Search for Dark Matter Annihilation Signals in the H.E.S.S. Inner Galaxy Survey

Abdalla, H.; Vink, J.; H.E.S.S. Collaboration

DOI
10.1103/PhysRevLett.129.111101

Publication date
2022

Document Version
Final published version

Published in
Physical Review Letters

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Search for Dark Matter Annihilation Signals in the H.E.S.S. Inner Galaxy Survey

(H.E.S.S. Collaboration)

1University of Namibia, Department of Physics, Private Bag 13301, Windhoek 10005, Namibia
2Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, D02 X86 Dublin 2, Ireland
3Max-Planck-Institut für Kernphysik, P.O. Box 103980, D 69029 Heidelberg, Germany
4High Energy Astrophysics Laboratory, RAU, 132 House Feni St Yerevan 0051, Armenia
5IN2P3, Aix Marseille Université, CNRS/IN2P3, CPPM, Marseille, France
6Université Savoie Mont Blanc, CNRS, Laboratoire d’Annecy de Physique des Particules—IN2P3, 74000 Annecy, France
7IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
8Centre for Space Research, North-West University, Potchefstroom 2520, South Africa
9Instytut Fizyki Jądrowej PAN, ulica Radzikowskiego 152, 31-342 Kraków, Poland
10DESY, D-15738 Zeuthen, Germany
11School of Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein, Johannesburg, 2050 South Africa
12Department of Physics and Electrical Engineering, Linnæus University, 351 95 Växjö, Sweden
13Institut für Astronomie und Astrophysik, Universität Tübingen, Sand 1, D 72076 Tübingen, Germany
14Sorbonne Université, Université Paris Diderot, Sorbonne Paris Cité, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies, LPNHE, 4 Place Jussieu, F-75252 Paris, France
15Institut de Physique, Humboldt-Universität zu Berlin, Newtonstrasse 15, D 12489 Berlin, Germany
16University of Oxford, Department of Physics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, United Kingdom
17Université Bordeaux, CNRS/IN2P3, Centre d’Études Nucléaires de Bordeaux Gradignan, 33175 Gradignan, France
18Laboratoire Univers et Théories, Observatoire de Paris, Université PSL, CNRS, Université de Paris, 92190 Meudon, France
19Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24/25, D 14476 Potsdam, Germany
20Laboratoire Leprince-Ringuet, École Polytechnique, CNRS, Institut Polytechnique de Paris, F-91128 Palaiseau, France
21Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D 91058 Erlangen, Germany
22Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck, Austria
23Universität Hamburg, Institut für Experimentalphysik, Luruper Chaussee 149, D 22761 Hamburg, Germany
24Observatorium Astronomiczne, Uniwersytet Jagielloński, ulica Orła 171, 30-244 Kraków, Poland
25Landessternwarte, Universität Heidelberg, Königstuhl, D 69117 Heidelberg, Germany
26Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
27Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, ulica Bartycka 18, 00-716 Warsaw, Poland
28Institut für Physik, Humboldt-Universität zu Berlin, Newtonstrasse 15, D 12489 Berlin, Germany

PHYSICAL REVIEW LETTERS 129, 111101 (2022)
The self-annihilation of Majorana WIMPs of mass \(m_{\text{DM}} \) provided that the WIMP mass is high enough. Arrays of Imaging Atmospheric Cherenkov Telescopes (IACTs) such as the High Energy Stereoscopic System (H.E.S.S.) provided that the WIMP mass is high enough. The self-annihilation of Majorana WIMPs of mass \(m_{\text{DM}} \) would produce an energy-differential flux of gamma rays in a solid angle \(\Delta \Omega \) expressed as

\[
\frac{d\Phi_{\gamma}}{dE_\gamma}(E_\gamma, \Delta \Omega) = \frac{\langle \sigma v \rangle}{8\pi m^2_{\text{DM}}} \sum_f B R_f \frac{dN_f^\gamma}{dE_\gamma}(E_\gamma) J(\Delta \Omega)
\]

with

\[
J(\Delta \Omega) = \int_{\Delta \Omega} \int_{\text{los}} \rho^2 s(r, \theta) ds \, d\Omega.
\]

where \(\langle \sigma v \rangle \) is the velocity-weighted annihilation cross section averaged over the velocity distribution and \(dN_f^\gamma/dE_\gamma \) is the differential yield of gamma rays per annihilation in the channel \(f \) with its branching ratio \(B R_f \). The term \(J(\Delta \Omega) \), hereafter referred to as the \(J \) factor, corresponds to the integral of the square of the DM density \(\rho \) over the line of sight \(s \) and solid angle \(\Delta \Omega \). The DM density \(\rho \) is assumed spherically symmetric and therefore depends only on the radial coordinate \(r \) from the center of the DM halo. It can be expressed as

\[
r = (s^2 + r_0^2 - 2s r_0 \cos \theta)^{1/2},
\]

with \(r_0 \) the distance of the observer to the GC taken to be \(r_0 = 8.5 \text{ kpc} \) [10], and \(\theta \) the angle between the direction of observation and the Galactic Center. The center of the Milky Way is predicted as the brightest source of DM annihilations with a DM distribution assumed to follow cuspy profiles conveniently described by the Einasto [11] or Navarro-Frenk-White [12] parametrizations. Commonly used sets of parameters for the above-mentioned DM profiles [13,14] considered here are given in Table II of Ref. [15]. The DM profiles are normalized to the local DM density \(\rho_0 \) such that \(\rho(r_0) = \rho_0 = 0.39 \text{ GeV cm}^{-3} \) [17]. Improved determinations of the local DM density are being carried out.
A change of $ρ_⊙$ can be propagated to the results by rescaling the DM signal by $(ρ_⊙/0.39 \text{ GeV cm}^{-3})^2$. Other parametrizations such as the Burkert [21] or Moore [22] profile can be used. However, cored profiles such as the Burkert one are not studied here, since they need dedicated observations and analysis procedures [23]. The strongest constraints so far obtained on WIMPs in the TeV mass range come from 254 h of H.E.S.S. observations of the Galactic Center region [13]. In the present work, about 5 times more exposure in total is available with respect to the previous H.E.S.S. observations [15].

In this Letter, we report on a new search for DM annihilation in the central region of the Milky Way halo using an unprecedented dataset from very-high-energy (VHE, $E \gtrsim 100 \text{ GeV}$) observations taken with the five-telescope H.E.S.S. array of the Galactic Center region. Observations and data analysis.—The H.E.S.S. Collaboration is carrying out an extensive observation program to survey the central region of the Milky Way. Such a region can be observed with the H.E.S.S. observatory under very good conditions due to its location near the tropic of Capricorn. The survey aims at covering the inner several hundred parsecs of the Galactic Center region, in order to achieve the best possible sensitivity for DM annihilation signals and Galactic Center outflows. Such a survey, hereafter referred to as the Inner Galaxy Survey (IGS), is the first-ever conducted deep VHE $γ$-ray survey of the Galactic Center region. In order to cover so far unexplored regions in VHE gamma rays, the current implementation of the IGS is based on the definition of a grid of telescope pointing positions up to Galactic latitudes $b = +3.2^°$, as shown in the top-left panel of Fig. 1 of Ref. [15]. The present dataset makes use of 28-min data taking runs between 2014 and 2020, amounting to a total of 546 h (live time) of high-quality data following the standard data quality selection procedure [24]. Observations are taken at observational zenith angles lower than 40° to minimize systematic uncertainties in the event reconstruction. The observational campaign results in an averaged observational zenith angle of 18° for the present dataset. An acceptance-corrected exposure time of at least 10 h is reached up to $b = +6^°$ with the present dataset. $γ$-ray-like events are selected and reconstructed with a semianalytical shower model technique based on a fit of observed shower images to a semi-analytical shower model [25]. An angular resolution of $0.06^°$ (68% containment radius) and an energy resolution of 10% above 200 GeV are achieved. The central region of the Milky Way is a complex environment including numerous regions with VHE $γ$-ray emission [26–28] as well as varying night sky background in the field of view [14]. A study of the systematic uncertainties in the background determination is presented in Ref. [15].

The DM annihilation signal is searched in regions of interest (ROI) defined as rings centered on the nominal GC position. In order to avoid $γ$-ray contamination from known astrophysical sources in the whole field of view, a conservative set of exclusion regions is defined (see Fig. 1 in Ref. [15]) according to the H.E.S.S. angular resolution and the extension of the emissions in the field of view. See Ref. [15] for more details. The ROIs are therefore considered with inner radii from $0.5^°$ to $2.9^°$, and width of $0.1^°$ each. This set of 25 rings is hereafter referred to as the ON region. For each ROI, the residual $γ$-ray background is measured on a run-by-run basis in a region of the field of view taken symmetrically to the ON region from the pointing position, which is hereafter referred to as the OFF region. The excluded regions are similarly removed from the ON and OFF regions such that they keep the same solid angle and acceptance. The OFF regions are always sufficiently far away from the ON regions, such that a significant difference in the expected DM signal between ON and OFF regions is obtained. More details are provided in Fig. 2 of Ref. [15]. Any potential unaccounted $γ$-ray emission is considered as part of the measured excess, which makes the analysis conservative as long as no signal is detected.

For each ROI, event distributions are built as a function of energy and are hereafter referred to as the energy count distributions. The systematic uncertainty on the normalization of the measured energy count distributions is 1% [15].

The statistical data analysis is based on a two-dimensional log-likelihood ratio test statistic which makes use of the expected spectral and spatial DM signal features in 67 logarithmically spaced energy bins and 25 spatial bins corresponding to the ROI. For a given DM mass, the likelihood function reads

$$L_{ij}(N^S, N^B | N_{ON}, N_{OFF}) = \frac{[β_{ij}(N^S_{ON} + N^B_{ON})]^{N_{ON,ij}}}{N_{ON,ij}!} e^{-β_{ij}(N^S_{ON} + N^B_{ON})} \times \frac{[β_{ij}(N^S_{OFF} + N^B_{OFF})]^{N_{OFF,ij}}}{N_{OFF,ij}!} e^{-β_{ij}(N^S_{OFF} + N^B_{OFF})} \times e^{-\frac{[i-j]^2}{2\hat{ρ}_{ij}}},$$

$$N_{ON,ij} \text{ and } N_{OFF,ij} \text{ are the number of measured events in the ON and OFF regions, respectively, in the spectral bin } i \text{ and in the spatial bin } j. N^B_{ij} \text{ is the expected number of background events in the } (i, j) \text{ bin for the ON and OFF regions. } N^S_{ON} \text{ and } N^S_{OFF} \text{ are the total number of DM events in the } (i, j) \text{ bin for the ON and OFF regions, respectively. It is obtained by folding the expected DM flux given in Eq. (1) with the energy-dependent acceptance and energy resolution. The } γ \text{-ray yield } dN^i/dE, \text{ in the channel } f \text{ is computed with the Monte Carlo event collision generator}$$
PYTHIAv8.135, including final state radiative corrections [29]. The J factor values of each ROI are reported in Table III of Ref. [15]. $N^b_j + N^B_j$ is the total number of events in the spatial bin j and spectral bin i. The systematic uncertainty can be accounted for in the likelihood function as a Gaussian nuisance parameter where β_{ij} acts as a normalization factor and $\sigma_{\beta_{ij}}$ is the width of the Gaussian function (see, for instance, Refs. [30–32]). β_{ij} is found by maximizing the likelihood function such that $d\mathcal{L}_{ij}/d\beta_{ij} \equiv 0$. A value of 1% for $\sigma_{\beta_{ij}}$ is used [15].

In case of no significant excess in the ROIs, constraints on $\langle \sigma v \rangle$ are obtained from the log-likelihood ratio TS described in Ref. [33] assuming a positive signal $\langle \sigma v \rangle > 0$ [15]. We used the high statistics limit in which the TS follows a χ^2 distribution with one degree of freedom. Values of $\langle \sigma v \rangle$ for which TS is higher than 2.71 are excluded at the 95% confidence level (CL).

Results.—We find no significant excess in any of the ON regions with respect to the OFF regions. An analysis crosscheck performed using independent event calibration and reconstruction [34] corroborates the absence of significant excess. Hence, we derive 95% CL upper limits on $\langle \sigma v \rangle$. We explore the self-annihilation of WIMPs with masses from 200 GeV up to 70 TeV, into the quark ($b\bar{b}$, $t\bar{t}$), gauge bosons (W^+W^-, ZZ), lepton ($e^+e^−$, $μ^+μ^−$, $τ^+τ^−$), and Higgs (hh) channels, respectively.

Figure 1 shows the 95% CL observed and expected upper limits for the $W^+W^−$ and $τ^+τ^−$ channels, respectively, for the above-mentioned Einasto profile. The observed limits are computed with ON and OFF measured event distributions. The expected limits are obtained from 300 Poisson realizations of the background extracted from the OFF regions. See Supplement Material [15] for more details. The mean expected upper limit and the 68% and 95% containment bands are plotted. The 95% CL observed limits reach $3.7 \times 10^{−26}$ cm3 s$^−1$ for a DM particle mass of 1.5 TeV in the $W^+W^−$ channel, and $1.2 \times 10^{−26}$ cm3 s$^−1$ for 0.7 TeV DM mass in the $τ^+τ^−$ annihilation channel. The limits in the $τ^+τ^−$ annihilation channel cross the $\langle \sigma v \rangle$ values expected for DM particles annihilating with thermal-relic cross section [35]. The limits for the other annihilation channels are shown in Fig. 3 of Ref. [15]. At 1.5 TeV DM mass, we obtain an improvement factor of 1.6 with respect to the results shown in Ref. [13]. The larger statistics of the dataset from longer observational live time and the data taking with the CT1-5 array of H.E.S.S. contribute to the higher sensitivity of the present analysis.

The left panel of Fig. 2 shows the limits for the NFW profile as well as an alternative set of parameters for the Einasto profile described in Ref. [29]. Assuming a kiloparsec-sized cored DM density distribution such as the Burkert profile would weaken the limits by about 2 orders of magnitude, while a Moore-like profile would improve the limit by a factor of about 2.

The right panel of Fig. 2 summarizes the limits obtained from 254 h of previous H.E.S.S. observation of the Galactic Center [13], from the HAWC observation of the Galactic Center [36], from the observation of 15 dwarf galaxy

![Figure 1](image1.png)

FIG. 1. Constraints on the velocity-weighted annihilation cross section $\langle \sigma v \rangle$ for the $W^+W^−$ (left panel) and $τ^+τ^−$ (right panel) channels derived from the H.E.S.S. observations taken from 2014 to 2020. The constraints are expressed as 95% CL upper limits including the systematic uncertainty on $\langle \sigma v \rangle$ as a function of the DM mass m_{DM}. The observed limit is shown as a black solid line. The mean expected limit (black dashed line) together with the 68% (green band) and 95% (yellow band) CL statistical containment bands are shown. The mean expected upper limit without systematic uncertainty is also shown (red dashed line). The horizontal gray long-dashed line is set to the value of the natural scale expected for the thermal-relic WIMPs. The constraints obtained in the $b\bar{b}$, $t\bar{t}$, ZZ, hh, $μ^+μ^−$, and $e^+e^−$ channels are given in Fig. 3 of Ref. [15].
satellites of the Milky Way [37] as well as from the observation of the GC with Fermi-LAT [38], and the limits from the cosmic microwave background measured by PLANCK [2]. The present H.E.S.S. constraints surpass the Fermi-LAT limits for particle masses above ~ 300 GeV.

Summary.—In this Letter we report on the latest results on a search for annihilating DM signals from new observations of the inner halo of the Milky Way with the H.E.S.S. five-telescope array. The present dataset amounts to 546 h of total live time spread over 6 yr of H.E.S.S. observations. The absence of significant excess yields constraints on the velocity-weighted annihilation cross section $\langle \sigma v \rangle$ for DM particles with mass of 1.5 TeV, assuming an Einasto profile. These new limits improve significantly upon the previous constraints and are the most constraining so far in the TeV DM mass range. The observations carried out with the IGS program as well as the use of the full five-telescope array contribute to the improved sensitivity of this analysis.

VHE observations of the central region of the Milky Way with IACTs such as H.E.S.S. are unique for an in-depth study of WIMP models and provide a crucial insight of the TeV WIMP DM paradigm. They provide an unprecedented dataset to explore the yet-uncharted parameter space of multi-TeV DM models such as the benchmark candidates Wino and Higgsino (see, for instance, Ref. [39] and references therein) which naturally arise in simple extensions to the standard model. The IGS program carried out with H.E.S.S. is an important legacy of H.E.S.S. and paves the way to future Southern-site observations with CTA [32].

The support of the Namibian authorities and of the University of Namibia in facilitating the construction and operation of H. E. S. S. is gratefully acknowledged, as is the support by the German Ministry for Education and Research (BMBF), the Max Planck Society, the German Research Foundation (DFG), the Helmholtz Association, the Alexander von Humboldt Foundation, the French Ministry of Higher Education, Research and Innovation, the Centre National de la Recherche Scientifique (CNRS/IN2P3 and CNRS/INSU), the Commissariat à l’énergie atomique et aux énergies alternatives (CEA), the U.K. Science and Technology Facilities Council (STFC), the Knut and Alice Wallenberg Foundation, the Polish Ministry of Education and Science, Agreement No. 2021/WK/06, the South African Department of Science and Technology and National Research Foundation, the University of Namibia, the National Commission on Research, Science & Technology of Namibia (NCRST), the Austrian Federal Ministry of Education, Science and Research and the Austrian Science Fund (FWF), the Australian Research Council (ARC), the Japan Society for the Promotion of
Science and by the University of Amsterdam. We appreciate the excellent work of the technical support staff in Berlin, Zeuthen, Heidelberg, Palaiseau, Paris, Saclay, Tübingen and in Namibia in the construction and operation of the equipment. This work benefited from services provided by the H. E. S. S. Virtual Organisation, supported by the national resource providers of the EGI Federation.

*Corresponding authors.

contact.hess@hess-experiment.eu

[19] Estimates of the local DM density show an uncertainty of about a factor of 2 [20].

