PRECISE detects high activity from FRB 20220912A at 1.4 GHz but no bursts at 5 GHz using the Effelsberg telescope

Publication date
2022

Document Version
Final published version

Published in
The astronomer's telegram

License
Unspecified

Citation for published version (APA):
https://www.astronomerstelegram.org/?read=15727
The Astronomer's Telegram

9 Mar 2023; 13:48 UT

ATel #15727: PRECISE detects high activity from FRB 20220912A at 1.4 GHz but no bursts at 5 GHz using the Effelsberg telescope

ATel #15727; F. Kirsten (ASTRON, Chalmers/OSO), J. W. T. Hessels (ASTRON, U. of Amsterdam), D. M. Hewitt (U. of Amsterdam), O. S. Ould-Boukattine (ASTRON, U. of Amsterdam), M. P. Snelders (ASTRON, U. of Amsterdam), A. Gopinath (U. of Amsterdam), K. Nimmo (MIT), R. Karuppusamy (MPIfR), Wolfgang Herrmann (Astropeiler Stockert), J. Yang (Chalmers/OSO), M. Gawronski (NCU, Torun), R. Blaauw (ASTRON), S. T. Buttaccio (INAF/IRA), G. Maccaferri (INAF/IRA), Uwe Bach (MPIfR), R. Feiler (NCU, Torun), J. Bray (JBCA/Manchester), D. Williams (JBCA/Manchester), N. Wrigley (JBCA/Manchester), B. Marcote (JIVE), A. Keimpema (JIVE), Z. Paragi (JIVE), M. Burgay (INAF OA-Cagliari), A. Corongiu (INAF OA-Cagliari), M. Giroletti (INAF/IRA), M. Kramer (MPIfR), M. Pilia (INAF OA-Cagliari), L. Spitler (MPIfR), G. Surcis (INAF OA-Cagliari), M. Trudu (INAF OA-Cagliari), J. Yuan (XAO), N. Wang (XAO), V. Bezrukovs (ERI VIRAC)
on 28 Oct 2022; 15:37 UT

Credential Certification: Benito Marcote (marcote@jive.eu)

Subjects: Radio, Fast Radio Burst

Referred to by ATel #: 15806, 15817

Tweet

We observed the recently discovered FRB 20220912A (ATel #15679) with an ad-hoc VLBI network as part of the PRECISE project. We targeted the source on three occasions: 22 Oct UT 00:00-04:30, 24-25 Oct UT 21:00-02:00, and 26-27 Oct UT 23:00-04:30. The first two observations were carried out at L-band (1254-1510 MHz) while the latest one was performed at C-band (4798-5054 MHz). During the two L-band sessions we were pointing at the coordinates found by DSA-110 (23h09h05.49s +48d42m25.6s, J2000, ATel #15693) and refined this to the updated DSA-110 localisation from ATel #15716 (23h09h04.9s +48d42m25.4s, J2000) for the C-band session. Since these are

Related

15817 Bright burst detections from FRB 20220912A at 332 MHz using the Westerbork-RT1 25-m telescope
15806 uGMRT detection of more than a hundred bursts from FRB 20220912A in 300 - 750 MHz frequency range
15791 Detection of bursts from FRB 20220912A at 1.4 and 2.2 GHz
15758 Detection of FRB 20220912A at 750 MHz with the Tianlai Dish Pathfinder Array
1577 A descriptive title
15735 Bright radio bursts from the active FRB 20220912A detected with the Allen Telescope Array
15734 Detection of a bright burst from FRB 20220912A at 2.3 GHz with the Arecibo 12-m telescope
15733 FAST detection of high activity FRB 20220912A
1572 PRECISE detects high activity from FRB 20220912A at 1.4 GHz but no bursts at 5 GHz using the Effelsberg telescope
15723 Extreme activity at 1400 MHz from FRB 20220912A
15720 Redshift of the candidate host galaxy of FRB 20220912A
15716 Erratum to ATel #15693
15713 Detection of FRB 20220912A at 111 MHz with BSA radio telescope
15699 Simultaneous Optical Non-detections of FRB 20220912A with KeplerCam
15696 Detection of a burst from the newly discovered active repeater FRB20220912A with the Northern Cross radio telescope (CORRIGENDUM)
15695 Detection of a burst from the newly discovered active repeater FRB20220912A with the Northern Cross radio telescope
15693 Detection and localization of FRB 20220912A with DSA-110
15691 Bright Pulses at 1400 MHz from FRB20220912A
15679 Nine Bursts in Three Days from a Newly Discovered
VLBI observations, the target scans were interrupted by calibrator scans, reducing the total time on source to 160 minutes during the L-band runs and 197 minutes during the C-band run.

We recorded the raw voltages (aka baseband data) as 2-bit samples, storing both left and right circular polarisations at all participating stations. Being the most sensitive dish in the array, the baseband data from the Effelsberg telescope were transferred to a processing node at Onsala Space Observatory where they were processed to generate total intensity (Stokes I) filterbanks at time and frequency resolution of 64 microseconds and 62.5 kHz at L-band, and 16 microseconds and 1 MHz at C-band. The data were then searched using the Heimdall software package (limiting the DM search range to 170-270 pc/cm3) and candidates were selected as real using the ML-classifier FETCH (Agarwal et al. 2020).

In total we detected 49 bursts in the Effelsberg data during the L-band run on 22 Oct and another 113 bursts during the L-band run on 24-25 Oct. This corresponds to rates of 18 and 42 bursts/hour, respectively, which is lower than the rate found in ATel #15723 (assuming similar sensitivity thresholds). We note though that during our observations the number of bursts per scan changed significantly between scans, ranging from 1 to 10 bursts per 5-minute scan on source (12-120 bursts/hour).

On the contrary, we detected no bursts at C-band on 26-27 Oct above a 7-sigma detection limit of 0.22 Jy ms. Since it is unlikely that the source became inactive within about 45 hours, we conclude that the source is either a) inactive at C-band or burst rates are significantly lower than at L-band, b) C-band emission misses Earth because of (potentially relativistic) beaming leading to a smaller emission cone, or c) the source does emit at C-band but outside the frequency range probed by our observations.

Simultaneously with our L-band observations on 22 Oct, the Stockert telescope was also observing FRB 20220912A. They detected a burst from the source at UT 02:14:50.491 (topocentric, DM=219.46, reference frequency 1430 MHz) which falls within a time when Effelsberg was still slewing. Manual inspection of data from some of the smaller stations in our array (Medicina, Noto, Torun) showed that they were already on source and detected the burst as well. The particular burst in question can be found here.

Correlation of the VLBI data is underway, in order to achieve a robust milliarcsecond-level localisation.

Repeating Source of Fast Radio Bursts

R. E. Rutledge, Editor-in-Chief
Derek Fox, Editor