209) 77.8 (108) 4.16 (4.15) 1.01 (0.11)
ATM ¯TM20

0.0074 0.022 0.29 0.99 193 (242) 64.9 (91.2) 3.80 (3.73) 1.00 (0.098)

ATM ¯TM′ 0.0031 0.051 0.43 1.00 352 (371) 24.5 (30.7) 2.42 (2.00) 1.00 (0.054)

Table 4.7: p, ARL and (in parentheses) SDRL of corrected limits when
diffuse mean disturbances are present for k = 30
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p ARL and SDRL
n μ̂ δ = 0 δ = 0.5 δ = 1 δ = 2 δ = 0 δ = 0.5 δ = 1 δ = 2

5 X 0.017 0.0034 0.046 0.70 72.3 (87.5) 329 (351) 25.0 (28.8) 1.45 (0.83)
M(X) 0.0031 0.021 0.17 0.89 366 (389) 66.0 (89.3) 6.62 (7.15) 1.13 (0.38)
M 0.017 0.0033 0.045 0.69 80.1 (105) 343 (372) 27.3 (33.6) 1.47 (0.86)

X20 0.0030 0.020 0.17 0.89 360 (379) 64.8 (81.8) 6.57 (6.81) 1.13 (0.38)
HL 0.017 0.0034 0.047 0.70 72.8 (89.3) 327 (350) 25.2 (29.2) 1.45 (0.83)
TM 0.017 0.0033 0.046 0.69 75.6 (94.4) 337 (362) 26.0 (30.7) 1.46 (0.84)
TM20 0.0031 0.019 0.16 0.89 360 (385) 70.4 (92.0) 6.89 (7.32) 1.13 (0.40)
ATM ¯̄X

0.0028 0.026 0.20 0.91 373 (385) 47.5 (49.1) 5.44 (5.47) 1.10 (0.33)
ATMMR 0.0028 0.029 0.21 0.92 378 (388) 42.1 (50.9) 5.08 (4.99) 1.09 (0.32)
ATM ¯TM20

0.0028 0.029 0.21 0.92 378 (388) 42.8 (52.1) 5.12 (5.07) 1.09 (0.32)

ATM ¯TM′ 0.0028 0.029 0.21 0.92 375 (386) 43.4 (53.4) 5.14 (5.11) 1.09 (0.32)

9 X 0.035 0.0039 0.11 0.96 34.3 (30.7) 293 (321) 10.1 (10.7) 1.04 (0.22)
M(X) 0.0031 0.048 0.42 1.00 366 (389) 26.8 (34.3) 2.51 (2.12) 1.00 (0.058)
M 0.034 0.0039 0.11 0.95 37.9 (48.5) 308 (346) 10.8 (12.3) 1.05 (0.23)

X20 0.0030 0.046 0.41 1.00 359 (379) 26.3 (31.5) 2.51 (2.07) 1.00 (0.057)
HL 0.035 0.0039 0.11 0.96 34.5 (40.8) 293 (322) 10.1 (10.9) 1.05 (0.22)
TM 0.034 0.0039 0.11 0.96 35.7 (43.1) 301 (333) 10.4 (11.4) 1.05 (0.22)
TM20 0.0031 0.044 0.41 1.00 361 (385) 28.4 (35.4) 2.58 (2.18) 1.00 (0.060)
ATM ¯̄X

0.0029 0.055 0.45 1.00 366 (380) 21.7 (25.9) 2.30 (1.85) 1.00 (0.050)
ATMMR 0.0028 0.064 0.48 1.00 377 (387) 18.2 (20.9) 2.14 (1.64) 1.00 (0.044)
ATM ¯TM20

0.0028 0.063 0.48 1.00 378 (388) 18.4 (21.1) 2.15 (1.66) 1.00 (0.044)

ATM ¯TM′ 0.0028 0.063 0.48 1.00 376 (386) 18.6 (21.5) 2.16 (1.67) 1.00 (0.044)

Table 4.8: p, ARL and (in parentheses) SDRL of corrected limits when
localized mean disturbances are present for k = 30
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4.6 Concluding remarks

In this chapter we have considered several Phase I estimators of the location
parameter for use in establishing X Phase II control chart limits. The col-
lection includes robust estimators proposed in the existing literature as well
as several Phase I analyses, which apply a control chart retrospectively to
study a historical dataset. The estimators have been evaluated under various
circumstances: the uncontaminated situation and various situations contam-
inated with diffuse symmetric and asymmetric variance disturbances, local-
ized variance disturbances, diffuse mean disturbances and localized mean
disturbances.

The standard methods suffer from a number of problems. Estimators
that are based on the principle of trimming individual observations (e.g. M
and TM) perform reasonably well when there are diffuse disturbances but
not when localized disturbances are present. In the latter situation, estima-
tors that are based on the principle of trimming samples (e.g. M(X) and

X20) are efficient. All of these methods are biased when there are asymmet-
ric disturbances, as the trimming principle does not take into account the
asymmetry of the disturbance.

A Phase I analysis, using a control chart to study a historical dataset
retrospectively and trim the data adaptively, does take into account the
distribution of the disturbance and is therefore very suitable for use during
the estimation of μ. However, the standard method based on the X Phase
I control chart has certain limitations. First, the initial estimate, X, is very
sensitive to outliers so that the Phase I limits are biased. As a consequence,
the wrong data samples are often filtered out. Second, the sample mean
is usually plotted on the Phase I control chart, which makes it difficult
to detect outliers in individual observations. Moreover, deleting the entire
sample instead of the single outlier reduces efficiency.

To address the problems encountered in the standard Phase I analysis, we
have proposed a new type of Phase I analysis. The initial estimate of μ for the
Phase I control chart is based on a trimmed version of the trimean, namely
TM20, and a subsequent procedure for both sample screening and outlier
screening (resulting in ATM ¯TM

′). The proposed method is efficient under
normality and far outperforms the existing methods when disturbances are
present. Consequently, ATM ¯TM

′ is a very effective method for estimating μ
in the limits used to construct the X Phase II chart.




