Production agreements, sustainability investments, and consumer welfare

Maarten Pieter Schinkela,*, Yossi Spiegelb, Leonard Treurenc

aAmsterdam School of Economics and Tinbergen Institute, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, The Netherlands
bSchool of Management, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel
cDepartment of Economics, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium

\textbf{A R T I C L E I N F O}

Article history:
Received 28 January 2022
Received in revised form 22 April 2022
Accepted 24 April 2022
Available online 12 May 2022

\textbf{JEL classification:}
K21
L13
I40
Q01

\textbf{Keywords:}
Sustainability
Investment
Horizontal agreement

\textbf{A B S T R A C T}

Schinkel and Spiegel (2017) finds that allowing sustainability agreements in which firms coordinate their investments in sustainability leads to lower investments and lower output. By contrast, allowing production agreements, in which firms coordinate output yet continue to compete on investments, boosts investments in sustainability and may also benefit consumers. We extend these results to the case where investments affect not only the consumers’ willingness to pay, but also marginal cost. We show that sustainability agreements continue to lower investments and output levels, while production agreements increase investments but when they benefit consumers, they are not profitable for firms and will therefore not be formed. This implies that exempting horizontal agreements from the cartel prohibition cannot be relied on to advance sustainability goals and satisfy the competition law requirement that consumers must not be worse off.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Proponents of “green antitrust” argue that competition policy should take into account the promotion of more sustainable production and consumption, and in particular allow sustainability agreements under the antitrust laws.1 Essential requirements for an exemption from the European cartel prohibition are that the agreements are necessary to generate the sustainability benefits projected, and that consumers receive a “fair share” of those benefits.2 In particular, the value of the sustainability improvement to the users of the relevant products must be large enough to compensate them for the higher prices that the agreement may bring about.3 Whether sustainability agreements should be exempt from cartel law, under what conditions exactly, and how to assess those, is currently widely debated.4

Schinkel and Spiegel (2017) contributes to this debate by analyzing the incentives of firms to invest in sustainability when they are allowed to form horizontal agreements regarding their investments in sustainability, or output levels, or both. In a two-stage duopoly setting in which firms invest in sustainability in Stage 1, and choose quantities in Stage 2, sustainability agreements, whereby firms choose investments in sustainability in Stage 1 cooperatively, but then engage in quantity competition in Stage 2, lead to lower sustainability and output levels than when firms compete in both stages. This finding is in stark contrast to the current policy proposals to allow firms to coordinate their sustainability efforts, but not their output levels or prices.5

Moreover, Schinkel and Spiegel (2017) shows that production agreements, under which firms choose their investments in sustainability independently, but then coordinate their output levels, lead to higher sustainability than when firms compete in

*Corresponding author.
E-mail addresses: m.p.schinkel@uva.nl (M.P. Schinkel), spiegel@post.tau.ac.il (Y. Spiegel), leonard.treuren@kuleuven.be (L. Treuren).

1See Kingston (2011) and Holmes (2020). Schinkel and Treuren (2021b) offers a critical perspective.

2The conditions are given in Article 101(3) of the Treaty on the Functioning of the European Union, of which all Member States have close equivalents in their national competition laws. The Dutch Authority for Consumers & Markets (ACM) published Guidelines on Sustainability Agreements (second draft, 21 January 2021) that detail the exemption requirements.

3See Badea et al. (2021), page 6.

5See Badea et al. (2021) and ACM (2021).
Consumer surplus when the representative consumer has a quadratic utility function is given by
\[CS(q_1, q_2) = \frac{q_1^2 + q_2^2 + 2\gamma q_1 q_2}{2}. \]
Under symmetry where \(q_1 = q_2 = q \), consumer surplus becomes
\[CS(q) = CS(q, q) = (1 + \gamma)q^2. \]

2.1. The competitive benchmark

Consider the case where firms compete in both stages. Noting that the profit of firm \(i \) is concave in \(q_i \), the Nash equilibrium in Stage 2 where firms choose their output levels is given by
\[q_1^*(v_1, v_2) = \frac{2(A + \kappa v_1) - \gamma (A + \kappa v_2)}{4 - \gamma^2}, \]
\[q_2^*(v_1, v_2) = \frac{2(A + \kappa v_2) - \gamma (A + \kappa v_1)}{4 - \gamma^2}. \]

Given (2), the reduced-form profit of firm \(i \) is
\[\pi_i^*(v_1, v_2) = \left(q_i^*(v_1, v_2) \right)^2 - \frac{r(v_i)}{2}. \]

The assumption that \(\kappa \leq \overline{r} \) ensures that \(\pi_i^*(v_1, v_2) \) is concave in \(v_i \).

At Stage 1, the two firms simultaneously choose their sustainability levels to maximize their respective reduced-form profit functions. The resulting Nash-equilibrium sustainability level is
\[v_1^* = v_2^* = v^* = \frac{4\kappa}{r (2 + \gamma) (4 - \gamma^2) - 4\kappa^2}. \]
The assumption that \(\kappa \leq \overline{r} \) ensures that \(v^* > 0 \).

Substituting \(v^* \) in (2) and in (3), the Nash equilibrium output of each firm is
\[q^* = \frac{Ar (4 - \gamma^2)}{r (2 + \gamma) (4 - \gamma^2) - 4\kappa^2}, \]
and its corresponding profit is
\[\pi^* = \pi_i^*(v_1^*, v_2^*) = \frac{A^2 r \left((4 - \gamma^2)^2 - 8\kappa^2 \right)}{(r(2 + \gamma)(4 - \gamma^2) - 4\kappa^2)^2}. \]
Note that \(q^* \) has the same sign as \(v^* \) and is therefore positive. Moreover, \(\pi^* > 0 \), because as we showed above \(\frac{\partial^2 \pi_i^*(v_1, v_2)}{\partial v_1^2} = \frac{8\kappa^2}{(4 \gamma - 4)^2} > 0 \), implying that the numerator of \(\pi^* \) is positive.

2.2. Production agreements

Under a production agreement, firms jointly choose their output levels in Stage 2 to maximize the sum of their profits, but still compete in Stage 1 when they choose their investments in sustainability. The resulting output levels are
\[q_1^{pc}(v_1, v_2) = \frac{A + \kappa v_1 - \gamma (A + \kappa v_2)}{2 (1 - \gamma^2)}, \]
\[q_2^{pc}(v_1, v_2) = \frac{A + \kappa v_2 - \gamma (A + \kappa v_1)}{2 (1 - \gamma^2)}. \]

6 Schinkel and Treuren (2021a) shows that when there are more than two firms, a production agreement always harms consumers, because the negative effect of output reduction outweighs the positive effect of higher investment. The paper also considers cooperation among a subset of firms, and firm-side intrinsic motivation for sustainability efforts.

7 In most of Schinkel and Spiegel (2017), marginal cost is assumed to be \(k \), i.e., \(k = 1 \), and \(r > 1 \). Other than that, the setting here is identical to that in Schinkel and Spiegel (2017).

8 To see why, note that since \(\kappa \leq \overline{r} \), \(r (2 + \gamma)(4 - \gamma^2) - 4\kappa^2 \geq 0 \), implying that the numerator of \(\pi^* \) is positive.
where the superscript pc stands for “production cooperation.” Substituting in (1), the reduced-form profit of firm i is

$$
\pi_i^{pc} (v_1, v_2) = q_i^{pc} (v_1, v_2) = \frac{A + \kappa v_i}{2} - r v_i^2 - \frac{r}{2}.
$$

(5)

The assumption that $\kappa \leq \kappa$ ensures that $\pi_i^{pc} (v_1, v_2)$ is concave in v_i.\footnote{Since $\kappa \leq \kappa$, $\frac{\partial^2 \pi_i^{pc} (v_1, v_2)}{\partial v_i^2} = \frac{s}{2(1-\gamma)^2} - \frac{r}{4(1-\gamma)^2} - r = \frac{-r \gamma}{2(1-\gamma)^2} < 0$.}

At Stage 1, firms simultaneously and independently choose their sustainability levels to maximize their respective reduced-form profits. The resulting sustainability levels are

$$
v_i^{pc} = v_2^{pc} = v^{pc} = \frac{2Ar (2 - \gamma)}{4r (1 - \gamma^2) - \kappa^2 (2 - \gamma)}.
$$

The assumption that $\kappa \leq \kappa$ ensure that $v^{pc} > 0$.\footnote{To see why, note that since $\kappa \leq \kappa$, $4r (1 - \gamma^2) - \kappa^2 (2 - \gamma) \geq 4r (1 - \gamma^2) - \kappa^2 (2 - \gamma) = r^2 (2 - \gamma) = \frac{-r \gamma}{2(1-\gamma)^2} > 0$.}

Substituting v^{pc} in (4) and (5), and using the definition of κ, the output of each firm in a production agreement is

$$
q^{pc} = \frac{2Ar (2 - \gamma)}{4r (1 - \gamma^2) - \kappa^2 (2 - \gamma)},
$$

resulting in profits

$$
\pi^{pc} = \pi_i^{pc} (v_i^{pc}, v_2^{pc}) = \frac{A^2 r (2 - \gamma)^2 (\kappa^2 - \kappa^2)}{2 (4r (1 - \gamma^2) - \kappa^2 (2 - \gamma))^2}.
$$

Note that q^{pc} has the same sign as v^{pc} and is therefore positive. Moreover, $\pi^{pc} > 0$, as $\kappa \leq \kappa$.

2.3. Sustainability agreements

Under a sustainability agreement, firms jointly choose their sustainability levels, v_1 and v_2, in Stage 1, but then compete in Stage 2 when they choose their production levels. Given that firms compete in Stage 2, the equilibrium output levels in Stage 2 are still given by (2) and the resulting reduced-form profits are still given by (3). At Stage 1, the two firms choose v_1 and v_2 to maximize the sum of their reduced-form profits $\pi_i (v_i, v_2) + \pi_2 (v_1, v_2)$. The resulting sustainability levels are

$$
v_1^{pc} = v_2^{pc} = v^{pc} = \frac{2Ar (2 + \gamma)}{r (2 + \gamma)^2 - 2\kappa^2},
$$

where the superscript sc stands for “sustainability cooperation.” The assumption that $\kappa \leq \kappa$ ensures that $v^{pc} > 0$.\footnote{To see why, note that since $\kappa \leq \kappa$, $r (2 + \gamma)^2 - 2\kappa^2 \geq r (2 + \gamma)^2 - 2\kappa^2 = \frac{-2r \gamma}{4(1-\gamma)^2} > 0$.}

Substituting v^{pc} in (2), the resulting output of each firm is

$$
q^{pc} = \frac{Ar (2 + \gamma)}{r (2 + \gamma)^2 - 2\kappa^2},
$$

which is positive because $v^{pc} > 0$.

2.4. Comparison of the three regimes

To compare sustainability levels and consumer surplus under competition in both stages and under horizontal agreements, let $CS^* \equiv CS(q^*)$ be consumer surplus when firms compete in both stages, and define $CS^{pc} \equiv CS(q^{pc})$ and $CS^{sc} \equiv CS(q^{sc})$ similarly for production and sustainability agreements. It is now useful to define $z = 1 - \gamma$; then the results can be stated in terms of only two parameters: γ and z. Since r is the marginal cost of investment and κ captures the marginal effect of investment on the marginal cost of production, z reflects the strength of the incentives to invest in sustainability, with lower values of z being associated with stronger incentives to invest. Also note that since $\kappa \leq \kappa = 2\sqrt{2r (1-\gamma)^2 (1-\gamma)}$, $z \geq z (\gamma) = \frac{2(\gamma)}{8r (1-\gamma)^2 (1-\gamma)}$; that is, our assumption on κ implies that the incentive to invest are not too strong. Moreover, let $\tilde{z} (\gamma) = \frac{4-2\gamma + 2\gamma^2}{2(1-\gamma)(1-\gamma)}$ and note that $\tilde{z} (\gamma)$ is increasing with γ from 1/2 when $\gamma = 0$ to infinity as $\gamma \to 1$. We now establish the following result.

Proposition 1. *Sustainability is highest under a production agreement and lowest under a sustainability agreement: $v^{pc} > v^{sc} > v^{pc}$.*

As for consumer welfare, $CS^{pc} < CS^*$ for all feasible parameter values. If $\gamma > 0.7486$, then $CS^{pc} < CS^*$ for all $z \geq \tilde{z} (\gamma)$; if $\gamma < 0.7486$, then $CS^{sc} < CS^*$ if $z \leq \tilde{z} (\gamma)$ and $CS^{pc} > CS^*$ if $z \geq \tilde{z} (\gamma)$.

Proof. First, note that

$$
v^* - v^{pc} = \frac{2Ar \gamma (2 + \gamma)^2}{(r (2 + \gamma) (4 - \gamma^2) - 4\kappa^2) (r (2 + \gamma)^2 - 2\kappa^2)} > 0.
$$

(6)

and

$$
v^{pc} - v^* = \frac{2Ar \gamma \kappa^2 (2 + \gamma)^2}{(r (2 + \gamma) (4 - \gamma^2) - 4\kappa^2) (4r (1-\gamma^2) - \kappa^2 (2 - \gamma))} > 0.
$$

(7)

where the inequalities in (6) and (7) follow because, as shown above, the assumption that $\kappa \leq \kappa$ ensures that both terms in the denominators are positive.

Second, to examine consumer surplus, recall that at a symmetric solution, $CS(q) = (1 + \gamma)q^2$. Hence, it is sufficient to compare q^*, q^{sc}, and q^{pc}. Noting that

$$
q^* - q^{sc} = \frac{2Ar \gamma \kappa^2 (2 + \gamma)^2}{(r (2 + \gamma) (4 - \gamma^2) - 4\kappa^2) (4r (1-\gamma^2) - \kappa^2 (2 - \gamma))} > 0,
$$

(8)

where as in (6), the denominator of (8) is positive, it follows that $CS^{sc} < CS^*$ for all feasible parameter values.

Next, note that

$$
q^{pc} - q^* = \frac{2Ar \gamma \kappa^2 (2 + \gamma)^2}{(r (2 + \gamma) (4 - \gamma^2) - 4\kappa^2) (4r (1-\gamma^2) - \kappa^2 (2 - \gamma))} > 0.
$$

(9)

As in (7), the denominator in (9) is positive; recalling that $\gamma \in (0, 1)$, it follows that $q^{pc} - q^*$ and hence $CS^{pc} > CS^*$ if

$$
r \geq \frac{4 - 2\gamma + \gamma^2}{2(1-\gamma)(1-\gamma)}.
$$

(10)

and $CS^{sc} < CS^*$ if $z \leq \tilde{z} (\gamma)$ ($CS^{pc} = CS^*$ only in the knife edge case where $z = \tilde{z} (\gamma)$). Now, recall that $z \geq \tilde{z} (\gamma) = \frac{2(\gamma)}{8r (1-\gamma)^2 (1-\gamma)}$, and note that $\tilde{z} (\gamma) > \tilde{z} (\gamma)$ for all $\gamma > 0.7486$ and $\tilde{z} (\gamma) > \tilde{z} (\gamma)$ for all $\gamma < 0.7486$. Hence, if $\gamma > 0.7486$, then $z \geq \tilde{z} (\gamma) > \tilde{z} (\gamma)$, implying that $CS^{pc} < CS^*$, and if $\gamma < 0.7486$, then $CS^{sc} < CS^*$ if $z \geq \tilde{z} (\gamma)$ and $CS^{pc} > CS^*$ for all $\tilde{z} (\gamma) \leq z < \tilde{z} (\gamma)$.

Proposition 1 extends Propositions 1 and 2 in Schinkel and Spiegel (2017) to the case where investments in sustainability affect not only the consumers’ willingness to pay, but also marginal cost (i.e., the case where κ is not necessarily equal
to 1).13 It shows that compared to competition in both stages, sustainability agreements lead to lower investments in sustainability and lower consumer surplus, while production agreements lead to higher investments in sustainability. However, whereas in Schinkel and Spiegel (2017), production agreements benefit consumers whenever γ is sufficiently large ($\gamma > 0.5567$), in the present paper they benefit consumers only if γ is sufficiently small ($\gamma < 0.7486$) and when the incentive to invest, as captured by z, is sufficiently strong, i.e., $\bar{\pi}(\gamma) < z < \bar{\pi}(\gamma)$.

To understand the difference, note that in both papers, $CS^p > CS^*$ if $z < \bar{\pi}(\gamma)$ and $CS^p < CS^*$ if $z > \bar{\pi}(\gamma)$. However, while here $z \geq \bar{\pi}(\gamma)$, in Schinkel and Spiegel (2017), $\kappa = 1$ and $r \geq 1$, so $z = \frac{1}{r\kappa} \geq 1$. The resulting implications for consumer welfare are illustrated in Fig. 1 in the (γ, z) space. Panel a corresponds to the current paper and Panel b to Schinkel and Spiegel (2017). In both panels, the feasible values of z are represented by the shaded areas. As Panel a shows, in the present paper $z < \bar{\pi}(\gamma)$ (in which case $CS^p > CS^*$) only when $\gamma < 0.7486$; when $\gamma > 0.7486$, $\bar{\pi}(\gamma) > \bar{\pi}(\gamma)$, so feasible values of z are above $\bar{\pi}(\gamma)$, implying that $CS^p < CS^*$. Panel b shows that in Schinkel and Spiegel (2017), where $z \geq 1$, $z < \bar{\pi}(\gamma)$ only when $\gamma > 0.5667$. When $\gamma < 0.5667$, $\bar{\pi}(\gamma) < 1$, so feasible values of z are above $\bar{\pi}(\gamma)$, so $CS^p > CS^*$.

Proposition 1 is driven by two opposite effects. On the one hand, production agreements boost investments in sustainability because firms cannot individually choose their output levels, so they compete more intensely on investments. The higher investments raise the demand for products and induce firms to expand output. This effect benefits consumers. On the other hand, holding investments fixed, production agreements restrict output and harm consumers. The first, positive, effect dominates the second, negative, effect when z is relatively low because then firms have a strong incentive to invest, so production agreements, which boost investments, are particularly beneficial. This is true however only when the two products are sufficiently differentiated ($\gamma < 0.7486$), otherwise, the incentive to invest cannot be sufficiently high to ensure that the first, positive, effect dominates the second, negative effect. As a result, production agreements harm consumers for all feasible parameter values when the degree of differentiation is relatively low ($\gamma > 0.7486$).

The result that investments in sustainability are larger under a production agreement than under competition in both stages is consistent with Proposition 1 in Fershtman and Gandal (1994) and Proposition 1 in Brod and Shivakumar (1999). Both papers show that firms invest more when they compete in the choice of investment, but subsequently cooperate in the choice of output, a situation referred to as “seemciliation.” Intuitively, cooperation in the choice of output increases the marginal benefit from investment and hence induces firms to invest more.14

Proposition 1 implies that unlike “green” sustainability agreements, production agreements can simultaneously increase sustainability and consumer surplus, provided that the firms have a sufficiently strong incentive to invest (i.e., z is above the lower bound, $\bar{\pi}(\gamma)$, but below $\bar{\pi}(\gamma)$) and products are sufficiently differentiated ($\gamma < 0.7486$). The next proposition shows, however, that whenever production agreements enhance consumer surplus, they are not profitable for firms.

Proposition 2. If $CS^p > CS^*$ then $\pi^p < \pi^*$.14

Proof. By Proposition 1, $CS^p > CS^*$ only if $\bar{\pi}(\gamma) \leq z < \bar{\pi}(\gamma)$, which is possible only if $\gamma < 0.7486$. Now,

$$
\pi^* - \pi^p = \frac{A^2r}{2} \left[\frac{r(4-\gamma)^2}{r(2+\gamma)(4-\gamma)^2 - 4\kappa^2} - \frac{A^2r}{2} \frac{(2\gamma^2 - 4\gamma + 1)^2}{2(4\gamma^2 - 4\gamma + 1)^2} \right]
$$

$$
= \frac{A^2r}{2} \left[\frac{(4-\gamma)^2}{8} - \frac{\kappa^2}{(2\gamma^2 - 4\gamma + 1)^2} - \frac{\kappa^2}{(2\gamma^2 - 4\gamma + 1)^2} \right]
$$

$$
= \frac{A^2r}{2} \left[\frac{(4-\gamma)^2}{8} - \frac{1}{2} - \frac{\kappa^2}{4(2\gamma^2 - 4\gamma + 1)^2} \right],
$$

where the last equality follows because $z = \frac{1}{r\kappa}$ and $\kappa = \sqrt{2r(1-\gamma)(1-\gamma^2)}$. It turns out that the square bracketed term in

13 Indeed, when $\kappa = 1$, investments in sustainability and output levels coincide with those in Schinkel and Spiegel (2017).

14 Fershtman and Gandal (1994) considers a model with homogeneous products and assumes that firms collude in Stage 2 by dividing the market between them, such that the firms receive in equilibrium equal percentage gains over their profits in the non-collusive equilibrium. Brod and Shivakumar (1999) assumes that products are differentiated, but investments in their model are cost reducing and there are spillovers: the investment of each firm may also lower the cost of the rival firm.
the last line of \((11)\) is strictly positive for all \(\gamma < 0.7486\) and all \(z(\gamma) < z(\gamma).\)\(^\text{15}\) Hence, \(\pi^* > \pi^P\) whenever \(\text{CS}^P > \text{CS}^*\).

Proposition 2 implies that production agreements which benefit consumers are not profitable for firms and will therefore not be formed voluntarily.\(^\text{16}\) To see the intuition, note from Proposition 1 that production agreements benefit consumers when \(z\) is not too large, so there are strong incentives to invest. Then, absent a production agreement, profits are relatively high. Holding investments fixed, a production agreement is still profitable as it eliminates competition, but when firms compete on investments, they end up investing more than they would in the competitive benchmark. As a result, their overall profits may decrease below their profits absent a production agreement.

To illustrate, fix \(\gamma = 0.5.\) Then, \(z(\gamma) \equiv 0.75\) and \(\tilde{z}(\gamma) = 0.866,\) so by Proposition 1, \(\text{CS}^P < \text{CS}^*\) if \(z > 0.866\) and \(\text{CS}^P > \text{CS}^*\) if \(0.75 < z < 0.866.\) Evaluated at \(\gamma = 0.5, (11)\) becomes \(\pi^* - \pi^P = -\frac{6.32 - 75z^2(1 - 2z)^2}{z^2},\) which is positive for \(z < 1.975\) and negative otherwise. Hence, production agreements are profitable only when \(z > 1.975,\) but these values of \(z\) are above \(\tilde{z}(\gamma) = 0.866,\) so the agreements do not benefit consumers. Conversely, production agreements benefit consumers when \(z < 0.866,\) but for these values of \(z,\) the agreements are not profitable for firms. Intuitively, production agreements benefit consumers only when the incentive to invest is sufficiently strong (\(z\) is relatively low), but then firms end up overinvesting, so their profits drop below their levels absent production agreements.

The result that semicollusion may be unprofitable for firms is consistent with Propositions 2 and 3 in Fershtman and Gandal (1994).\(^\text{17}\) However, that paper does not consider the effect of semicollusion on consumers. Our Proposition 2 is also consistent with Brod and Shivakumar (1999), which shows that semicollusion is not profitable for firms when the degree of product differentiation is limited (\(\gamma\) is high) and when spillovers are not too large—see their Figure 2. However, in Brod and Shivakumar (1999) semicollusion can benefit consumers and be profitable for firms, but this occurs only when there are sufficiently large investment spillovers. Absent spillovers, as in our model, production agreements are either not profitable (when \(\gamma\) is high), or are profitable (when \(\gamma\) is low) but reduce consumer surplus.

3. Conclusion

Advocates of green antitrust propose to exempt horizontal agreements from the cartel prohibition if they promote sustainability. A key legal requirement for such an exemption is that consumers receive a high enough share of the benefits from the enhanced sustainability to compensate them for any harm resulting from the agreement, such as possibly having to pay higher prices. We have shown that sustainability agreements lead to lower investments in sustainability and also harm consumers. By contrast, production agreements boost investments in sustainability and may also benefit consumers. However production agreements which benefit consumers are not profitable, so firms will not voluntarily form such agreements. These results imply that permitting horizontal agreements among rival firms cannot simply be relied on to advance sustainability goals and satisfy the legal requirement that consumers must not be worse off.

References

15 The square bracketed term in the last line of \((11)\) turns out to be a ratio of two polynomials: a ninth-degree polynomial of \(\gamma\) which is quadratic in \(z,\) and a tenth-degree polynomial of \(\gamma\) which is quartic in \(z.\) We therefore resorted to Mathematica to determine its sign using the command \texttt{Reduce[\[Pi\]^* - \[Pi\]^P <= 0 && 0 < \gamma < 0.7486 \&\& \[BarIntegral](\gamma) \leq z < \tilde{z}(\gamma), \{\gamma, z\].} The command returns the output “\text{False},” implying that, given the parameter restrictions, \(\pi^* - \pi^P > 0.\)

16 Matsui (1989) considers a model in which firms choose capacity in Stage 1 and quantities in Stage 2 and shows that when firms are allowed to collude in Stage 2, consumers may be better off. However, he does not examine whether such an agreement is profitable for firms.

17 Proposition 2 in Fershtman and Gandal (1994) shows that when investments are cost reducing, semicollusion is not profitable when the cost of investment is relatively low. Proposition 3 shows that this is always the case when investments are in capacity.