Station area developments in Tokyo and what the Randstad can learn from it

Chorus, P.R.W.E.

Citation for published version (APA):
Chorus, P. R. W. E. (2012). Station area developments in Tokyo and what the Randstad can learn from it.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
1 Developing station areas in Tokyo and the Randstad

1.1 Research background

In general, there is a wide consensus among planners that transport systems and land use patterns are interrelated. Therefore, it would be expected that transport and land use developments are well-aligned. However, in spite of the consensus and some examples of good practices, land use planning is often un-coordinated, if not contradictory to transport planning (Cascetta and Pagliara, 2008; Filion and McSpurren, 2007; Haywood, 2005). The Netherlands is a typical example of a country where, despite continued policy efforts to improve the coordination between transport and land use developments (Ministerie van Infrastructuur & Milieu, 2011; Ministerie van Verkeer en Waterstaat, 2004; Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, 2006; 2008; Raad voor de Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer; 2009), land use and transport developments are often poorly aligned. In the case of railway developments, it is still quite common that the railway infrastructure is constructed before the urban development starts or worse, urban developments are completed with the railway infrastructure yet to start. In both cases this limits an efficient exploitation of the public infrastructure and it may hamper the development of the area. Thus despite the fact that there is a general awareness in the Netherlands that transport and land use developments should be coordinated this is often not the case in practice.

The development of station areas are a typical example of this. Since the 1990s station areas have been gaining increasing attention in the Netherlands. They are considered prime development locations combining excellent accessibility with proximity to city centres and are often one of the few spaces left available for development within the existing urban area. For an efficient utilization of these spaces a comprehensive approach of land use and transport is needed. This has proven to be difficult in the...
Netherlands and is largely responsible for the slow progress of station area development projects. However, there are examples where transport and land use developments are more integrated. Tokyo is one of these examples. With the above in mind, the idea arose that the Randstad, a conurbation in the Netherlands consisting of the four largest Dutch cities (Amsterdam, Rotterdam, The Hague and Utrecht) and their surrounding areas, could learn from Tokyo with regard to the development of station areas. This automatically raises the question—why should the Randstad learn from Tokyo? Tokyo is a clear example of a railway-oriented city. During a period of strong economic growth after World War II it was largely the railways that facilitated the development direction of Tokyo. As a result vast stretches of land around the railway lines radiating outwards from the city centre have been developed. Of course Tokyo is not unique; there are other cities in the world that use railways to guide their urban development (see e.g. Bertolini and Spit, 1998; Cervero, 1998; Curtis et al., 2009). However, the difference is that in Tokyo this approach has been consistently applied since the late 1920s (see figure 1-1). Therefore, the development stage that Tokyo is currently in is much further than that of other cities in the world.

Figure 1-1 Evolution of Tokyo’s railway oriented structure

Where most other cities are expanding their network throughout the city, Tokyo has made a leap in scale and has extended its network into the metropolitan area. In addition Tokyo’s railway network is basically complete, meaning that new lines are no longer required. The investments nowadays focus on extending and establishing through-connections between existing lines. The result of this is that a large part of the approximately 36 million people covering the metropolitan area are living within 10 minutes walking distance of a station. Tokyo’s railway system is growing in a coherent way towards a multi-polar network in which nodes seem to complement rather than compete with each other. How this network has evolved, in regards to the railway infrastructure and urban functions, and what role the government and other interested parties fulfilled could be of interest to the Randstad. In particular the two large metropolitan areas within the Randstad, the North Wing (Noordvleugel) and the South Wing (Zuidvleugel) could benefit from this.
As here, as well as in other parts of the Netherlands, there is the ambition to develop in a more railway oriented way.

In learning from Tokyo three themes need to be further articulated and explored:

1. The integration between transport and land use developments, as this will give insight on what to do.
2. Particular private sector-government relationships in planning, as this will give insight on how to do it.
3. Transferring institutional features from one country to another, as this will give insight into what could be learnt from a different context (i.e. the Tokyo approach to station area developments).

Together these themes result in the central question underlying this research, which goes as follows:

What are the driving forces behind the development of station areas in Tokyo, and to what extent can similar forces be activated in the Randstad?

The ultimate goal of this research is twofold:

1. to draw lessons from station area developments in Tokyo and
2. to explore how these lessons could be applied to station area development projects in the Randstad.

A more general scientific goal underlying this research is to gain insight into what can be learnt in the transport and land use planning realm from other countries.

The latter part of this chapter discusses the theoretical framework of this research, which is structured around the three themes mentioned above. The methodologies underlying this research are then presented followed by an outline of the book.

1.2 Theoretical framework

The analysis of the development of station areas focuses on three domains: the spatial, the infrastructural and the institutional. These domains form the first two pillars of the theoretical framework. The spatial domain represents the land uses in the station area and is structured by the locational behaviour of businesses and households. The infrastructural domain represents the transportation facilities available in the station area and is structured by the mobility behaviour of businesses and households. The institutional domain refers to the government regulations used to influence the locational and the mobility behaviour. The infrastructural and spatial domain should not be regarded separately from each other as land use and travel patterns mutually influence each other. It is easily understood that the spatial distribution of activities requires trips to overcome the distance between them. This can either be in the form of new infrastructure or a more efficient operation of the existing facilities. This increase in accessibility co-determines location decisions and affects the distribution of land uses.
This two-way interaction between the spatial and the infrastructural domain in station area development is addressed by the node-place model of Bertolini (1999). It is used in this research to gain insight into the development dynamics of station areas in Tokyo. The institutional domain focuses on the planning process of station areas and on the roles that the public and private sector play in this. This research explores to what extent a more libertarian approach to planning leads to more integrated station areas. In order to do this the “market-conscious planning style” advocated in Tokyo/Japan will be compared to the Randstad/Netherlands characterized by its “government-oriented planning style”. This research is aimed at not only drawing lessons from Tokyo, but also exploring how these lessons can be implemented in the Randstad. To explore this the concept of institutional transplantation (de Jong, 1999), or the borrowing of institutional features from one country to another, serves as a starting point. It is used to explore what instruments, policies, processes and roles regarding station area developments in Tokyo can be transplanted to station area developments in the Randstad, and to what extent. This forms the third and last pillar of the theoretical framework.

Thus, the three pillars of the theoretical framework are explored using the following three theories: 1) the Node-place model, 2) Market-conscious planning, and 3) Institutional transplantation and learning.

1. **Node-place model**

Generally, it is recognized that there is a high interdependency between transport and land use patterns. However, its causal links are much more difficult to prove (e.g. Giuliano, 2004; Meyer & Miller, 2001; Wegener & Fürst, 1999). The land use feedback cycle, where changes in transport and land use patterns influence each other, illustrates this causal relationship. The node-place model of Bertolini (1999) builds further on this relationship. According to this model each station consists of a node and place value. The node value represents the transport services available in a certain location, while the place value represents the intensity and diversity of activities in a certain location. It is assumed that there is a balance between the node and place functions and where this is not the case the stations will show a strong tendency to move towards a more balanced state (Bertolini, 2005). With the help of the node-place model the position of a station in the urban and railway network can be identified as well as its development potential. Insight from such information can help governments formulate policies to promote transit-oriented developments. Also, an overview of the development potential of stations can help the private sector make investment decisions and determine investment priorities.

Hypothesis 1:
The node-place model is a useful tool for deliberating on investment and policy decisions regarding the development of station areas.

1 This research focuses on the Randstad and Tokyo, but in some cases aspects apply to the Netherlands and Japan as a whole. Accordingly, this is referred to as the ‘Randstad/Netherlands’ and ‘Tokyo/Japan’.
2. **Market-conscious planning**

Due to processes such as globalization, the liberalization of economic markets, and more recently, the financial crisis, the proactive role of the government in economy and society has reduced. Instead the private sector has become increasingly involved in activities that were previously the near exclusive responsibility of the government. In this context it is assumed that traditional government-oriented planning is not a satisfactory approach. A different approach is needed that does not see the government and market as each other’s counterpart, but rather looks for ways in which they interrelate and function together.

Such an approach is market-conscious planning. In traditional government-oriented planning regulations play an important role in coordinating land use changes. In many cases, however, these regulations seem to impede rather than stimulate such changes resulting in rigid and less efficient markets. A market-conscious approach to planning, on the other hand, seeks to find ways in which the government can help markets function better. One possible way of doing this is to leave the initiative and freedom of planning to the private sector, while at the same time confronting them with strict requirements. Planning incentives are an example of this as they allow considerable freedom of planning to the private sector provided that they meet certain conditions pre-established by the government. In this way private sector investments can be used for achieving public goals (i.e. through the pre-established conditions) and public planning tools can be used for achieving private sector goals (i.e. through the planning incentives). However, the extent to which this can take place depends on the negotiating powers of both the public and private sector.

Hypothesis 2

Market-conscious planning in combination with safeguards of related public interests can lead to more integrated station area developments in the Randstad/Netherlands.

3. **Institutional transplantation and learning**

As this research involves a comparison between two countries the question arises of how to transplant ideas from one country to another, in this case from Japan to the Netherlands. Both countries differ significantly when comparing their cultural, spatial, socio-economic and political background. According to de Jong (1999) who analysed decision-making processes of transport infrastructure, ideas can be transplanted from one country to another by borrowing their institutional characteristics. This he calls institutional transplantation. A successful institutional transplantation should meet two requirements. First, actors should be given enough freedom to adapt models according to their own liking. As a lack of freedom may lead to resistance and/or ineffective outcomes, while actors who are given enough freedom are more likely to facilitate the process. Second, a transplant should fit into its new environment. The existing context should be acknowledged and taken into account when taking a model and adjusting it to one’s needs. Although both requirements give an insight into how the transplantation process occurs and what is crucial for its success, they tend to overlook the actual learning process itself. Whether an institutional transplantation
is successful depends also on the capacity of a city/country to learn. Therefore, it is necessary to understand how cities/countries learn from each other. A successful implementation of ideas from Tokyo requires more than simply copying these ideas in the Netherlands, rather they should trigger a learning process leading to institutional innovation (Marsden et al., 2009).

Hypothesis 3
The Randstad/ Netherlands can benefit from transplanting and learning from experiences in Tokyo/Japan regarding its development of station areas.

These theories and the process that led to their development will be elaborated upon in chapter 2. Then the three hypotheses mentioned above will be empirically examined.

1.3 Methodological framework

This research is about identifying the driving forces behind station area development projects in Tokyo and their implementation, if possible, in the Randstad. In order to do this it is necessary to look at how the planning of station area developments works in practice in Tokyo and what roles the public and private sector play in this. The findings from Tokyo serve as ideas for the Randstad to explore; particularly in relation to how the planning of station area developments can be improved and to what extent this will affect the current roles of the public and private sector. In Tokyo ‘explanatory science’ (van Aken, 2004) is used to describe and explain how market-conscious planning works in the case of station area developments. This focuses in particular on the roles of the public and private sector in the development process and on the planning instruments used by the public sector to encourage private sector investments.

The findings from the research on Tokyo’s station area developments generated the hypotheses of this research project. These hypotheses are used to assess the potential of the Tokyo approach for developing station areas in the Randstad.

The objective of the analysis of the Randstad is not to describe and explain station area development projects, as was the case regarding Tokyo, but to consider ways to improve them. This kind of research is called ‘design science’ (van Aken, 2004; Straatemeier et al., 2010). The aim of design science is to generate new knowledge that is both tested in practice and grounded in theory. This new knowledge needs to be co-produced between academics and practitioners. The experiential learning cycle of Kolb and Fry (1975) provides a useful framework for establishing the (potential) relationship between knowledge and experience. In the experiential learning cycle new knowledge is generated in a continuous flow. This works as follows: the observation of and reflection on concrete experiences leads to the formation of abstract concepts. These concepts are then tested in new situations and eventually lead to the adaptation of existing practices, (in figure 1-2 named concrete experience).
Figure 1-2 The experiential learning cycle

Explanatory science in Tokyo
Between April 2005 and April 2007 the development of station areas in Tokyo was analysed. This started with a demarcation of the research area. As the Greater Tokyo Area has a railway network extending over 2500 kilometres, consisting of more than 1200 stations, it might be obvious that it is rather impossible to thoroughly analyse all station area developments. Therefore the study area was limited to an area within a radius of 30 kilometres from Tokyo Station, the traditional centre of Tokyo, as such measure would include the main railway stations and their related urban developments in the metropolitan region. Within this radius the stations were selected that fulfill a regional role in the network. This role is illustrated by havinf at least one transfer option to another railway or subway line. Within this radius the stations were selected that fulfill a regional role in the network. This role is illustrated by having at least one transfer option to another railway or subway line. Eventually, 99\(^2\) stations matched this criterion.

\(^2\) Initially 131 stations were selected but due to a lack of available data the list was reduced to 99 stations.
The development of station areas in Tokyo was analysed on three different levels:

1. **Network level:** within a 30 kilometre radius from Tokyo station, in fact only part of the railway network of the Greater Tokyo Area, a node-place model application was carried out to gain insight into the development dynamics of the 99 station areas. More specifically, it was used to explore which transport and land use factors are responsible for structuring station area developments in Tokyo, and to what extent. In addressing the former: correlation analysis was used to reveal the combination of node and place values that seemed to be the most powerful force in shaping station area developments. In addressing the latter: three cases of station area developments were further analysed to find out whether the development path identified by the node-place model was unfolding or not and why.

2. **Corridor level:** the development patterns, as identified by the node-place model, were further analysed by focusing on railway corridors. The railway corridors that were selected contained at least 5 of the previously-analysed station areas in order to get a representative image of the corridor involved. Furthermore, the railway corridors needed to operate on a regional level. The development patterns of two railway corridors were analysed. This was done in two different ways: 1) by looking at how the development patterns related to the position of a station in the node-place model, and 2) by looking at how the development patterns related to the position of a station in the railway corridor. In addressing the development patterns the density and functional patterns of the station areas along the railway corridor were analysed.

3. **Station level:** Three examples of station area developments in Tokyo were analysed to demonstrate how station area developments are planned in Tokyo. The case studies are to demonstrate how market-conscious planning works in practice and, in particular, how planning conditions the market. The incentive systems, which allow the existing Floor Area Ratio-values to be relaxed, play a pivotal role in this. The three cases describe three different incentive systems each representing a particular period in the urban development of Japan, i.e. the early 1960s through the 1970s in which urban developments were predominantly state-led, the 1980s in which urban developments were carried out in public-private partnerships, and the 2000s in which urban developments are almost entirely led by the private sector.

This analysis should provide an answer to the first part of the central question underlying this research, i.e. “What are the driving forces behind the development of station areas in Tokyo…”

3 The 1990s was a period of prolonged economic recession in Japan and is generally referred to as the ‘Lost decade’. Consequently, there were relatively few urban developments carried out in Tokyo/Japan.
Design science in the Randstad

The description and explanation of station area developments in Tokyo provided ideas about how to improve the planning of station area development practices in the Randstad. The ultimate aim of this research was to find out whether the approach followed in Tokyo could work in the Randstad, and if so why and if not why not. The potential of the Tokyo approach was assessed in two steps.

First a number of focus groups and focused-group interviews were organized in which the Tokyo approach was applied to a number of station areas in the Randstad. The aim of this was to see how the Tokyo approach could improve the planning and development of station area development practices in the Randstad.

The experiential learning cycle of Kolb and Fry (1975) provided the framework for this. In total two focus groups and two focused-group interviews were held. The focus groups were asked to discuss a specific railway corridor, while the focused-group interviews were based on a particular railway station. As for the railway corridor: one case concerned a railway section in the South Wing of the Randstad, while the other concerned a railway section in the North Wing of the Randstad. The cases selected for the focused-group interviews were derived from the discussions held in the railway corridor focus groups. Before and after each focus group and focused group interview a questionnaire was handed out to the participants. They were required to answer two questions initially without having (new) knowledge about the way station area developments in Tokyo are planned. At the end of the focus group/focused group interview, after the participants had learnt (more) about how station area developments in Tokyo are planned, they were asked again to answer the two questions.

The second step involved conducting individual interviews with actors involved in station area development projects in the Randstad. These interviews were structured on a number of hypotheses focusing on incentives and barriers for station area developments. The hypotheses were derived from the discussions held in the focus groups and focused group interviews and from the results of the questionnaires. Each interviewee was asked beforehand to state their opinion on the hypotheses and send their answers to the researcher concerned. During the interview the interviewee was asked to elaborate on their previously expressed opinions.

Both these steps were designed to provide an answer to the second part of the central question underlying this research, i.e. “...and to what extent can similar forces be activated in the Randstad?”
1.4 Structure of the research and its representation in the book

This research is divided into four parts (see figure 1-3). Part one is an introductory part and consists of three chapters. In the first two chapters the context of the research, the central question and the theoretical and methodological framework are presented. In the last chapter the metropolitan areas of Tokyo and the Randstad are introduced.

Part two consists of four chapters and addresses the first half of the central question, i.e. “What are the driving forces behind station area developments in Tokyo”. This is the explanatory science part of the book and aims to describe and explain the planning of station area developments in Tokyo. The first chapter should be seen as a context chapter and provides an overview of how and by whom in Tokyo station areas are being developed. In the following three chapters the development of station areas in Tokyo is analysed on three different levels, i.e. the network, corridor and station level. The findings from this analysis were used to generate the hypotheses later tested in the Randstad. In the conclusion of part two the driving forces behind station area developments in Tokyo are presented, thereby answering the first part of the central question.

Part three consists of five chapters and addresses the second half of the central question, i.e. “to what extent can similar forces be activated in the Randstad”. This is the design science part of the book and aims to explore how insight in the planning of station area developments in Tokyo can help to improve station area development practices in the Randstad. The first chapter should be seen as a context chapter and provides an overview of how and by whom in the Randstad station areas are being developed. In the following three chapters the applicability of the Tokyo model for the Randstad is assessed by: 1) focus groups and focused-group interviews, 2) ex-ante and ex-post surveys, and 3) individual interviews.
In the last chapter of part three the potential for the Tokyo approach to be used in the Randstad is assessed, thereby answering the second part of the central question.

Part four is the final and concluding part of the research and consists of one chapter. This chapter reflects on the research and its outcomes from a theoretical and methodological point of view.
Chapter 1 - Developing station areas in Tokyo and the Randstad

Figure 1-3 Structure of the research as represented in this book

PART 1 INTRODUCTION
Developing station areas in Tokyo and the Randstad (chapter 1)
Theoretical and methodological framework (chapter 2)
Introducing Tokyo and the Randstad (chapter 3)

PART 2 UNDERSTANDING THE DRIVING FORCES BEHIND STATION AREA DEVELOPMENTS IN TOKYO
Developing station areas in Tokyo (chapter 4)
Node place model applied to Tokyo (chapter 5)
Corridor studies (chapter 6)
Station area development studies (chapter 7)
Conclusion part two

PART 3 EXPLORING THE APPLICABILITY OF THE TOKYO MODEL IN THE RANDSTAD
Developing station areas in the Randstad (chapter 8)
Focus groups and focused group interviews (chapter 9)
Ex-ante and ex post surveys (chapter 10)
Individual interviews (chapter 11)
Applicability in the Randstad (chapter 12)

PART 4 CONCLUSION
Reflection (chapter 13)
Organization of the book

Part one
In chapter 1 the research context, the central research question and research goal are introduced. Furthermore, the theories and research methods underlying this research are briefly introduced. The chapter ends by outlining the structure of this research and the organisation of this book.

Chapter 2 discusses three theories that together make up the theoretical framework of this book. They are about: 1) the interaction between transport and land use (node-place model), 2) other relationships between the private and public sector in planning (market-conscious planning), and 3) the transfer of institutional features from one country to another (institutional transplantation and learning). Furthermore, the methodologies used for carrying out this research are discussed.

In chapter 3, before the analysis takes place, both Tokyo and the Randstad are introduced. Their morphological, socio-economical and institutional features are discussed to give the reader an idea of what these metropolitan regions are about. At the end of the chapter a comparison is made between these two metropolitan regions and some conclusions are drawn.

Part two
Chapter 4 aims to give an overview of how station areas are being developed in Tokyo and what actors are involved. To understand the context in which these actors operate first an overview of the railway sector in Japan is given, followed by a brief overview of how railway networks are planned and how the planning system in Japan works. Then a description is given of the key actors involved in the development of station areas. Subsequently, a more in-depth description is given of the role that private railway operators play in the development of station areas. At the end of the chapter some typical features of station area developments in Tokyo are highlighted.

Chapter 5 is related to the theory of the node-place model and describes the results and findings of the application of the node-place model to a selection of 99 stations in Tokyo. The aim of this analysis is to gain a better understanding of the spatial development dynamics of station areas in Tokyo. More specifically, it will be used to explore which transport and land use factors are responsible for structuring station area developments and subsequently to what extent. To address the former: correlation analysis is used to reveal which combination has the highest influence and is thus evidence of a powerful force shaping station area developments. To address the latter: three cases of station area developments are further analysed to find out whether the development path expected by the node-place model is unfolding or not and why.

In chapter 6 the development patterns, as identified by the node-place model, are further analysed by focusing on railway corridors. Two railway corridors in Tokyo are analysed by taking a closer look at their morphology, density and functional patterns. Accordingly these patterns are then related to the position of a station in the node-place model and in the railway corridor. The aim of this analysis is to test a number of
hypotheses focusing on railway corridors to find out if the corridor is a relevant unit for coordinating transport and land use developments at a regional level.

Chapter 7 is related to the theory of market-conscious planning and aims to demonstrate how such an approach works in the case of station area developments in Tokyo. Planning incentives play a pivotal role in this and are important devices for the government to stimulate certain developments. As will be demonstrated both the public and the private sector can benefit from these incentives. At the end of the chapter three cases of station area developments are described and analysed, illustrating how planning incentives work in practice and what role the public and private sector play in this. In the conclusion of part two an answer is given to the first part of the central question underlying this research, i.e. “What are the driving forces behind station area developments in Tokyo…” The driving forces presented relate to the way station areas are being planned in Tokyo, the roles that both the government and private sector (i.e. developers and railway operators) play in this, and the planning incentives/policies used for stimulating their development.

Part three

Chapter 8 aims to give an overview of how station areas are being developed in the Randstad and what actors are involved. To understand the context in which these actors operate first an overview of the railway sector in the Netherlands is given, followed by a brief overview of how railway networks are planned and how the planning system in the Netherlands works. This is followed by a description of the key actors involved in the development of station areas. Subsequently, a more in-depth description is given of the role that the Dutch Railways (Nederlandse Spoorwegen (NS)) play in the development of station areas. At the end of the chapter a comparison is drawn between the Dutch and the Japanese railway sector, and the roles that the key actors play in the development of station areas in the Randstad/Netherlands and Tokyo/Japan are reflected upon.

Chapter 9 describes the findings of the first step in assessing the potential of the Tokyo approach for the development of station areas in the Randstad. This step concerns a series of focus groups and focused-group interviews in which the Tokyo approach was applied to a number of station area developments in the North and South Wing of the Randstad. This was done to see whether the Tokyo approach could improve the planning and development of station areas in the Randstad. During and after each focus group and focused group interview questionnaires were handed out to the participants. The participants were required to answer four questions: two at the beginning and two at the end of each focus group and focused group interview. The results of these questionnaires are presented in chapter 10. This is the second and last part of the first step in assessing the potential of the Tokyo approach.
Chapter 11 describes the findings of the second step which assesses the applicability of the Tokyo model for the Randstad. This step involves a series of individual interviews with key players involved in station area development projects in the Randstad. These interviews were structured on a number of hypotheses focusing on incentives and barriers regarding station area developments. The interviewees were required to answer questions on these and send them to the researcher concerned prior to the interview. During the interviews the interviewees were asked to elaborate on theses expressed opinions. At the end of the chapter the opinions of the different groups of actors (i.e. government-node, government- place, private sector-node and private sector-place) are compared to identify possible similarities and differences between them. In addition, it is explored whether these differences are reducible to the distinction between actors representing the node and place function of a station and actors belonging to the public and private sector. In chapter 12 an answer is given to the second part of the central question, i.e. “…to what extent can similar forces be activated in the Randstad?” This is done in two steps. First, the driving forces behind station area developments in Tokyo considered applicable by the participants are described. The results of the focus groups, focused group interviews and the individual interviews served as a starting point for this. Secondly, the researcher himself reflects on some additional elements of the Tokyo approach that the participants did not address, but nevertheless are worth considering in regards to the Randstad. In the conclusion the (im) possibilities of the Tokyo approach are assessed.

Part four
The final chapter (chapter 13) reflects on the outcomes of the research from a theoretical and methodological point of view. The hypotheses formulated in chapter 1 are answered and directions for future research are provided. The chapter ends by offering some recommendations regarding the elements that are needed to stimulate the development of station areas in the Randstad. Also some final thoughts are given regarding the more fundamental changes that are needed to improve station area development practices in the Randstad/Netherlands.