Contribution of Capillary Adhesion to Friction at Macroscopic Solid-Solid Interfaces

DOI
10.1103/PhysRevApplied.17.034034

Publication date
2022

Document Version
Final published version

Published in
Physical Review Applied

License
CC BY

Citation for published version (APA):
Contribution of Capillary Adhesion to Friction at Macroscopic Solid–Solid Interfaces

Feng-Chun Hsia,1,2 Chao-Chun Hsu,3 Liang Peng,2 Fiona M. Elam,1 Chen Xiao,1,2 Steve Franklin,1,4 Daniel Bonn,2 and Bart Weber1,2,*

1 Advanced Research Center for Nanolithography (ARCNL), Science Park 106, 1098 XG Amsterdam, Netherlands
2 Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
3 Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
4 Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom

(Received 28 October 2021; revised 13 January 2022; accepted 9 February 2022; published 11 March 2022)

Capillary adhesion is commonly present in ambient conditions. It can be measured in single-asperity contacts through atomic force microscopy using a sharp probe that is pulled off a smooth substrate. However, for macroscopic multiasperity interfaces, the measured adhesive force is always close to zero because of the elastic energy stored into the deformation of surface roughness; this is known as the adhesion paradox. Here, we experimentally show how capillary adhesion influences friction between macroscopic Si-on-Si interfaces, covered with native oxide, in two vapor environments: humid air and isopropyl alcohol (IPA) vapor. To quantify the adhesion contribution to friction, we present a boundary element method that successfully models the interplay between capillary adhesion, surface topography, and friction without adjustable parameters and show that the evolution of the surface topography during sliding dramatically increases capillary adhesion and thus friction. Replacing the water vapor with an organic (IPA) vapor, we find a lower adhesion due to the smaller surface tension.

DOI: 10.1103/PhysRevApplied.17.034034

I. INTRODUCTION

Approximately 71% of the surface of the Earth is covered by water. The polarity of water molecules induces strong cohesive and adhesive forces between water and hydrophilic surfaces, causing water to condense at free and contacting surfaces in humid environments. The presence of water at interfaces between hydrophilic surfaces is ubiquitous and leads to capillary adhesion. This is caused by capillary bridges that typically display negative curvature in the direction normal to the interface, leading to a Laplace pressure difference between the fluid inside the bridge and the surrounding gas, which in turn causes attraction of the surfaces to each other [1,2]. This capillary attraction contributes to the ability of insects to walk vertically [2–4], dictates the mechanics of granular materials [5], and leads to failure in micro- and nanoelectromechanical systems (MEMS and NEMS) [6–12]. Moreover, the car industry, 5G networks, artificial intelligence, and high-performance computing all rely on the production of modern integrated circuits which currently are scarce. Nanoscale tribological phenomena (i.e., friction and wear) form one of the challenges in the high-precision positioning [13–16] that is required for efficient chip production.

The effect of capillary adhesion on the contact mechanics and friction behavior of nanoscale single-asperity interfaces is widely studied [17–19]. Many atomic force microscopy (AFM) experiments display a strong dependence of the capillary adhesion or friction on relative humidity (RH) [17,19,20]. Besides direct adhesion [19,21], displacement of the three-phase contact line of the capillary meniscus also leads to friction [22]. Furthermore, the structure of the absorbed water layer affects the adhesion and friction at single nanoasperity contacts [19,23–27]. However, the relative importance of mechanisms that control single-asperity adhesion and friction is not necessarily identical to that for multiasperity contacts. It is important to note that the typical asperity aspect ratios can vary at multiasperity interfaces, leading to changes in the relative importance of adhesion exerted across finite gaps at the interface [28]. For smooth multiasperity contacts, the adhesion exerted within the area of real contact can become significant compared to the normal stress exerted within these contacts. In this situation, the friction will become proportional to the area of real contact with a proportionality constant that is set by the solid-on-solid
adhesion [29–32]. Furthermore, at multiasperity interfaces the presence or absence of a few tall asperities can completely change the sliding behavior [33]. Surface topography can influence the uniformity of the water condensate thickness [34] and the number of capillary bridges that can form across the interface [35,36], thereby determining the capillary adhesion exerted at the interface.

Direct measurement of adhesion between macroscopic objects is often problematic because of the adhesion paradox [37]; despite the strong adhesive interactions that many solids undergo at the nanoscale, they rarely stick at the macroscopic scale [28]. The adhesion typically is short-ranged [38], and upon unloading the interface this adhesion is cancelled by the elastic energy stored in the larger-scale elastic deformation of roughness. In addition, the topography of rubbing surfaces is constantly changed by wear [33,39]. The evolution of the surface topography and the generation of wear debris then lead to temporal variations in the capillary adhesion. The contribution of capillary adhesion to friction in macroscopic contacts therefore remains difficult to quantify, which is one of the fundamental problems for understanding the friction between macroscopic bodies. Furthermore, while there is extensive work on single-asperity contacts describing capillary adhesion and friction [17–19,21,22,26,40], few studies [2,31,41] have aimed to bridge from nanoscale capillary adhesion measurements to the macroscale multiasperity manifestation of capillary adhesion and its influence on friction.

In this work, we show how capillary adhesion, and the contribution of capillary adhesion to friction, can be quantified through friction measurements in vapor- and liquid-immersed environments. Our experiments show that capillary adhesion significantly contributes to friction at multiasperity Si-on-Si interfaces that are covered with a native oxide. The experimental results can be reproduced by a simple capillary adhesion model, without adjustable parameters, that is based on boundary element contact calculations. When compared, the experiments and model calculations demonstrate that the capillary adhesion is very sensitive to wear; removal of the highest asperities at the interface strongly reduces the average separation, thereby increasing the adhesion by bringing the two surfaces closer together.

In addition to water measurements, we perform the same experiments when the surfaces are brought into contact with an isopropyl alcohol (IPA) vapor. In agreement with our model, the adhesion is weaker due to the lower surface tension and higher volatility. For both liquids, if the contact is fully immersed, we find that the friction is significantly lower, demonstrating directly that the capillary bridges typically contribute about 30% to the total friction in a partially saturated environment. We also find that the fully immersed IPA contact has a significantly lower friction than the fully immersed water contact and attribute this difference to IPA boundary lubrication. While our work focuses on Si-on-Si interfaces, the observed behavior is representative of interfaces between stiff and hydrophilic materials [31].

II. RESULTS AND DISCUSSION

A. Adhesion at single-asperity contacts

To relate adhesion at single-asperity interfaces to adhesion at multiasperity interfaces, we perform pull-off experiments at single and multiasperity Si-on-Si hydrophilic interfaces. The single-asperity AFM-based experiments (see Appendix A) were performed in both water-rich and IPA-rich vapor environments. Control over the environment was obtained by introducing a 0.5 l/min air flow into a semiopen fluid AFM cell (Bruker). The air flow consisted of dry nitrogen that was passed through a gas wash bottle filled with either water or IPA. This resulted in an RH of 58 ± 0.7% inside the AFM cell when the air flow was bubbled through water. The partial pressure of IPA in the AFM cell resulting from bubbling the dry nitrogen through IPA could not be measured directly and is treated as unknown.

In both water and IPA environments, a Si AFM tip was moved toward the surface of a Si wafer and retracted afterwards at a speed of 5 nm/s, sufficiently slow to warrant (near) equilibrium conditions [27,42,43]. The externally applied normal force (F) on the tip was measured through the deflection of the AFM cantilever as a function of the normal displacement (D) resulting in a typical F-D curve [Figs. 1(a) and 1(b)]. Such F-D curves clearly indicate that the tip snaps into contact roughly 4 nm [W_{tip} in Fig. 1(a)] before a repulsive force is detected on the AFM cantilever [27]. In the repulsive part of the F-D curve, the measured normal force increases linearly with displacement at a rate that is set by the stiffness of the AFM cantilever, 42 N/m in our experiments. Upon retraction of the probe, we measured an F-D curve that approximately follows the approach curve, except for the important distinction that the probe can be retracted by up to 10 nm beyond the snap-in point before the probe is completely pulled off the surface and no normal force is measured. This rather long pull-off distance is often interpreted [27] in the context of capillary adhesion; the reduced pressure inside a negatively curved capillary bridge between tip and substrate causes an attractive force [inset of Fig. 1(b)] and the attractive force is gradually reduced as the tip is separated from the substrate and the capillary bridge is stretched [36].

To test this interpretation, we also performed F-D measurements with the tip-substrate interface fully immersed in liquid water or IPA [inset of Figs. 1(a) and 1(b)]. Indeed, the adhesive strength and range are strongly reduced in liquid-immersed experiments; since there is no gas phase available, capillary bridges cannot form. We define the adhesive force as the difference between the minimum
FIG. 1. Single nanoasperity and macroscopic multiasperity pull-off force measurements and calculations. (a) A typical force-displacement (F-D) curve measured at a relative humidity (RH) of 58%, showing the tip-sample normal force measured as the tip approaches the sample and as the tip is retracted. (b) An F-D curve measured in an isopropyl alcohol (IPA) rich vapor environment. The inset (a) and lower inset (b) display an F-D curve measured while the tip-sample interface is immersed in liquid water and IPA, respectively. The upper inset (b) illustrates a capillary bridge and the capillary and tension forces exerted at such a bridge. (c) External force (F_{ex}) as a function of time (T) measured during the retraction of a Si ball from a Si wafer surface; the inset shows a close-up. (d) The calculation of capillary adhesion (F_c) exerted at the Si ball-on-Si wafer interface as a function of the average interfacial gap relative to the average interfacial gap corresponding to an elastic force of 40 mN. The inset shows that as the elastic force ($F_{elastic}$) decreases to zero the capillary adhesive and external force, both of the order of μN, cancel each other. The experiments and calculations in (c) and (d) were conducted at an RH of 53 ± 1.4% and 50%, respectively.

force and the force measured when there is no interaction between the tip and the substrate [Fig. 1(a)]. To further understand the nature of the adhesion, we calculate the adhesive force using the model from Ref. [20] which incorporates three contributions: (i) the capillary force caused by the Laplace pressure acting over the area on the tip that is wetted by the capillary bridge [$F_c = \gamma (1/r_1 + 1/r_2) \pi R^2$]; (ii) the tension force [$F_t = 2\pi R \gamma \cos(\alpha) \sin(\beta)$] caused by the surface tension acting on the three-phase contact line of the capillary bridge; (iii) the van der Waals force [$F_v = \left[H_{air}(1 - A_{Rel}) + H_{water}A_{Rel}R_{tip}/(6d_{tip}^2)\right]$] that causes attraction of the solids across an air or liquid medium (see I in the Supplemental Material for details [44]). The adhesion model approximates the tip–sample interface as a sphere-on-flat interface and can be evaluated if the tip radius and the amount of water present at the interface are known. The former we obtain through tip deconvolution ($R_{tip} = 28 \pm 2$ nm, see II in the Supplemental Material [44]), and the latter we infer from the literature [45,46]; both the critical distance for capillary condensation [$d_c = 3$ nm; see Fig. 1(b) inset] and the thickness of condensed water on a free Si substrate [$h = 1.2$ nm; see Fig. 1(b) inset] were measured at the relative humidity corresponding to our experiment ($58 \pm 0.7\%$).
We find good agreement between the adhesion model prediction (54 ± 4 nN), without adjustable parameters, and the adhesion experiment conducted in the 58% RH environment (52 ± 15 nN). The capillary force (F_c) is responsible for approximately 80% of the total adhesive force according to the model: indeed, capillary adhesion is the dominant adhesion mechanism. Furthermore, the observed snap-in distance (W_{tip}) in the experiments [see Fig. 1(a)] was 3.9 ± 0.2 nm, close to that observed in tuning-fork-based experiments: $W_{tip} = h + d_c = 4.2 ± 0.3$ nm at 58% RH (Table SI in the Supplemental Material [44]) [45,46]. The error quantifies the standard deviation of the distribution of pull-off forces that were observed (Fig. S2 in the Supplemental Material [44]). This variation in pull-off forces is thought to result from a thermally activated pull-off process [47]. In the measurements conducted with the same AFM tip in an IPA-rich environment, we observe a snap-in distance of $W_{tip} = 7 ± 0.7$ nm and an adhesive force of 34 ± 14 nN. Interestingly, in comparison to the humid measurements, the adhesive force is smaller while the area of the tip that is wetted by the capillary bridge must be larger, due to the increased snap-in distance [48,49]. The capillary force (F_c), the tension force (F_t) and the van der Waals force (F_v) are likely all reduced when IPA is introduced into the environment while water is removed. Capillary force and tension force are proportional to the liquid surface tension, which is lower for IPA than for water. The van der Waals force scales with the difference in refractive index between silicon and the medium in between the tip and the substrate. Since IPA has a higher refractive index than water, this force should also decrease upon the introduction of IPA [50]. However, since the capillary force is dominant, we focus our discussion on this force.

The capillary force is the product of the tip area that is wetted by a capillary bridge and the Laplace pressure difference, $P_{Laplace} = \gamma / R$, with γ the liquid surface tension and R the radius of curvature of the capillary bridge. As water at the interface is replaced with IPA, the wetted area of the tip and the curvature of the capillary bridge change slightly [45,49], while the surface tension drops by a factor of 3 ($\gamma_{IPA} = 23.8$ mN/m [51] and $\gamma_{water} = 72.8$ mN/m [52]). We argue that this strong reduction in surface tension thus drives the drop in adhesive force observed when the humid environment is dried and IPA is introduced at the interface. The AFM experiments show that capillary adhesion is the dominant adhesion mechanism at single-asperity Si-on-Si interfaces. Reduction of the humidity and introduction of IPA into the environment of the contact strongly reduces the capillary adhesion while increasing its range.

B. Adhesion at multiasperity contacts

Virtually all frictional interfaces are multiasperity; the key question is how the capillary adhesion that dominates single-asperity Si-on-Si interfaces manifests itself at larger multiasperity Si-on-Si interfaces. To answer this question, we performed ball-on-flat pull-off experiments. In the pull-off experiments a 3-mm-diameter Si ball was brought into contact with a Si wafer in a 53% RH air environment, after which a load of 40 mN was applied and the ball was pulled back up [see Fig. 1(c) and Appendix B]. Perhaps surprisingly, within the millinewton accuracy of the experiment, no pull-off force was detected [inset of Fig. 1(c)]. It should be noted that the high stiffness of the force sensor, combined with the pull-off speed, limits the sensitivity to adhesion of the macroscale adhesion experiment (see Appendix B for details). The force balance at the interface requires that the capillary adhesion (F_c) and the externally applied load (F_{ex}) cancel the elastic force ($F_{elastic}$) generated by the compressed asperities at the interface: $F_{elastic} = F_{ex} + F_c$. During pull-off, the external load vanishes. The capillary bridges pull the two surfaces together, but in doing so elastically deform the asperities, thereby generating an elastic counterforce. Due to the high stiffness of the Si asperities, the elastic energy dominates over the adhesion energy. This is the reason why no pull-off force is measured, and the origin of the adhesion paradox.

To understand what happens quantitatively, we carried out boundary element method (BEM) contact calculations (see Appendix D) to estimate the elastic and capillary force at multiasperity interfaces as a function of interfacial gap [Fig. 1(d)]. The BEM contact calculation takes the surface topography of the pristine Si ball, measured by AFM [Fig. 2(a)], as input together with the mechanical properties of Si as listed in Table SII in the Supplemental Material [44] (see Appendix C). The BEM solver subsequently calculates how the topography is elastically deformed by a given load ($F_{elastic}$) in the absence of adhesion. The resulting interfacial gap profile can be used to estimate the capillary force associated with that interface geometry. To roughly estimate the capillary force, we assume (as in the single-asperity AFM experiments) that water can condense at regions of the interface within which the interfacial gap is finite but smaller than $W = 2h + d_c$ [see Fig. 1(b) inset; we assume a water layer of equilibrium thickness on both surfaces]. Across this area within which capillary condensation can take place, a Laplace pressure difference caused by the negative curvature of the water–air interface in the direction normal to the contact leads to capillary attraction. To estimate the capillary force (F_c), we multiply the Laplace pressure difference by the area of the interface at which the gap is larger than zero and smaller than W. The equilibrium values for both W and the Laplace pressure difference can be obtained from the literature [45,49] as a function of RH. Furthermore, our single-asperity experiments (Fig. 1) with the same materials confirm the range and strength of the capillary adhesion
found in the literature. Subsequently the external force at which the calculated interface is balanced is given by
\[F_{\text{ex}} = F_{\text{elastic}} + F_c. \]

The result of the calculations, conducted for various elastic forces \((F_{\text{elastic}}) \), is summarized in Fig. 1(d). The calculations show that the pull-off force \((F_{\text{ex}}) \) is negligible (of the order of micronections) compared to the millineutron accuracy of the experiment; multisasperity adhesion may be significant at a loaded interface but disappears due to the elasticity of the asperities when the external load is removed. Rough estimates of the elastic and adhesion energy can be obtained by integrating the calculated force distance curve upon loading (assuming \(10^5 \text{ N/m contact stiffness} \) \[31 \]): 20 mN \(\times \) 400 nm \(= \) 8 \(\times \) 10\(^{-9} \) J, and by multiplying the water surface tension with the area of apparent contact \[4 \times (10 \times 10^{-6})^2 \] \(= \) 2.3 \(\times \) 10\(^{-11} \) J. Indeed, this estimate confirms that for this stiff system elastic energy dominates over surface energy. This destructive interplay between adhesion and elasticity is known as the adhesion paradox; despite strong adhesive interactions at the molecular scale, larger interfaces usually do not display stickiness because the elasticity of compressed asperities cancels out the adhesion when the external load is removed \[41 \].

C. Capillary adhesion and friction

The adhesion paradox thus prevents direct measurement of Si ball-on-Si wafer multisasperity adhesion through pull-off experiments. This makes it challenging to understand how the adhesion contributes to the friction at such interfaces. To elucidate the contribution to friction of capillary adhesion, we perform Si ball-on-Si wafer sliding experiments \[3(a) \] in ambient \((41 \pm 1\% \text{ RH}) \) and IPA vapor as well as liquid environments (see Appendix E). The frictional force \((F_f) \) was measured during sliding and converted into a coefficient of friction (COF), which is the ratio of frictional force to normal force \((F_n) \): COF \(= F_f / F_n \). We confirmed that the COF was well defined and independent of the normal force (Fig. S3 in the Supplemental Material \[44 \]).

The friction experiments show that the COF measured in ambient and IPA vapor environments is significantly higher than the COF measured in water and IPA immersed environments \[3(b) \]. At low sliding speeds \((V = 1 \text{ \mu m/s}) \) the high Si ball-on-Si wafer contact pressure \((P_{\text{Hertz}} \approx 250 \text{ MPa}) \) in combination with the low viscosity of the fluids (eta water \(= 1.0 \times 10^{-3} \) Pa s and eta IPA \(= 2.4 \times 10^{-3} \) Pa s at 20 °C) clearly excludes hydrodynamic lubrication, and places the sliding system in the boundary lubrication regime (Hersey number \(10^{-13} \)). We therefore argue that since both water and IPA form thick boundary layers on Si when presented in the gas phase \[45,49 \], the boundary lubrication of the system should not be affected by the change from water vapor to liquid water \[19 \] or from IPA vapor to liquid IPA. However, there is an important difference between the vapor experiments and the liquid-immersed experiments: when the Si-on-Si interface is fully immersed in water or IPA, capillary adhesion is absent since capillary menisci can only form when a gas phase is present. The reduction in friction upon immersion can therefore be translated into a capillary adhesive force: \(F_c = (\text{COF}_{\text{vapor}}/\text{COF}_{\text{immersed}} - 1) \times F_{\text{ex}} \), where COF_{vapor} and COF_{immersed} are the COF measured in vapor and liquid-immersed environments, respectively. Implicit in this calculation is the assumption that the frictional force is proportional to the normal force (Fig. S3 in the Supplemental Material \[44 \]) experienced by the asperities \[30 \], an assumption that was recently confirmed in a similar system.
FIG. 3. Macroscopic siding experiment. (a) The Si ball-on-Si wafer friction measurements are performed using a customized rheometer that measures the normal force and torque exerted on a geometry to which the Si ball is clamped while it is slid at a constant externally applied normal force \(F_{\text{ex}} \) and angular velocity \(\omega \). A plastic tube is mounted right next to the 3 mm ball to perform IPA vapor-phase lubrication friction experiments. The tube directs a gas flow of dry \(N_2 \) that is passed through a gas wash bottle filled with IPA towards the interface at a rate of 5 l/min (see Appendix E for more details). (b) The static and dynamic coefficient of friction (COF) are measured in ambient (41 ± 1% RH) and water-immersed environments. The inset of (b) shows the COF measured in IPA vapor as described above and immersed in IPA. All measurements are performed at a normal force of 40 mN and a sliding velocity of 1 \(\mu \text{m/s} \).

The capillary adhesion thus calculated for both water (41% RH) and IPA-rich vapor environments is 23 ± 5 and 8 ± 5 mN, respectively. We observe stronger capillary adhesion in the ambient environment than in the IPA environment, as in the AFM measurements. However, the capillary adhesion estimated from the sliding experiments (23 ± 5 mN) is significantly larger than that calculated for the interface under 40 mN externally applied load [2.8 mN, Fig. 1(d)]. Furthermore, we find that in the absence of capillary adhesion (immersed conditions), the COF for the IPA experiment is about 30% lower than that measured in water [Fig. 3(b)]. This reduction in COF may be attributed to the difference in boundary lubrication between water and IPA [40].

D. Capillary adhesion and wear

To understand the discrepancy between the calculated (2.8 mN) and experimentally estimated (23 ± 5 mN) water capillary adhesive force in more detail, we return to the contact calculations. Since the contact calculations are based on the topography of the Si ball measured by AFM before performing sliding experiments, the calculations may not represent the experimental interface accurately. AFM topography measurements performed on the Si ball after the sliding experiment reveal a circular wear scar. To estimate how much material was removed from the sphere, we calculated the volume of the spherical cap (Fig. S4 in the Supplemental Material [44]) corresponding to the wear scar and found an average wear volume of \(V_{\text{avg}} = 4.3 \pm 1.3 \times 10^9 \text{ nm}^3 \) based on four independent sliding experiments. The average total sliding distance for the four experiments was 205 \(\mu \text{m} \) (\(D_{\text{Tot}} \), Table SIII in the Supplemental Material [44]) and the normal force \(F_{\text{ex}} \) was 40 mN, leading to a specific wear rate \(K \) of the Si ball that is \(K = V_{\text{avg}}/F_{\text{ex}}D_{\text{Tot}} = 5.2 \times 10^5 \text{ \mu m}^3/\text{N m} \), which can be interpreted as mild wear.

We emphasize that most wear is expected to take place when sharp and high asperities on the Si ball are removed during the very first stroke, as demonstrated previously [33]. The cross-section height profiles of the Si ball surface taken after sliding indeed show that high asperities are removed from the Si ball [the red curve in Fig. 2(e)], resulting in a reduced root-mean-square (rms) roughness \(R_q \), calculated along the 1.5 \(\mu \text{m} \) profile in Fig. 2(f) as low as 0.9 nm in the contacting regions, comparable to the roughness of the Si wafer counter surface. To mimic this dynamic material removal process, we analyze the AFM topography recorded before the sliding experiments as follows. First, we remove the sphere curvature from the data. Next, we cut the highest asperities off the topography [Fig. 2(a)] by setting all heights above a (variable) threshold value equal to that threshold value. Subsequently, we impose the Si wafer roughness on top of the cut (flattened) areas of the topography [Fig. 2(b)]. This last step is motivated by the observation [Figs. 2(d)–2(f)] that worn areas on the Si ball display a roughness akin to that of the counter
surface, the Si wafer. Once the topography has thus been artificially worn, we impose the sphere curvature again and run BEM calculations in which the artificially worn sphere is pressed onto a Si wafer. To calculate the artificial wear volume, we subtract the original topography from the worn topography [Figs. 2(a) and 2(b)].

We calculated the capillary adhesive force at the Si ball-on-Si wafer interface that is externally loaded with a force of 40 mN as a function of wear volume [Fig. 4(a)]. As the roughness of the sphere decreases due to increasing wear, an increase in capillary adhesion results [Fig. 4(a) inset]; worn topographies experience stronger adhesion. The reason for this is that high asperities on the ball surface initially prevent intimate contact between the two surfaces. As such asperities are removed, water bridges can form across more regions of the interface and therefore generate more capillary adhesion [37]. The model predicts that the adhesive force increases from 2.8 mN for the pristine surface to 28 mN for the Si ball surface from which $V_{avg} = 4.3 \times 10^9$ nm3 of material was worn, in agreement with the experiments based on which an adhesive force of 23 ± 5 mN was found. This result is also in line with the analytical capillary adhesion model proposed by Persson [53] in which the capillary adhesion increases strongly when the rms roughness of the interface approaches the range of the adsorption.

In addition to the water adhesion calculations, we performed contact calculations relating to the IPA vapor environment. However, because the precise composition of the gas surrounding the interface is unknown, we used literature values for W and $P_{Laplace}$ that correspond to an IPA partial pressure (P/P_{sat}) range of 10%–70%. According to our model the capillary adhesion increases with decreasing IPA partial pressure; the effect of increasing Laplace pressure with decreasing IPA partial pressure outweighs the decrease in the wetted area with decreasing partial pressure (decreasing W). The IPA capillary adhesion calculations as a function of wear show good agreement with the experimental estimates of the adhesive force and support the interpretation of our experiments and our model. The relative impact of capillary adhesion is greatly enhanced by wear, but can be minimized by replacing water in the environment with IPA. Furthermore, in the absence of capillary adhesion, Si-on-Si friction is lower in an IPA-immersed environment than in a water-immersed environment, suggesting that IPA is more effective as a boundary lubricant. The mechanism behind this boundary lubrication provided by IPA may lie in its ability to passivate bond-forming
species such as hydroxyl groups, thereby lowering the surface energy and friction \[54,55\]. Furthermore, IPA may suppress wear and slow down the wear-induced changes in adhesion \[54\].

III. CONCLUSION

We demonstrated that capillary adhesion dominates single-nanoasperity Si-on-Si pull-off force measurements. While strong capillary adhesion is present at loaded multiasperity interfaces, the adhesion disappears when the load is removed. Nonetheless, the capillary adhesive force at a loaded multiasperity interface significantly increases friction. Wear of the highest roughness peaks drastically decreases the average interfacial gap, thereby further increasing adhesion and friction. This interplay between capillary adhesion, wear-induced topography changes, and friction was successfully captured by a boundary element model without adjustable parameters. One assumption in the model is that the capillary bridges are in equilibrium with the surrounding vapor. This assumption is known to break down at velocities above 100 μm/s \[56\], well above the sliding speeds (and pull-off speeds) investigated in this work. Capillary adhesion and wear can easily lead to failure of devices that involve silicon-based interfaces with nanoscale surface roughness such as MEMS and NEMS. The latter is known to occur through nanoscale wear processes. \[41\] Our model can be used to predict the friction behavior and failure of stiff hydrophilic interfaces in general \[31\]. Furthermore, we showed that replacement of water with IPA strongly reduces capillary adhesion and improves boundary lubrication. These insights pave the way for better control over friction and wear in demanding high-tech applications such as the positioning systems used in the semiconductor manufacturing industry.

ACKNOWLEDGMENTS

This work was carried out at the Advanced Research Center for Nanolithography (ARCNL). This publication is part of the project Friction on Demand: To Slide or Not to Slide, with project number VI.Veni.192.177, which is financed by the Dutch Research Council (NWO). The authors thank Albert M. Brouwer for helpful discussions. We thank Thijs C. de Goede for his help in carrying out contact angle measurements.

APPENDIX A: AFM-BASED SINGLE-ASPERITY ADHESION MEASUREMENTS

The single-asperity pull-off experiments were performed using AFM (Dimension Icon, Bruker) in four environmental conditions: IPA or water vapors and IPA or water liquids. The various gas environments are established by flowing water-saturated N\(_2\) or IPA-saturated N\(_2\) into the semiopen fluid AFM cell (Bruker) at a fixed flow rate of 0.5 l/min while the lab humidity was maintained at 50% RH. We introduced an equilibration time of 30 min after each change in environment to ensure a steady-state gas mixture in the liquid cell. The normal displacement of the AFM probe is imposed by the piezo tube that holds at the end of the AFM cantilever adjacent to the tip. Typical force-displacement (\(F-D\)) curves \([Figs. 1(a) and 1(b)]\) were recorded by approaching the Si wafer with the AFM tip and subsequently retracting the tip, both at a speed of 5 nm/s, while measuring the normal force exerted at the interface. In the vapor environments we used a Si AFM tip (RTESPA-300, Bruker), and in the liquid-immersed measurements (which lack capillary effects) we used a Si\(_3\)N\(_4\) tip (ScanAsyst-Fluid).

APPENDIX B: MACROSCOPIC ADHESION MEASUREMENT

The macroscopic pull-off experiments are carried out using a universal mechanical tester (UMT Tribolab, Bruker) in an ambient air environment (53 ± 1.4% RH). A Si ball is mounted on the force sensor (DFM-0.5G, Bruker, 1.94 \times 10^3 N/m normal stiffness). The force sensor measures 1 mN minimum force with 0.25 mN resolution. The Si ball is preloaded onto a Si wafer substrate at 40 mN, and retracted from the Si wafer with 2 μm/s pull-off speed. The native oxide layer of Si is expected to form on both Si ball and Si wafer surfaces.

APPENDIX C: SURFACE CHARACTERIZATION

The surface topography of the contacting bodies is measured by tapping mode AFM (Dimension Icon, Bruker) with Si tips (RTESPA-300, Bruker).

APPENDIX D: MULTIASPERITY CAPILLARY ADHESION CALCULATION

The calculation of capillary adhesion exerted at multi-asperity interfaces consists of two parts: contact calculations based on the BEM \[57\] and calculations of the area wetted by the capillary liquid (\(A_{\text{cap}}\)) at the interfaces. First, the area of real contact at the Si ball-on-Si wafer interface is estimated by BEM contact calculations in which the elastoplastic equations that describe the deformed interface are solved. We employ the contact calculations by using the Tribology Simulator \[58\]. As input, the calculations make use of the measured AFM surface topography of the Si ball with about 1.7 \times 10^3 nm\(^2\) per pixel. The contact calculation was carried out at 40 mN elastic force (\(F_{\text{elastic}}\)) and the mechanical properties of the Si ball and the Si wafer are reported in Table SII in the Supplemental Material \[44\]. The result of contact calculation is shown in Figs. 4(b) and 4(c) where the solid–solid area of real contact is indicated in red. Second, we estimate the wetted area (\(A_{\text{cap}}\)) across the interface [gray area in Figs. 4(b) and 4(c)].
where capillary adhesion occurs as described in Sec. II in
the main text. The capillary adhesion is caused by the pres-
sure difference between gaseous and liquid environments
as quantified by the Laplace pressure (P_{Laplace}) of the
capillary meniscus. The capillary meniscus at the hydrophilic
interface is characterized by a positive radius of curvature
(r_1) in the in-plane direction and a negative radius (r_2) of
curvature in the out-of-plane direction as illustrated in the
inset of Fig. 1(b). Because $|r_1| \gg |r_2|$ the overall radius of curvature ($1/R = 1/r_1 + 1/r_2$) of the capillary meniscus can
be approximated as $R \approx r_2$ such that the Laplace pressure
is dominated by the negative radius of meniscus curvature.
The P_{Laplace} estimated based on the Kelvin–Tolman equation is given by $P_{\text{Laplace}} = \gamma/(r_2 + \delta)$, where γ the
bulk liquid surface tension (see Supplemental Material I
[44]), $r_2 = -d_s/2$ and δ the Tolman length ($\delta = 0.2$ nm
at $40\%–50\%$ RH). [45] Thus, combining the above cal-
culations, the capillary adhesion exerted at multisasperity
interfaces (F_{ad}) is calculated as $F_{\text{ad}} = P_{\text{Laplace}} \times A_{\text{cap}}$.

APPENDIX E: MACROSCOPIC SLIDING
EXPERIMENT

Ball-on-flat friction experiments are performed using a
customized rheometer setup (DSR 301, Anton Paar) in four
different environmental conditions: ambient air (~40% RH), IPA vapor,
and liquid-water- and IPA-immersed
environments [Fig. 3(a)]. The 3-mm-diameter Si ball
($R_q = 28.3$ nm over a $85 \times 85 \mu$m scan area with 430.6 nm2
pixel size) was slid against Si flat ($R_q = 0.9$ nm over a
$5 \times 5 \mu$m scan area [41]) at a constant angular velocity
($\omega = 8.3 \times 10^{-5}$ rad/s) that can be converted into a con-
stant sliding speed by multiplication with the fixed rotation
radius ($r = 12.98$ mm): $V = \omega r = 1$ μm/s. The applied normal
force was manually adjusted to approximately 40 mN. At
40 mN normal force, the Hertzian contact pressure
(P_{Hertz}) is determined to be approximately 250 MPa. In
order to minimize wear-induced changes in friction, the
measurements were performed as separate strokes: each stroke on
a previously untouched piece of Si wafer to pre-
vent the interaction between the sliding contact and wear
debri [41]. The stroke length for each Si ball in the exper-
iments is listed in Table III in the Supplemental Material
[44] and was minimized to avoid wear of the balls. The
IPA gas flows were supplied at a constant flow rate of
5 l/min through a plastic tube with an inner diameter of
4 mm. The tube outlet was directed at the contact and sit-
atuated at a distance of up to 1 cm from the contact. Dry N_2
saturated with IPA vapor was generated by passing dry N_2
through a liquid IPA bubbler. In all experiments the flow
was turned on before creating contacts. Each set of slid-
ing experiments was repeated at least three times under the
same environmental conditions.

[1] E. Soylemez and M. P. de Boer, Capillary-induced
crack healing between surfaces of nanoscale roughness,
normal capillary adhesion and resistance to shear on rough
S. N. Gorb, Humidity-enhanced wet adhesion on insect-
inspired fibrillar adhesive pads, Nat. Commun. 6, 6621
Capillarity in insect fibrillar adhesion, J. R. Soc. Interface
13, 20160371 (2016).
and MEMS, Nano Today 2, 22 (2007).
superlubricity and ultralow friction across the length scales,
from interlayer friction in graphene nanoelectromechanical
resonators, Nano Lett. 21, 8058 (2021).
[12] A. Ghanbarzadeh-Dagheyan, N. Jalili, and M. T. Ahma-
dian, A holistic survey on mechatronic systems in micro/nano scale with challenges and applications,
A novel friction-actuated 2-DOF high precision position-
ing stage with hybrid decoupling structure, Mech. Mach.
[14] D. Kang, X. Dong, H. Kim, P. Park, and C. E. Okwudire,
Fricion isolated rotary system for high-precision roll-to-
ison of four friction models: Feature prediction, J. Comput.
Nonlinear Dynamics 11, 1 (2016).
and simulations of the humidity dependence of friction
between nanoasperities and graphite: The role of interfacial
Carpick, Controlling nanoscale friction through the compe-
tition between capillary adsorption and thermally activated
sliding, ACS Nano 6, 4305 (2012).
ers friction of silicon oxide in humid environment: Contact
area between solids, water meniscus around the contact, or
Mach, Z. Lišková, D. Nezval, V. Švárc, T. Šamoříl, and
T. Šikola, Nanometer-sized water bridge and pull-off force

[58] Publicly available at eww.tribology.org.
