Why we choose, how we choose, what we choose: the influence of decision initiation motives on decision making
McNeill, I.M.

Citation for published version (APA):
McNeill, I. M. (2011). Why we choose, how we choose, what we choose: the influence of decision initiation motives on decision making

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CHAPTER THREE
The Effects of Anticipated Enjoyment and Perceived Necessity on Shopping Behaviour and Unplanned Purchases
Most of us live in a consumer society, and even though shopping may not be our most important activity in life, it is certainly an unavoidable and recurring one. People go shopping on a regular basis, whether it is at the mall, the local grocery store, or online. Most people will be able to recall an instance, perhaps many, at which they came home with bags full of items they did not plan to buy when they headed out to the store. However, people do at times stick to buying only those products they planned to get. Why do people sometimes stick to their plan, but at other times engage in unplanned shopping, thereby arriving home with a full bag and an empty wallet?

Previous research on unplanned purchasing has investigated the role of situational in-store variables (such as displays; e.g., Inman, Winer, & Ferraro, 2009), individual differences in impulse buying tendencies and shopping enjoyment (e.g., Beatty & Ferrell, 1998; Bellenger & Korgaonkar, 1980), and product characteristics (e.g., Inman et al., 2009; Kollat & Willett, 1967). Much less work has considered the influence of the motives people have for entering the store in the first place, even though past research suggests that these motives may play an important role in determining shopping behaviour (e.g., Dawson, Bloch, & Ridgway, 1990). In this paper, we propose that the motives people have to enter a specific store at a specific time (i.e., as situational variables) influence subsequent shopping behavior and, more specific, the number of unplanned purchases made. In doing so we focus on two basic motives to go shopping – utilitarian and hedonic motives – and argue that people’s shopping behavior and unplanned purchasing will be affected by the combination of motives that people have for a specific shopping trip. In other words, we study the interactive effects of these two motives on shopping behavior and unplanned purchasing. To our knowledge, such interactions have not been examined before.

In the remainder of this paper, we first discuss previous work on unplanned purchasing. We then apply the literature on shopping momentum (e.g., Dhar, Huber, & Khan, 2007) and self-regulation (e.g., Baumeister, 2002; Higgins, 1997; Vohs & Faber, 2007) to derive two competing sets of hypotheses on how the combination of hedonic and utilitarian shopping motives influences shopping behavior and unplanned purchasing. These hypotheses are tested among a sample of shoppers at a gardening centre and a do-it-yourself (DIY) store.
Unplanned Purchasing and Shopping Motives

Unplanned purchasing refers to the making of purchases that were not specifically planned before the shopping event and for which the purchase decision is made after entering a store (e.g., Bucklin & Lattin, 1991). It is important to distinguish between unplanned purchasing as a general concept and a subtype of unplanned purchasing called impulse buying (cf., Rook & Gardner, 1993; Rook & Hoch, 1985). The main difference is that an impulse purchase, in addition to not having been planned before entering the store, requires the experience of an urge to buy, is usually spontaneous and not given much thought (i.e., impulsive), and it does not include the purchase of a reminder item that was out-of-stock at home (Beatty & Ferrell, 1998). In this paper, however, we focus on the general category of unplanned purchasing, which includes but is not limited to impulse buying. Depending on the type of product and store, unplanned purchases may amount to more than 50% of in-store purchases (e.g., around 60% in Inman et al., 2009).

In this paper, we examine the effects of the motives people have for going shopping on unplanned purchasing. Although people go shopping for a variety of reasons (e.g., gathering information about products, finding bargains; also see e.g., Dawson et al., 1990; Ganesh, Reynolds, & Luckett, 2007), we concentrate on two basic shopping motives: hedonic versus utilitarian motives (e.g., Arnold & Reynolds, 2003; Babin, Darden, & Griffin, 1994; Bellenger & Korgaonkar, 1980). First, people may go shopping because they anticipate enjoyment from the shopping activity itself (a hedonic or recreational motive). For example, people may enjoy browsing a store or hunting for bargains (e.g., Cox, Cox, & Anderson, 2005). Second, people may go shopping because they perceive shopping to be necessary to obtain certain products or services (a utilitarian or economic motive). Previous research suggests that going shopping for hedonic reasons may lead to unplanned purchases, because people who enjoy shopping more spend more time on in-store browsing, and thus are more likely to encounter products to their liking, resulting in unplanned purchases (e.g., Beatty & Ferrell, 1998; Bellenger & Korgaonkar, 1980; Inman et al., 2009; Jarboe & McDaniel, 1987; Kim & Kim, 2008). As far as we know, no such effects have been observed for utilitarian motives: people with stronger utilitarian motives may be more inclined to buy...
at least something than people with weak or no utilitarian motives (Dawson et al., 1990), but these products are likely to be planned rather than unplanned.

Furthermore, most research that has examined the effects of shopping enjoyment on browsing behavior or unplanned purchases has looked at shopping enjoyment as an individual difference variable (i.e., some people in general enjoy shopping more than others; see e.g., Beatty & Ferrell, 1998; Kim & Kim, 2008). However, (anticipated) shopping enjoyment may also vary among shopping trips (depending e.g. on the type of store) and can also be conceptualized as a situational (rather than dispositional) variable. The same applies to having utilitarian reasons to go shopping: the strength of these utilitarian motives may vary with the need for a certain product, and therefore may differ from one shopping trip to another. In this paper, we focus on these situational variables. We define anticipated enjoyment as the expected pleasure of a specific visit to a store, and we define perceived necessity as the extent to which a failure to buy certain products on a particular shopping trip is perceived to have negative consequences.

Interactive Effect of Anticipated Enjoyment and Perceived Necessity

Two different arguments can be made to predict that anticipated enjoyment and perceived necessity interact to predict shopping behavior and outcomes. The first argument is based on the idea of shopping momentum (e.g., Dhar et al., 2007), whereas the second argument is based on theories of self-regulation (Baumeister, 2002; Higgins, 1997; Vohs & Faber, 2007). The basic idea underlying both models is derived from prior research regarding the hedonic shopping motive and posits that anticipated enjoyment is positively related to unplanned purchasing because more enjoyment can be expected to lead to more time spent in the store. Time in store is subsequently proposed to be positively related to unplanned purchases, because people who spend more time in a store are more likely to encounter products they like or products they perceive to be needing (e.g., in the case of reminder items). This is summarized in the following general hypotheses:

Hypothesis 1a: Anticipated enjoyment is positively associated with time in store.
Hypothesis 1b: Anticipated enjoyment is positively associated with unplanned purchasing.

Hypothesis 1c: The relationship between anticipated enjoyment and unplanned purchasing is mediated by time in store, with higher anticipated enjoyment leading to more time in store, and more time in store leading to more unplanned purchasing.

The two models tested in this paper both propose that perceived necessity acts as a moderator of these relations, only in different ways. Interestingly, the two models have opposing predictions regarding the moderating effect of perceived necessity on the relationships between anticipated enjoyment, shopping behavior (time in store) and outcomes (unplanned purchases).

Shopping Momentum

A first set of hypotheses on the relations among anticipated enjoyment and perceived necessity on the one hand, and time in store, and unplanned purchases on the other, can be derived from the idea of shopping momentum. Dhar and colleagues (2007) have argued and shown that making one purchase increases the likelihood of making further purchases (i.e., shopping momentum). They explain this by the fact that making a purchase changes people’s cognitive mindset from a deliberative to an implemental one (see Gollwitzer, 1990). In a deliberative mindset, people weigh the pros and cons of a specific action, whereas in an implemental mindset people focus on the timing and sequence of goal oriented actions (including buying more items). It seems possible and plausible that high perceived necessity of one or more products increases the chances of making at least one purchase, thereby activating an implemental mindset and creating shopping momentum. In addition, perceived necessity by itself is likely to be strongly related to implemental thoughts (e.g., I really need this kit to finish sealing the shower), so people with high perceived necessity are likely to already have a more implemental mindset when entering the store. Especially for people experiencing high necessity, time spent in the store might thus lead to more unplanned purchases, because this time will be used to buy products rather
than deliberate about them. Because time in store depends on anticipated enjoyment, the following hypotheses are proposed (see top panel of Figure 1):

Hypothesis 2a: Perceived necessity interacts with anticipated enjoyment such that the positive relation between anticipated enjoyment and unplanned purchasing becomes stronger when perceived necessity is high rather than low.

Hypothesis 2b: Perceived necessity also interacts with time in store such that the positive relation between time in store and unplanned purchasing becomes stronger when perceived necessity is high rather than low.

Self-regulation

Alternative hypotheses may be derived from the work on self-regulation. Research on self-regulation has shown that unplanned purchases (and especially impulse buying) may reflect a lapse in self-regulation (e.g., Baumeister, 2002; Vohs & Faber, 2007). Such lapses are more likely under some conditions than others. For example, self-regulation is proposed to be weaker when energy resources are low (e.g., later in the day) and when it is more difficult to monitor one’s own behavior. Several strategies are possible to enhance self-control, and thus prevent unplanned purchasing, including having clear goals for a shopping trip (e.g., use of shopping lists; Baumeister, 2002; for evidence see Inman et al., 2009). Higher levels of perceived necessity can be expected to lead to having clearer shopping goals, so higher perceived necessity is more likely to prevent lapses of self-control. Having clear shopping goals will focus people’s attention on purchases the needed items, rather than spending much time on in-store browsing. Therefore, higher perceived necessity can be expected to weaken the association between anticipated enjoyment on the one hand and time in store and unplanned purchasing on the other.

Similar predictions can be made when looking at different types rather than different levels of self-regulation. An important distinction in types of self-regulation is the distinction between promotion and prevention focus. People with a promotion focus have a mind-set that focuses on attaining outcomes that are wanted and avoiding missing out on them, whereas people with a prevention focus have a mind-set that focuses on avoiding anything negative
from happening and attaining safety measures that help in doing so. As a result, promotion focused individuals are always looking for more positives to be attained (i.e., going from the status quo to something better), whereas prevention focused people are content with the status quo as long as it is safe and pay attention especially to possible losses (Higgins, 1997). It is therefore not surprising that a promotion focus is related to a broader focus during information processing and more explorative behavior, whereas a prevention focus is related to narrower information processing and more concentrated, exploitative behavior (Förster & Higgins, 2005). Relating this to unplanned purchasing, it can be expected that a stronger promotion focus will lead to more time spent on in-store browsing, whereas a stronger prevention focus will lead to a narrower and more concentrated focus on attaining the necessary items. High perceived necessity is likely to evoke a prevention focus, and this makes it less likely for people to stray from their main goal of obtaining the needed items and explore the store. Higher perceived necessity can thus again be expected to weaken the association between anticipated enjoyment and time in store and unplanned purchasing.

In sum, based on theories of self-regulation we can expect people who enter a store with high perceived necessity to have better self-regulation than people with low perceived necessity, and a stronger prevention focus. As a result they will focus on buying what they came for, and will not be tempted to engage in lengthy in-store browsing, regardless of how much enjoyment they anticipated. This leads to the following set of hypotheses (see bottom panel of Figure 1):

Hypothesis 3a: Perceived necessity interacts with anticipated enjoyment such that the positive relation between anticipated enjoyment and time in store becomes weaker when perceived necessity is high rather than low.

Hypothesis 3b: Perceived necessity also moderates the positive relationship between anticipated enjoyment and unplanned purchasing such that this relationship becomes weaker when perceived necessity is high rather than low.
Figure 1. Predicted relations among anticipated enjoyment, perceived necessity, time in store and unplanned purchases based on the shopping momentum hypothesis (top) and the self-regulation hypothesis (bottom).

In sum, the shopping momentum hypothesis entails that perceived necessity strengthens the relation between anticipated enjoyment and unplanned purchasing, and predicts an interaction between time in store and perceived necessity on unplanned purchases; the self-regulation hypothesis predicts that perceived necessity weakens the relation between anticipated enjoyment and unplanned purchases and predicts an interaction between anticipated enjoyment and perceived necessity on time in store.

Study 3.1

Method

In order to test our hypotheses we conducted a field-study at a gardening centre and a DIY (Do It Yourself). The field-study consisted of two measuring moments, one before people entered the store, and one after people exited the store. Both measuring moments consisted of paper and pencil questionnaires.
Sample

During four days of data collection approximately 120 initial contacts were made, of whom 98 agreed to fill out the first form (82%). Forty-five participants at the gardening centre (22 women, 23 men; age $M = 47.84, SD = 14.53$) and 51 participants at the DIY (25 women, 26 men; age $M = 43.75, SD = 13.33$) returned after exiting the store to fill out the second form, meaning an attrition rate of only 2.02%. Two more people were removed from the data set, because they were clear outliers with respect to their time in store (more than four SD’s above the mean of the sample). Our final dataset thus contained 94 participants, of whom 82 participants planned to buy at least one item before entering the store, with 74 buying at least one of the items they had planned to buy, and 32 participants listed at least one item they had purchased that they had not planned to buy before entering the store.

Measures

Anticipated enjoyment. The extent to which people anticipated shopping enjoyment was measured before people entered the store by rating shopping expectations on three scales (“How do you expect shopping in this store will be?” 1 = very negative, 7 = very positive; 1 = very unpleasant, 7 = very pleasant; 1 = very disagreeable, 7 = very enjoyable, $\alpha = .88$).

Perceived necessity. The extent to which people perceived the shopping to be necessary was also measured before entering the store by three items (“To what extent is it necessary to enter this store?”; “To what extent would it be unfavourable to not reach the goal with which you are entering the store right now?”; “To what extent would it be detrimental to not reach the goal with which you are entering the store right now?” all answered on a 7-point Likert scale, 1 = not at all, 7 = very, $\alpha = .79$).

Time in store. Time in the store was measured by writing down the time at which the first questionnaire was handed in and writing down the time at which people exited the store and returned to fill out the second questionnaire.

Items bought. Participants were asked (after exiting the store) to list all the items they bought and to mark the ones they had not planned to buy (i.e., were not on their shopping list) before entering the store. In addition, they were asked to list those items that they had planned to buy but ended up not
buying. Three measures were derived from this. First, we established whether the shopper had bought at least one item (yes/no). Second, we computed the percentage of planned items that in fact were bought, by dividing the number of planned items that were bought by the total number of planned items (those bought and those left un-purchased). Third, we counted the number of unplanned items that were bought as our measure of unplanned purchases.

Procedure

Data was collected through two paper-and-pencil questionnaires at a gardening centre and DIY store in a large city in The Netherlands. Participants filled out the first questionnaire before entering the store, and the second questionnaire upon exiting. Data was collected during four days, including a weekend day, in April. Data gathering occurred at both locations simultaneously at all times, and times of the day were rotated to get a sample that was as representative of the population shopping at these stores as possible.

The interviewers approached each person entering the stores, and asked them to volunteer 10 minutes of their time to fill out two questionnaires; one before they entered the store, and one upon exiting the store. They recorded the number of people refusing. Participants who returned to fill out the second questionnaire after shopping received a glass of lemonade and a snack in return for their participation. The data was collected by five bachelor students in a psychology research class, who received course credit for participation in this project. The primary researcher and a research assistant supervised them at all times.

Upon agreement with a brief overview of the procedure participants filled out the first questionnaire before entering the store. This measured the anticipated enjoyment and perceived necessity, as well as some demographic characteristics. After finishing this questionnaire, participants received a ticket with a participant number and were asked to return it to the researchers upon exiting the store. The current time was noted on the first questionnaire. After exiting the store participants returned to the researchers with their ticket and the researchers noted the exiting time on the first questionnaire. At this point the participants filled out the second questionnaire that measured the number of planned and unplanned purchases.
Results

Variable Overview

Table 2 displays the descriptive statistics and correlations between all study variables. A few results are noteworthy. First, gender did not correlate with any of our other variables. However, we decided to control for gender in our following analyses, because previous research has sometimes found a relation with unplanned purchasing, with women making more unplanned purchases than men (e.g., Inman et al., 2009). Location (i.e., gardening centre vs. DIY) correlated with anticipated enjoyment (r = -.26), time in store (r = -.49) and unplanned purchases (r = -.26) and therefore is an important control variable. Anticipated enjoyment, time in store, and unplanned purchases were all higher in the gardening centre than in the DIY.

As expected, anticipated enjoyment correlated positively with time in store (r = .22), but it did not correlate with unplanned purchases. Perceived necessity correlated positively with buying at least one item (r = .22; i.e., shoppers with higher levels of perceived necessity more often made at least one purchase) and with the percentage of planned items bought (r = .25). These results suggest that our measures of anticipated enjoyment and perceived necessity have some predictive validity. Furthermore, they support the assumption underlying the hypothesis based on shopping momentum: higher perceived necessity indeed increased the likelihood of making a purchase. Finally, and consistent with earlier research, time in store was positively related to unplanned purchases (r = .42).

Hypothesis Testing

Time in store. A regression was run with time in store as the dependent variable. It was regressed on gender (dummy coded: 0 = female, 1 = male), location (dummy coded: 0 = gardening centre, 1 = DIY; both control variables), anticipated enjoyment, perceived necessity, and the interaction between anticipated enjoyment and perceived necessity (see Table 3, first column). The interaction term was computed by z-transforming anticipated enjoyment and perceived necessity, and multiplying these z-scores to compute the interaction term (see Aiken & West, 1991). To facilitate interpretation, we also z-transformed our dependent variables (time in store and unplanned purchases). Reported B-values thus represent the effect of one SD increase of the
<table>
<thead>
<tr>
<th>Variable</th>
<th>M</th>
<th>SD</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Gender (0 = female)</td>
<td>0.52</td>
<td>0.50</td>
<td>-0.03</td>
<td>-0.03</td>
<td>-0.09</td>
<td>-0.00</td>
<td>0.12</td>
<td>-0.06</td>
<td>-0.13</td>
</tr>
<tr>
<td>2. Location (0 = gardening centre)</td>
<td>0.54</td>
<td>0.50</td>
<td>--</td>
<td>-0.26*</td>
<td>0.10</td>
<td>0.07</td>
<td>0.02</td>
<td>-0.49***</td>
<td>-0.26*</td>
</tr>
<tr>
<td>3. Anticipated enjoyment</td>
<td>5.51</td>
<td>1.30</td>
<td>--</td>
<td>-0.04</td>
<td>-0.04</td>
<td>0.11</td>
<td>0.22*</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>4. Perceived necessity</td>
<td>4.59</td>
<td>1.68</td>
<td>--</td>
<td></td>
<td>0.22*</td>
<td>0.25*</td>
<td>-0.15</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>5. Bought at least one item (0 = no)</td>
<td>0.78</td>
<td>0.42</td>
<td>--</td>
<td></td>
<td></td>
<td>0.78***</td>
<td>0.15</td>
<td>0.22*</td>
<td></td>
</tr>
<tr>
<td>6. Percentage of planned items bought</td>
<td>82.99</td>
<td>30.58</td>
<td>--</td>
<td></td>
<td></td>
<td>0.17</td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Time in store</td>
<td>23.41</td>
<td>21.92</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td>0.42***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Number of unplanned purchases</td>
<td>1.13</td>
<td>2.96</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: * p < .05, ** p < .01, *** p < .001
independent variable on the number of SD’s change in the dependent variable. Hypothesis 1a predicted a main effect of anticipated enjoyment on time in store. Based on theories of self-regulation, Hypothesis 3a predicted an interaction: anticipated enjoyment should associate more strongly with time in store when perceived necessity is low.

Table 3. Regression Results.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Time in store</th>
<th>Unplanned purchases</th>
<th>Unplanned purchases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (0 = F; 1 = M)</td>
<td>-.09 (-0.66)</td>
<td>-.22 (-1.13)</td>
<td>-.19 (-1.05)</td>
</tr>
<tr>
<td>Location (0 = GC; 1 = DIY)</td>
<td>-.62 (-4.20)***</td>
<td>-.45 (-2.15)*</td>
<td>-.11 (-0.52)</td>
</tr>
<tr>
<td>Anticipated enjoyment (AE)</td>
<td>.08 (1.15)</td>
<td>-.14 (-1.38)</td>
<td>-.11 (-1.12)</td>
</tr>
<tr>
<td>Perceived necessity (PN)</td>
<td>-.10 (-1.45)</td>
<td>.02 (0.18)</td>
<td>.07 (0.76)</td>
</tr>
<tr>
<td>AE x PN</td>
<td>-.14 (-1.97)*</td>
<td>-.30 (-3.16)**</td>
<td>-.30 (-3.20)**</td>
</tr>
<tr>
<td>Time in store (Time)</td>
<td>-</td>
<td>-</td>
<td>.49 (3.61)***</td>
</tr>
<tr>
<td>Time x PN</td>
<td>-</td>
<td>-</td>
<td>.30 (2.53)*</td>
</tr>
<tr>
<td>(R^2)</td>
<td>.30***</td>
<td>.20**</td>
<td>.34***</td>
</tr>
</tbody>
</table>

Note: Unstandardized B-values are reported, with associated t-values in parentheses. All variables are z-transformed, except for gender and location which are dummy-coded.

* p < .05; ** p < .01; *** p < .001.

The overall regression significantly predicted time, \(F(5, 88) = 7.38, p < .001, R^2 = .30\), and on average people spent more time in the gardening centre than in the DIY, \(B = -.62, SE = .15, t = -4.20, p < .001\). As can be seen in Table 3, Hypothesis 1a (i.e., anticipated enjoyment is positively related to time in store) needs to be rejected, as the main effect of anticipated enjoyment was not significant. The interaction effect was significant, however, thereby providing support for Hypothesis 3a (i.e., perceived necessity interacts with anticipated enjoyment such that the positive relation between anticipated
enjoyment and time in store becomes weaker when perceived necessity is high rather than low; see Figure 2), $B = -.14$, $SE = .07$, $t = -1.97$, $p = .05$. To further explore this interaction, simple slope analyses were performed (Aiken & West, 1991). These showed, consistent with Hypothesis 3a, that the effect of anticipated enjoyment on time in store was positive and significant when perceived necessity was low (1 SD below the mean), $B = .22$, $SE = .10$, $t = 2.12$, $p < .05$. However, when perceived necessity was high (1 SD above the mean), anticipated enjoyment was unrelated to time in store, $B = -.05$, $SE = .10$, $t = -0.56$, ns. These results lend support to the self-regulation hypothesis.

![Figure 2. The interaction between anticipated enjoyment (AE) and perceived necessity (PN) on time in store.](image)

Unplanned purchases. A similar regression was performed with unplanned purchases as dependent variable (see Table 3, second column). Hypothesis 1b predicted a positive main effect of anticipated enjoyment on unplanned purchases. In addition, Hypothesis 2a predicted that the effects of anticipated enjoyment on unplanned purchases would be stronger when perceived necessity is high, while Hypothesis 3b predicted that this relation would be weaker when perceived necessity is high. Overall, the regression significantly predicted unplanned purchases, $F(5, 88) = 4.44$, $p < .005$, $R^2 = .20$.

66
First, more unplanned purchases were made in the gardening centre than in the DIY, \(B = -.45, SE = .21, t = -2.15, p < .05 \). The regression showed no main effects of anticipated enjoyment and perceived necessity, and Hypothesis 1b must be rejected. However, the interaction was significant, \(B = -.30, SE = .10, t = -3.16, p < .005 \). The sign of the interaction was negative, suggesting support for Hypothesis 3b rather than for Hypothesis 2a. To test this, the interaction was explored using simple slope analyses (Aiken & West, 1991). The effect of anticipated enjoyment on unplanned purchases was positive when perceived necessity was low (1 SD below the mean), but this effect failed to reach significance, \(B = .17, SE = .14, t = 1.16, ns \). Unexpectedly, the effect of anticipated enjoyment on unplanned purchases was negative and significant when perceived necessity was high (1 SD above the mean), \(B = -.44, SE = .13, t = -3.29, p = .001 \). Figure 3 plots this interaction effect.

![Figure 3](image)

Figure 3. The interaction between anticipated enjoyment (AE) and perceived necessity (PN) on unplanned purchases.

As can be seen in Figure 3, neither Hypothesis 1b nor Hypothesis 2b nor Hypothesis 3b is supported. Hypothesis 1b predicted a positive effect of anticipated enjoyment on unplanned purchases. Hypothesis 2b predicted this positive effect to be especially strong when perceived necessity is high, but
instead the effect of anticipated enjoyment under strong necessity was
negative (and quite strong). Hypothesis 3b predicted the positive effect of
anticipated enjoyment to be especially strong when perceived necessity is low,
and even though the direction of the effect was in the expected direction, it
failed to reach significance. Moreover, the strong negative effect of anticipated
enjoyment under high levels of perceived necessity was not predicted by either
theory. We return to this issue in the discussion section of the paper.

The role of time in unplanned purchasing. According to Hypothesis 1c,
time in store should mediate the effects of anticipated enjoyment on
unplanned purchasing. Further, Hypothesis 2b predicted that time would
interact with perceived necessity to predict unplanned purchases such that the
positive relation between time in store and unplanned purchasing becomes
stronger when perceived necessity is high rather than low. To test these
hypotheses, time and the time by perceived necessity interaction were added
to the previous regression. Again, time was z-transformed, and the interaction
term was computed by multiplying the z-scores of time and perceived
necessity. Table 3 (third column) shows the results. The regression significantly
predicted unplanned purchases, \(F(7, 86) = 6.40, p < .001, R^2 = .34 \).

To find evidence for statistical mediation, the independent variable
(anticipated enjoyment) should be related to both the mediator (time in store)
and the dependent variable (unplanned purchases), and the mediator should
also be related to the dependent variable (Baron & Kenny, 1986). The previous
results have already shown that anticipated enjoyment is not related to time in
store (mediator) or to unplanned purchases, and thus the mediation Hypothesis
1c must be rejected. However, as can be seen in Table 3, time in store is
significantly and positively related to unplanned purchases (dependent
variable), \(B = .49, SE = .14, t = 3.61, p = .001 \). Further, the effect of store
location disappeared completely after controlling for time in store, \(B = -.11 \)
(versus \(B = -.45 \)), \(SE = .21, t = -.52, ns \), which suggests that the previously
found relation between location and unplanned purchases is mediated by time
in store. Indeed, a Sobel test supported this, Sobel = -2.67, \(SE = .11, p < .01 \).

Results further showed a significant interaction between time and
perceived necessity, \(B = .30, SE = .12, t = 2.53, p < .05 \). The interaction was
again explored using simple slope analyses (Aiken & West, 1991). The effect of
time on unplanned purchases was positive when perceived necessity was high (1 SD above the mean), $B = .80, \ SE = .19, \ t = 4.27, \ p < .001$. Importantly, this effect disappeared when perceived necessity was low (1 SD below the mean), $B = .19, \ SE = .18, \ t = 1.08, \ ns$, thereby supporting Hypothesis 2b. Figure 4 plots this interaction effect, which is consistent with the shopping momentum hypothesis.

![Figure 4](image_url)

Figure 4. The interaction between time in store (Time) and perceived necessity (PN) on unplanned purchases.

In sum, we did not find evidence that anticipated enjoyment is overall positively related to time in store and unplanned purchases (Hypotheses 1a, and 1b), but we did find that time in store is positively related to unplanned purchases. We further found that the relation between anticipated enjoyment and time in store is significant and positive when perceived necessity is low, providing some support for our self-regulation hypothesis. We additionally found that the relation between time in store and unplanned purchases is only significant when perceived necessity is high, providing some support for our shopping momentum hypothesis. We will discuss this pattern of findings next, in the general discussion.

Conclusions and General Discussion
In this paper, we examined the combined effects of two shopping motives – anticipated enjoyment and perceived necessity – on shopping behavior and unplanned purchases. Two contrasting sets of hypotheses were derived from the theory of shopping momentum (Dhar et al., 2007) and theories of self-regulation (e.g., Baumeister, 2002; Higgins, 1997; Vohs & Faber, 2007). Both hypotheses started out with the general assumption that higher levels of anticipated enjoyment would lead to more time in the store and more unplanned purchasing (the latter mediated by time spent in the store). According to the shopping momentum hypotheses higher perceived necessity would increase the chance of an initial purchase and generate a stronger implemental mindset, and the combination of high anticipated enjoyment and high perceived necessity would thus lead to the highest level of unplanned purchasing (see Figure 1, top panel). In short, perceived necessity was expected to increase the strength of the positive relationship between time and unplanned purchasing. Based on self-regulation theory it was conversely predicted that perceived necessity would weaken the positive relationship between anticipated enjoyment on the one hand and time in store and unplanned purchases on the other, because high perceived necessity generates a narrow focus and clear shopping goals that help people to self-regulate and concentrate on reaching their goals (i.e., not engage in browsing behavior resulting in unplanned purchases; see Figure 1, bottom panel).

Results showed partial support for both the shopping momentum and the self-regulation hypotheses. The regression analyses showed no overall relation between anticipated enjoyment and time in store; this relation was only found for those shoppers who were low in perceived shopping necessity. This is in line with the self-regulation hypotheses, and shows that for people who go shopping for utilitarian reasons (i.e., high perceived necessity) concentrate on buying what they came for, and do not engage in lengthy in store browsing. Further, time in store was generally positively associated with unplanned purchases, but this relation was stronger for people high in perceived necessity than for shoppers low in perceived necessity. This is in line with the shopping momentum hypothesis: high perceived necessity drives people to buy something, thereby creating an implemental mindset.
Subsequently, this implemental mindset causes shoppers to engage in unplanned purchases to the degree that they spend time in the shop.

It thus appears that perceived necessity has a dual and somewhat contradictory role in the shopping process. On the one hand, high perceived necessity makes people who enjoy shopping stay in the store for a shorter period of time. On the other hand, high perceived necessity creates a shopping momentum and strengthens the relation between time in store and unplanned purchases. Based on these findings regarding the combined effects of anticipated enjoyment and perceived necessity, one may distinguish among four types of shoppers (although the reader should keep in mind that these types are constructed from two continuous variables, and are ideal types rather than observed groups of shoppers).

A first type scores low on both perceived necessity and anticipated enjoyment. These shoppers do not appear to have strong motives to go shopping and thus stay in the store for a relatively short period of time and do not engage in much unplanned purchases. They resemble what Ganesh et al. (2007) have called ‘apathetic shoppers’. The second type is also low on perceived necessity, but high on anticipated enjoyment. They enjoy the shopping activity, and spend much time in the store. However, this does not lead to many unplanned purchases, as they are not characterized by an implemental mindset. They might be called ‘fun-shoppers’: they come to the store for browsing rather than buying.

The third type is high in perceived necessity, but low in anticipated enjoyment. They do not engage in lengthy in-store browsing, because they do not enjoy the activity. However, this group engages in most unplanned purchases. Because of high perceived necessity, they have an implemental mindset, and there is a very strong relation between time in store and unplanned purchases. One, somewhat speculative, explanation is that they wish to avoid having to return to the store, and therefore buy anything they anticipate needing at a later time. This group might therefore be called ‘preventive shoppers’.

The final type is high on both perceived necessity and anticipated enjoyment. Because this group comes to the store with clear shopping goals, they self-regulate effectively and do not engage in lengthy in-store browsing (despite that they would enjoy doing so). Further, because they enjoy shopping...
in this specific store and, unlike the efficient shoppers described above, do not dread returning to the store when it later appears that they need something else, their implemental mindset leads them to buy what they came for without engaging much in unplanned purchases. This final type may be called ‘efficient shoppers’.

In sum, we believe that both the presence vs. absence of an implemental mindset and strength and type of self-regulation are likely to play a role in unplanned purchasing. Moreover, we suggest that they can interact in their influence. Although our explanation is partly speculative, we do believe it is consistent with the available evidence.

Limitations and Future Directions

Even though both sets of hypotheses received some support, we have no direct evidence pertaining to the issue whether the effects that we observed were actually due to (interactive) effects of different mindsets resulting from the shopping motives. Future, more controlled research, might establish this. We would like to note that the results cannot be explained by a general (uni-dimensional) motivation to go shopping, since this would predict main effects of shopping motives on the number of unplanned purchases instead of the found interactions. Indeed, we found no evidence for main effects of either motive, not on time in store and not on unplanned purchases. It is thus important for future research on combinations of motives to keep possible interactions in mind.

Secondly, the explanation of some of our findings remains speculative and was done ad hoc. In particular the idea that people low in shopping enjoyment but high in perceived necessity engage in much unplanned purchases because they want to avoid having to return to the store needs to be further examined. Also, even though motives were measured prior to entering the store, whereas our dependent measure was measured after exiting, the data remains purely correlational in nature. This makes it impossible to prove causality. Finally, we used a relatively small sample and only two (types of) stores. It is therefore important to replicate these findings in both field settings using a larger sample of participants and stores, and in experimental settings to enable the testing of causal relationships.
Implications

The clear implication of these findings for both theory on consumer behavior and retailing practice is that the motives people have for entering a store matter for their behavior. More specific, the combination of utilitarian and hedonic motives drives people’s shopping and purchase behavior.

On a theoretical level the findings show that different motives can interact in their influence on behavior. Concerning shopping behavior, they lend support for both the idea of shopping momentum and the influence of self-regulation. Moreover, these findings lend support for the power of anticipated enjoyment and perceived necessity in predicting shopping behavior when treated as situational variables rather than stable personality factors. They also suggest directions for theorizing about typologies of shoppers based on the combination of two basic shopping motives (i.e., utilitarian and hedonic motives, rather than utilitarian or hedonic motives; cf. Bellenger & Kargaonkar, 1980).

On a more practical level the findings indicate that the general assumption of anticipated enjoyment leading to more unplanned purchasing is not necessarily true. Rather, the data suggests that anticipated enjoyment can even lead to less unplanned purchasing. In contrast, perceived necessity may lead to many unplanned purchases for people low in anticipated enjoyment, but it may be the case that these people are less likely to return to the store.

Conclusion

In conclusion, this article brings to attention that in ‘real life’ people often may have more than one motive for doing something, and that these different motives can activate different types of mindsets at the same time. More importantly, it is the combination of motives, rather than each motive in isolation, that exerts its effects on shopping behavior. More knowledge on the merits of this simultaneous activation is something we would both like to see and perceive to be necessary, both in field settings and the lab.