Observation of WWW Production in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

Aad, G.; ATLAS Collaboration

DOI
10.1103/PhysRevLett.129.061803

Publication date
2022

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Observation of WWW Production in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)

(Received 2 February 2022; accepted 23 June 2022; published 4 August 2022)

This Letter reports the observation of WWW production and a measurement of its cross section using 139 fb$^{-1}$ of proton-proton collision data recorded at a center-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Events with two same-sign leptons (electrons or muons) and at least two jets, as well as events with three charged leptons, are selected. A multivariate technique is then used to discriminate between signal and background events. Events from WWW production are observed with a significance of 8.0 standard deviations, where the expectation is 5.4 standard deviations. The inclusive WWW production cross section is measured to be 820 ± 100 (stat) ± 80 (syst) fb, approximately 2.6 standard deviations from the predicted cross section of 511 ± 18 fb calculated at next-to-leading-order QCD and leading-order electroweak accuracy.

DOI: 10.1103/PhysRevLett.129.061803

Measurements of triboson production at colliders directly probe the strength of gauge boson self-interactions within the standard model (SM) via triple gauge couplings and quartic gauge couplings [1,2]. Any significant deviations from the SM predictions would provide evidence of new physics at a higher energy scale than is presently accessible [3–8]. Triboson final states are among the least-understood SM processes due to their small production cross sections. In particular, searches for the production of three W bosons (WWW) have been performed by both the ATLAS [9,10] and CMS [11,12] Collaborations. Using proton-proton (pp) collisions at a center-of-mass energy (\sqrt{s}) of 13 TeV delivered by the Large Hadron Collider (LHC) [13], the ATLAS Collaboration analyzed 80 fb$^{-1}$ of data and provided evidence for both WWW and WZZ/WZZ production [10], and the CMS Collaboration analyzed 137 fb$^{-1}$ of data and observed the combined production of three massive vector bosons (WWW, WWZ, WZZ, and ZZWW) [12].

This Letter reports the observation of WWW production and a measurement of its cross section using 139 fb$^{-1}$ of data at $\sqrt{s} = 13$ TeV [14] taken with the ATLAS detector. At leading order (LO) in QCD, WWW production can proceed via the radiation of each W boson from a fermion, via a W boson produced in association with an intermediate Z/γ^* or Higgs boson that decays via the W^+ intermediate state, or via a quartic gauge coupling vertex. Representative Feynman diagrams are shown in Fig. 1. The analysis selection is sensitive to processes with both on-shell and off-shell W boson decays. For simplicity all these processes (including $WH \rightarrow WWW^*$) are generically referred to as WWW throughout this Letter. Two decay channels, $WWW \rightarrow \ell^+\ell^-\nu\bar{\nu}vq\bar{q}$ and $WWW \rightarrow \ell^+\ell^-\nu\bar{\nu}v$ with $\ell = e$ or μ, are considered and are hereafter referred to as $2\ell^*$ and $3\ell^*$, respectively. Events with electrons and muons produced through τ leptons are also included. The experimental signature of the $2\ell^*$ channel consists of two same-sign charged leptons, missing transverse momentum, and two jets, while the signature of the $3\ell^*$ channel consists of three charged leptons and missing transverse momentum.

The ATLAS detector [15] is a multipurpose particle physics detector with cylindrical geometry [16]. It consists of an inner tracker (ID) surrounded by a superconducting solenoid, sampling electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS) with three toroidal superconducting magnets. A two-level trigger system is used to select events for storage. Events used in this analysis were selected online by single-electron or single-muon triggers [17–19]. An extensive software suite [20] is used in the reconstruction and analysis of real and simulated data, in detector operations, and in the trigger and data acquisition systems of the experiment.

The proton interaction vertex with the highest p_T^2 sum of associated ID tracks is selected as the primary vertex. Electrons are reconstructed from energy deposits in the EM calorimeter associated with tracks found in the ID. Muons are reconstructed by combining tracks reconstructed in the ID with tracks or track segments found in the MS. Electrons (muons) must have $p_T > 20$ GeV and be reconstructed within $|\eta| < 2.47$ ($|\eta| < 2.5$), excluding electrons within...
1.37 < |η| < 1.52. To ensure that selected leptons originate from the primary vertex, their tracks are required to have |d0/σd0| < 5(3) for electrons (muons) and |z0 sin θa| < 0.5 mm for both lepton flavors, where d0 and σd0 are the transverse impact parameter and its uncertainty, and z0 is the longitudinal impact parameter. Electrons are required to satisfy the “tight” likelihood-based identification criterion defined in Ref. [21], and muons must satisfy the “medium” cut-based identification criterion defined in Ref. [22]. To reject leptons that likely originate from light-hadron decays or heavy-flavor decays, leptons are required to pass a tight isolation requirement (“PLV Tight”) [23], which takes into account the energy deposits and charged-particle tracks (including the lepton track) in a cone around the lepton direction. Electrons must also satisfy a charge identification criterion based on a boosted decision tree (BDT) discriminant [24] to reduce the contamination from electrons with misidentified electric charge.

Particle-flow jets are reconstructed from tracks in the ID and topological energy clusters in the calorimeter [25]. Jet candidates are required to have pT > 30 GeV in the forward region (2.5 < |η| < 4.5) and pT > 20 GeV in the central region (|η| < 2.5). To reduce the effect from additional pp collisions in the same or a nearby bunch crossing (pileup), jets with 20 GeV < pT < 60 GeV and |η| < 2.5 are required to pass a “jet vertex tagger” requirement [26]. Jets containing b-flavored hadrons (“b jets”) are identified by a multivariate discriminant [27,28] combining track impact parameter values with information from secondary vertices reconstructed within the jet. A working point corresponding to an 85% efficiency for identifying b jets in t¯t events is used. Procedures described in Ref. [10] that ensure the selected electron, muon, and jet candidates do not overlap are applied before the lepton “PLV Tight” and |d0/σd0| requirements.

The missing transverse momentum, whose magnitude is denoted by Emiss T, is calculated as the negative of the vector sum of the transverse momenta of all reconstructed objects associated with the primary vertex. To account for soft hadronic activity, a term including tracks associated with the primary vertex but not with any of the reconstructed objects is included in the calculation of Emiss T [29].

To select candidates in the 2γ signal regions (SRs), events are required to have exactly two leptons with the same electric charge, at least two central jets, and no identified b jets. Three final states based on the lepton flavors are considered, namely e±e±, e±μ±, and μ±μ±. The highest-pT lepton must have pT > 27 GeV and the dilepton invariant mass mll is required to be between 40 and 400 GeV. The two highest-pT central jets are required to have mjj < 160 GeV and |Δηjj| < 1.5, where mjj is the dijet invariant mass and Δηjj is the pseudorapidity separation between the two jets. The mjj and Δηjj selection suppresses contributions from the W±W± vector-boson scattering process. In the case of the e±e± final state, the dilepton system is required to have mll < 80 GeV or mll > 100 GeV and an Emiss T significance [30] requirement, S(Emiss T) > 3, is applied to suppress contributions from the Z + jets process where the charge of one electron is misidentified. To select candidates in the 3γ SR, events are required to have exactly three leptons including at least one with pT > 27 GeV, no identified b jets, and no same-flavor opposite-sign (SFOS) lepton pairs. Events with e±e±μ± and μ±μ±e± final states are considered. To suppress contributions from WZ + jets production in the 2γ SRs and ZZ + jets production in the 3γ SR, events are removed if they contain additional electrons (muons) reconstructed with pT > 7(4.5) GeV and |η| < 2.47(2.7) passing the loose [21] (22) identification requirement.

Monte Carlo (MC) simulated samples are used to model the signal WWW process, as well as contributions from other physics processes with prompt leptons. Simulated events were processed through the full ATLAS detector simulation [31] based on GEANT4 [32]. The effects of pileup are included in the simulation.

Events with three on-shell W bosons were generated by SHERPA2.2.2 [33,34] with the NNPDF3.0NLO parton distribution function (PDF) [35]. Events with an off-shell W boson through WH → WWW+ were generated using POWHEG BOXv2 [36] interfaced to PYTHIA8.235 [37] for parton showering [38] with the NNPDF2.3LO PDF and the AZNLO set of tuned parameters [39]. Both processes are included in the signal definition and were generated at next-to-leading-order (NLO) QCD accuracy and LO electroweak accuracy with all spin correlations taken into account in the vector-boson decays. The cross section for the process with on-shell (off-shell WH → WWW+) W bosons is 209 ± 17 fb (302 ± 8 fb). The inclusive cross section is
The dominant background originates from the \(t\ell\ell + \text{jets} \) process, and its contribution is estimated using simulated events generated with SHERPA 2.2 using the NNPDF3.0NNLO PDF and a threshold of 4 GeV on the Z boson mass. The matrix element calculations for the WZ process were performed with up to one additional parton at NLO QCD accuracy and up to three additional partons at LO QCD accuracy. To ensure proper modeling of the WZ background, the MC predictions for WZ + 0 jets, WZ + 1 jet, and WZ + ≥2 jets are multiplied by scale factors obtained during the fit to the data to be described later, which includes three WZ control regions (CR). These CRs are obtained by requiring exactly three leptons with one SFOS lepton pair, \(E_T^{\text{miss}} \) significance \(S(E_T^{\text{miss}}) > 3 \), no b jets identified, and a trilepton invariant mass 110 GeV < \(m_{\ell\ell\ell} \) < 500 GeV.

The contribution from backgrounds with nonprompt leptons from hadron (including \(b \)-flavored and \(c \)-flavored hadrons) decays and jets misidentified as leptons is estimated using a data-driven method described in Ref. [42]. Lepton-like jets are defined by requiring the leptons to meet a looser selection criterion but fail the signal-lepton requirements. Compared to signal leptons, muonlike jets have \(|d_0/\sigma_{d_0}| < 10 \), and electronlike jets have the likelihood-based identification criterion loosened to “medium” [21]. The PLVTight tight isolation criterion is dropped for both lepton flavors. Since the nonprompt-lepton background in the SRs comes mainly from the \(t\bar{t} \) process where one of the b jets is misidentified as an isolated lepton, a lepton “fake factor” is determined from \(t\bar{t} \)-enriched samples selected using the same signal region criteria, except requiring one b jet and, in the 3\(\ell^\pm \) case, including events with a SFOS lepton pair with \(m_{\ell\ell} < 80 \text{ GeV} \) or \(m_{\ell\ell} > 100 \text{ GeV} \). To estimate the nonprompt-lepton background, this fake factor is applied as a weight to events selected with the same set of criteria as the signal region but with a lepton-like jet. The nonprompt-lepton background estimate is validated by checking that the estimate agrees with the data in the \(t\bar{t} \)-enriched samples where the fake factors are measured.

The \(W\gamma/Z\gamma \) background mostly contributes to the event selection when the photon is being misidentified as an electron. This contribution (referred to as “\(\gamma \) conversions”) is evaluated using a data-driven method similar to the nonprompt-lepton background estimation by introducing electronlike photons. An electronlike photon is a reconstructed object that is like an electron except that its associated track has no hits in the innermost layer of the pixel detector. The photon fake factor is determined using \(Z\gamma \rightarrow \mu\mu\gamma \) events selected with two muons, no b jets, and one electron or one electronlike photon. The trilepton invariant mass must satisfy 80 GeV < \(m_{\ell\ell\ell} \) < 100 GeV.

The charge-flip background originates from processes in which the charge of at least one prompt electron is misidentified. The muon charge misidentification rate is found to be negligible. The electron charge misidentification rate is measured using a tag-and-probe method applied to \(Z \rightarrow e^+e^- \) events, where the two electrons have the same reconstructed charge [42]. The charge-flip background is estimated by applying the measured electron charge misidentification rates to \(e^\pm e^\pm, e^\pm \mu^\pm, \) and \(e^\pm e^\pm \mu^\mp \) data events that meet all signal region requirements except for the SFOS lepton pair veto requirement. This method is validated with events selected using the same set of signal region criteria as used in the \(e^\pm e^\pm \) final state, except the dilepton mass must satisfy 80 GeV < \(m_{\ell\ell} \) < 100 GeV and the \(E_T^{\text{miss}} \) significance requirement \(S(E_T^{\text{miss}}) > 3 \) is removed.

Other SM processes with prompt leptons include \(tW, t\bar{t}Z, tZq, t\bar{t}H, WWZ, WZZ, ZZZ, \) and \(W^\pm W^\mp jj \) production. Their contributions are estimated using simulated events normalized to the integrated luminosity of the data sample and the cross sections provided by the event generators. The \(t\bar{t}W, t\bar{t}Z, \) and \(tZq \) processes were modeled using MADGRAPH5_AMC@NLO2.3.3 [43] together with PYTHIA8.210, with up to two additional partons in the matrix-element calculations. The \(t\bar{t}H \) process was modeled using POWHEG BOX V2 interfaced with PYTHIA8.230. Other triboson processes (WWZ, WZZ, ZZZ) and the strong production of \(W^\pm W^\mp jj \) were modeled using SHERPA 2.2. The calculations for triboson processes were performed with no extra partons at NLO QCD accuracy and up to two additional partons at LO QCD accuracy. The electroweak production of \(W^\pm W^\mp jj \) was modeled using SHERPA 2.2.11, and the calculations were performed with up to one additional parton at LO QCD accuracy. Contributions from the on-shell \(WW \) and \(WH \) processes were removed from \(W^\pm W^\mp jj \) production. Contributions from double parton scattering processes are found to be negligible.

To improve the separation between signal and background, two BDTs are trained using the XGBoost [44] package and are applied separately to the 2\(\ell^\pm \) and 3\(\ell^\pm \) SRs. All backgrounds are included in the BDT training. Each BDT is trained with 11 variables, some of which differ between the two sets. The three variables with the highest discriminating power are \(m_{jj} - m_W \), where \(m_W \) is the pole mass of the W boson, forward jet \(p_T \), and \(S(E_T^{\text{miss}}) \) for the 2\(\ell \) channel, and the ratio \(S(E_T^{\text{miss}})/E_T^{\text{miss}} \) for the second highest-\(p_T \) lepton, and number of jets for the 3\(\ell \) channel. A \(k \)-fold cross-validation procedure is used to produce the final discriminant. Fivefold (fourfold) cross-validation BDTs are trained in the 2\(\ell^\pm \) SRs (3\(\ell^\pm \) SR) and each BDT is trained on 80% (75%) of the expected signal and
To produce the BDT distribution used in the fit, each of the five (four) trained BDTs is applied to the 20% (25%) of the events not used to train the BDTs.

To extract the WWW inclusive cross section, a binned maximum likelihood fit [45] is performed using the BDT distributions in the 2ℓ SRs (e^+e^-, $e^+\mu^-$, and $\mu^+\mu^-$) and the 3ℓ SR as well as the $m_{\ell\ell}$ distributions in the three WZ CRs, amounting to seven distributions with 50 bins in total. The fit includes four unconstrained parameters that scale the number of events for a particular process predicted by MC simulation: the signal strength μ_{WWW} for WWW production and three scale factors for WZ+0 jets, WZ+1 jet, and WZ+≥ 2 jets. The ratio of on-shell WWW production to $WH \rightarrow WWW$ production is determined from MC simulation and is allowed to vary within the theoretical uncertainties of the two processes.

Systematic uncertainties are included in the fit as nuisance parameters constrained by Gaussian probability density functions. Correlations between systematic uncertainties arising from common sources are maintained across processes and channels. Instrumental systematic uncertainties are related to the lepton trigger, reconstruction and background events. To produce the BDT distribution used in the fit, each of the five (four) trained BDTs is applied to the 20% (25%) of the events not used to train the BDTs.

Table I

<table>
<thead>
<tr>
<th>Channel</th>
<th>e^+e^-</th>
<th>$e^+\mu^-$</th>
<th>$\mu^+\mu^-$</th>
<th>3ℓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW signal</td>
<td>28.4 ± 4.3</td>
<td>124 ± 19</td>
<td>82 ± 12</td>
<td>34.8 ± 5.2</td>
</tr>
<tr>
<td>WZ</td>
<td>81.1 ± 5.7</td>
<td>346 ± 22</td>
<td>170 ± 10</td>
<td>16.4 ± 1.5</td>
</tr>
<tr>
<td>Charge-flip</td>
<td>31.1 ± 7.3</td>
<td>19 ± 5</td>
<td>...</td>
<td>1.7 ± 0.4</td>
</tr>
<tr>
<td>γ conversions</td>
<td>60.8 ± 8.5</td>
<td>139 ± 15</td>
<td>...</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>Nonprompt</td>
<td>17.0 ± 4.0</td>
<td>145 ± 23</td>
<td>104 ± 21</td>
<td>26.6 ± 2.9</td>
</tr>
<tr>
<td>Other</td>
<td>22.3 ± 2.4</td>
<td>100 ± 10</td>
<td>58 ± 6</td>
<td>8.0 ± 0.9</td>
</tr>
<tr>
<td>Total predicted</td>
<td>241 ± 11</td>
<td>873 ± 22</td>
<td>415 ± 17</td>
<td>89.0 ± 5.4</td>
</tr>
<tr>
<td>Data</td>
<td>242</td>
<td>885</td>
<td>418</td>
<td>79</td>
</tr>
</tbody>
</table>

FIG. 2. Postfit BDT output distribution in the e^+e^- (top left), $e^+\mu^-$ (top right), $\mu^+\mu^-$ (bottom left), and 3ℓ (bottom right) channels. The bottom panel of each plot shows the ratio of the data to the total prediction. The uncertainty bands include both the statistical and systematic uncertainties as obtained by the fit. The signal is scaled to the fitted signal strength of 1.61.
identification efficiencies [22,24], lepton isolation criteria [23], lepton energy scale and resolution [22,46], jet energy scale and resolution [47], jet vertex tagging [48,49], b-jet identification [27], modeling of E_T^{miss} [50] and pileup, and integrated luminosity [14,51]. Theoretical uncertainties associated with the signal processes and the background processes with prompt leptons are evaluated using simulation. For the signal and WZ background, acceptance and distribution shape uncertainties due to the renormalization and factorization scales [52], PDFs [53], and parton showering, are also included in the simultaneous fit. The normalization uncertainties for the processes included in the “Other” background category in Table I and Fig. 2 are between 10% and 20% [54–57]. The fit includes the systematic uncertainties of each of the data-driven background estimates, and also the systematic uncertainties due to limited MC sample size.

The signal strength is measured to be $\mu(\text{WWW}) = 1.61 \pm 0.25$, where the uncertainty also includes the signal cross-section uncertainty (3.6%) affecting the predicted inclusive cross section from the signal MC samples. The three WZ scale factors are found to be 1.12 ± 0.11, 0.98 ± 0.04, and 0.88 ± 0.18 for the 0-jet, 1-jet, and ≥ 2-jet bins. Table I shows the postfit signal and background event yields as well as the observed yield in each SR. The contribution of the WH process to the WWW yield ranges between 40% and 44% in the four SRs. All nuisance parameters remain within their one standard deviation uncertainty after the fit. Figure 2 shows a comparison between data and postfit predictions for the BDT output score distribution in all SRs. For various postfit kinematic distributions in the SRs, data and predictions are found to have a p value greater than 0.05 from a χ^2 test that takes into account the systematic uncertainties and correlations used in the fit to data.

The background-only hypothesis is rejected with an observed (expected) significance of 6.6 (4.0) standard deviations for the 2ℓ' SRs and 4.8 (3.8) standard deviations for the 3ℓ' SR calculated using the asymptotic approximation [58]. The combined observed (expected) significance is found to be 8.0 (5.4) standard deviations, constituting the first observation of WWW production. The signal strength is also measured separately by fitting the BDT distribution in each SR with the three WZ CRs. The values are found to be consistent: 1.54 ± 0.76 for e^+e^-, 1.44 ± 0.39 for $e^\pm\mu^\mp$, 2.23 ± 0.46 for $\mu^\pm\mu^\mp$, and 1.32 ± 0.39 for 3ℓ'.

The measured inclusive $pp \to \text{WWW}$ production cross section is calculated as the product of the measured signal strength and the cross section from MC simulation, and is found to be $\sigma_{\text{meas}}(pp \to \text{WWW}) = 820 \pm 100 \text{ (stat)} \pm 80 \text{ (syst)} \text{ fb}$. The largest systematic uncertainty contribution is 6% from data-driven estimates (mainly nonprompt background), followed by 3% from prompt-lepton-background modeling uncertainties (primarily WZ theory uncertainties).

In conclusion, the first observation of the $pp \to \text{WWW}$ process is reported by the ATLAS experiment at the LHC. Events with two same-sign charged leptons in association with at least two jets, as well as events with three charged leptons and no same-flavor opposite-sign lepton pairs, were selected from 139 fb$^{-1}$ of 13 TeV pp collisions. Two BDTs were trained to improve the separation between signal and background. The SM background-only hypothesis is rejected with an observed (expected) significance of 8.0 (5.4) standard deviations. The inclusive $pp \to \text{WWW}$ production cross section is measured to be $820 \pm 100 \text{ (stat)} \pm 80 \text{ (syst)} \text{ fb}$, approximately 2.6 standard deviations from the predicted cross section of 511 ± 18 fb calculated at NLO QCD and LO electroweak accuracy.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; N ERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MEYS CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRI, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MEIn, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; MES of Russia and NRC KI, Russian Federation; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DSI/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SERI, NSNF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mechanism 2014-2021, Norway; NCN and NAWA, Poland; La Caixa Banking Foundation, PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF
(Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [59].

[16] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse plane, \(\phi\) being the azimuthal angle around the z axis. The pseudorapidity is defined in terms of the polar angle θ as $\eta = -\ln\tan(\theta/2)$. Momentum in the transverse plane is denoted by p_T.
13 Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
15 Physics Department, Tsinghua University, Beijing, China
16 Department of Physics, Nanjing University, Nanjing, China
17 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
18 Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany
19 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
20 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
21 Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
22 Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia
23 Dipartimento di Fisica e Astronomia A. Righi, Università di Bologna, Bologna, Italy
24 Department of Physics, Bogazici University, Istanbul, Turkey
25 Department of Physics, Istanbul University, Istanbul, Turkey
26 Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
27 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
28 Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania
29 National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania
30 University Politehnica Bucharest, Bucharest, Romania
31 West University in Timisoara, Timisoara, Romania
32 Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic
33 Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
34 Physics Department, Brookhaven National Laboratory, Upton, New York, USA
35 University of Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, y CONICET, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
36 California State University, California, USA
37 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
38 Department of Physics, University of Cape Town, Cape Town, South Africa
39 iThemba Labs, Western Cape, South Africa
40 Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
41 National Institute of Physics, University of the Philippines Diliman (Philippines), Philippines
42 University of South Africa, Department of Physics, Pretoria, South Africa
43 University of Zululand, KwaDlangezwa, South Africa
44 School of Physics, University of the Witwatersrand, Johannesburg, South Africa
45 Department of Physics, Carleton University, Ottawa ON, Canada
46 Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies—Université Hassan II, Casablanca, Morocco
47 Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco
48 Faculté des Sciences Semlalia, Université Cadi Ayyad, LPMR, Faculté des Sciences, Université Mohamed Premier, Oujda, Morocco
49 Faculté des sciences, Université Mohammed V, Rabat, Morocco
50 Mohammed VI Polytechnic University, Ben Guerir, Morocco
51 CERN, Geneva, Switzerland
52 LPC, Université Clermont Auvergne, CNRS-IN2P3, Clermont-Ferrand, France
53 Nevis Laboratory, Columbia University, Irvington, New York, USA
54 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
55 Dipartimento di Fisica, Università della Calabria, Rende, Italy
56 INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
57 Physics Department, Southern Methodist University, Dallas, Texas, USA
58 Physics Department, University of Texas at Dallas, Richardson, Texas, USA
National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
Department of Physics, Stockholm University, Sweden
Oskar Klein Centre, Stockholm, Sweden
Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, North Carolina, USA
SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN e Laboratori Nazionali di Frascati, Frascati, Italy
Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland
Dipartimento di Fisica, Università di Genova, Genova, Italy
INFN Sezione di Genova, Italy
II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA—School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China
Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China
School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MOE), SKLPPC, Shanghai, China
Tsung-Dao Lee Institute, Shanghai, China
Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Department of Physics, University of Hong Kong, Hong Kong, China
Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
JICLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France
Department of Physics, Indiana University, Bloomington, Indiana, USA
INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
ICTP, Trieste, Italy
Dipartimento di Ingegneria e Architettura, Università di Udine, Udine, Italy
INFN Sezione di Udine, Italy
Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
INFN Sezione di Lecce, Italy
Dipartimento di Fisica, Università di Milano, Milano, Italy
INFN Sezione di Milano, Italy
Dipartimento di Fisica, Università di Napoli, Napoli, Italy
INFN Sezione di Napoli, Italy
Dipartimento di Fisica, Università di Pavia, Pavia, Italy
INFN Sezione di Pavia, Italy
Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy
INFN Sezione di Roma, Italy
Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
INFN Sezione di Roma Tor Vergata, Italy
Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy
INFN Sezione di Roma Tre, Italy
Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy
INFN-TIFPA, Italy
Università degli Studi di Trento, Trento, Italy
Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
University of Iowa, Iowa City, Iowa, USA
Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA
Joint Institute for Nuclear Research, Dubna, Russia
Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil
80b. Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
80c. Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
80d. Rio de Janeiro State University, Rio de Janeiro, Brazil
81. KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
82. Graduate School of Science, Kobe University, Kobe, Japan
83a. AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
83b. Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
84. Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
85. Faculty of Science, Kyoto University, Kyoto, Japan
86. Kyoto University of Education, Kyoto, Japan
87. Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan
88. Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
89. Physics Department, Lancaster University, Lancaster, United Kingdom
90. Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
91. Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia
92. School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom
93. Department of Physics, Royal Holloway University of London, Egham, United Kingdom
94. Department of Physics and Astronomy, University College London, London, United Kingdom
95. Louisana Tech University, Ruston, Los Angeles, USA
96. Fysiska institutionen, Lunds universitet, Lund, Sweden
97. Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain
98. Institut für Physik, Universität Mainz, Mainz, Germany
99. School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
100. CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
101. Department of Physics, University of Massachusetts, Amherst, Massachusetts, USA
102. Department of Physics, McGill University, Montreal QC, Canada
103. School of Physics, University of Melbourne, Victoria, Australia
104. Department of Physics, University of Michigan, Ann Arbor, Michigan, USA
105. Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA
106. B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
107. Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus
108. Group of Particle Physics, University of Montreal, Montreal QC, Canada
109. P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
110. National Research Nuclear University MEPhI, Moscow, Russia
111. D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
112. Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany
113. Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany
114. Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
115. Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico, USA
116. Institute for Mathematics, Astrophysics and Particle Physics, Radboud University/Nikhef, Nijmegen, Netherlands
117. Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands
118. Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
119. Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia
120. Novosibirsk State University Novosibirsk, Russia
121. Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia
122. Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre “Kurchatov Institute”, Moscow, Russia
123. New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
124. United Arab Emirates University, Al Ain, United Arab Emirates
125. University of Sharjah, Sharjah, United Arab Emirates
126. Department of Physics, New York University, New York, USA
127. Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
128. Ohio State University, Columbus, Ohio, USA
129. Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
130. Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
131. Palacký University, Joint Laboratory of Optics, Olomouc, Czech Republic
132. Institute for Fundamental Science, University of Oregon, Eugene, Oregon, USA
133. Graduate School of Science, Osaka University, Osaka, Japan
134. Department of Physics, University of Oslo, Oslo, Norway
Department of Physics, Oxford University, Oxford, United Kingdom
LPNHE, Sorbonne Université, Université Paris Cité, CNRS/IN2P3, Paris, France
Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
Laboratório de Instrumentação e Física Experimental de Partículas—LIP, Lisboa, Portugal
Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
Departamento de Física, Universidade de Coimbra, Coimbra, Portugal
Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal
Departamento de Física, Universidade do Minho, Braga, Portugal
Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada (Spain), Spain
Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
Czech Technical University in Prague, Prague, Czech Republic
Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Subatomic physics at high energy frontier (SAPHIR), Santiago, Chile
Instituto de Investigación Multidisciplinario en Ciencia y Tecnología, y Departamento de Física, Universidad de La Serena, Chile
Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
Department of Physics, University of Washington, Seattle, Washington, USA
Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
Department of Physics, Shinshu University, Nagano, Japan
Department Physik, Universität Siegen, Siegen, Germany
Department of Physics, Simon Fraser University, Burnaby BC, Canada
SLAC National Accelerator Laboratory, Stanford, California, USA
Department of Physics, Royal Institute of Technology, Stockholm, Sweden
Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
School of Physics, University of Sydney, Sydney, Australia
Institute of Physics, Academia Sinica, Taipei, Taiwan
E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Tomsk State University, Tomsk, Russia
Department of Physics, University of Toronto, Toronto ON, Canada
TRIUMF, Vancouver BC, Canada
Department of Physics and Astronomy, York University, Toronto ON, Canada
Division of Physics and Tomonaga Center for the History of the University, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Department of Physics, University of Illinois, Urbana, Illinois, USA
Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
Department of Physics, University of Warwick, Coventry, United Kingdom
Waseda University, Tokyo, Japan
Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel