The colour of charge density wave order

Feng, X.

Publication date
2023

Citation for published version (APA):
Feng, X. (2023). The colour of charge density wave order. [Thesis, fully internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The collective excitation of CDW in transition metal dichalcogenides

4.1. INTRODUCTION

Early studies of VSe$_2$ gave a comprehensive characterisation of the charge density wave transition, structural changes, optical response from visible to UV range and the electronic structure [94–99]. The recent interest in transition metal dichalcogenides (TMDCs) as a platform for 2D materials research has also rekindled the interest in VSe$_2$ [11–13, 100–102], and in particular, in monoatomic layers of VSe$_2$ [103, 104]. Nevertheless, the fundamental features of the CDW phase, such as the collective excitations and size of the CDW gap, remain unclear and controversial. For example, angle-resolved photoemission (ARPES) and scanning tunnelling spectroscopy (STM) experiments report gap sizes varying between 13 to 130 meV [12, 100, 102, 105, 106].

VSe$_2$ is metallic below its CDW transition temperature with $T_c = 110$ K (Fig. 4.1). Below T_c, a commensurate CDW with 4×4 unit cell size forms in-plane, and the incommensurate CDW along the c-axis slightly changes the periodicity at 85 K [11, 97]. ARPES as well as STS studies suggest that the Fermi surface of the CDW state is partially gapped at the certain area of the reciprocal space [11, 107]. DFT calculations of VSe$_2$ give a good match with the ARPES experiments, which suggests that VSe$_2$ is a weakly correlated metal [13].

With high-quality crystals grown by our collaborators [108], we obtained the first infrared optical spectra of the CDW transition of VSe$_2$. In this chapter, we present the absolute reflectivity of high-quality VSe$_2$ single crystals and discuss the evolution of the main features across the CDW transition. Our optical
data indicates that a significant reorganisation of the electronic structure takes place and we discuss how this compares to earlier experiments that probe the electronic structure.

4.2. Reflectivity data and the deviation from the Drude model

The reflectivity data over a broad frequency range is presented in Fig. 4.2(a), while the insert highlights the FIR part. VSe$_2$ shows metallic transport behaviour in both the normal metal phase and the CDW phase. For metals described by the Drude model, its reflectivity at low energy follows the so-called Hagen-Rubens relation:

$$ R \approx 1 - \frac{2\omega}{\pi\sigma_0} \quad (\omega \ll \gamma) $$

(4.1)

Therefore, the reflectivity scales with $\omega^{1/2}$ for small ω and extrapolates to 1 at $\omega = 0$ for normal metal.

As we see in Fig. 4.2(b), the reflectivity data of the normal state below $\sqrt{\omega} = 20$ cm$^{-1}$ agrees well with the Hagen-Rubens approximation. In the CDW state, the experimental data no longer extrapolate to unity while it still roughly follows square-root frequency dependence at intermediate temperature. The deviation from the Hagen-Rubens relation becomes more prominent for $T \leq 32K$, when the reflectivity becomes roughly frequency independent below 10 meV and forms a peak around 100 meV as shown in Fig. 4.2(a) inset. This behavior resembles a reststrahlen band or optical band gap similar to what is seen in superconductors below the critical temperature (see e.g. Ref. [57]). In s-wave superconductors with a full gap opening around the Fermi surface, all optical transitions below the gap are suppressed. Consequently, photons impinging on the surface with energy lower than 2Δ are fully reflected. If this interpretation would be correct we would estimate that the optical gap is of
4.3. Optical conductivity and spectral weight transfer

Figure 4.2: (a) Reflectivity data of VSe$_2$ at selected temperatures. The inset presents the far-infrared range of the reflectivity, where optical phonons and other CDW-related features can be clearly observed. (b) Reflectivity data at selected temperatures plotted as a function of $\sqrt{\omega}$ together with extrapolations obtained from fits using Eq. 4.1. The reflectivity at 16 K deviates from the Hagen-Rubens behaviour as can be seen by the clear curvature in the entire energy range.

order $2\Delta \approx 10$ meV, which is still two times smaller than the lowest value reported by scanning tunnelling microscopy [102]. This value is also rather small assuming a BCS type relation between the gap and T_c. Finally, we also observe a set of four sharp features which emerge below T_c and that are clearly visible in the 16 K data presented in the inset of Fig. 4.2(a). These modes are undetected in the normal state and gain prominence with decreasing temperature. We interpret these modes as optical phonons that become infrared active in the CDW phase. The energies of these peaks are temperature independent within our experimental resolution and are summarized in Table 4.1.

4.3. Optical conductivity and spectral weight transfer

Fig. 4.3(a) presents the real part of the optical conductivity $\sigma_1(\omega)$ obtained from the reflectivity data using the variational dielectric function approach [81]. For the extrapolations outside our experimental window, we have used the Drude-Lorentz model as described in Table 4.1. Based on our modelling we observe at least five interband transitions, centred around 0.07 eV, 0.6 eV, 1.1 eV, 2 eV and 2.6 eV. The lowest energy transition is only observed in the CDW phase, which could indicate that it emerges from new interband transitions associated with band folding in the CDW phase. We note that the transitions
The collective excitation of CDW in transition metal dichalcogenides

Table 4.1: Drude-Lorentz models.
The first two terms are Drude terms with plasma frequency, \(\omega_p \) and scattering rate \(\gamma_D \). At low temperatures, we need a \(\delta \)-function contribution that we have indicated by ‘collective mode’. Terms labeled with Lorentz \(i \) describe interband terms and have parameters \(\omega_0, f_p \) and \(\gamma \), (eigenfrequency, oscillator strength and scattering rate). In addition, we find \(\varepsilon_\infty = 23.6 \).
The last rows summarize the phonon parameters at the lowest measured temperature. All parameters presented are in meV.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>300 K</th>
<th>112 K</th>
<th>16 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drude (\omega_p)</td>
<td>3795.2</td>
<td>2168.0</td>
<td>1505.2</td>
</tr>
<tr>
<td>Drude (\gamma_D)</td>
<td>203.3</td>
<td>313.7</td>
<td>57.0</td>
</tr>
<tr>
<td>Drude (\omega_p)</td>
<td>1203.0</td>
<td>2830.6</td>
<td>-</td>
</tr>
<tr>
<td>Drude (\gamma_D)</td>
<td>28.3</td>
<td>30.4</td>
<td>-</td>
</tr>
<tr>
<td>Collective mode (A)</td>
<td>-</td>
<td>-</td>
<td>1569.6</td>
</tr>
<tr>
<td>Lorentz 1 (\omega_0)</td>
<td>69.7</td>
<td>79.4</td>
<td>66.1</td>
</tr>
<tr>
<td>Lorentz 1 (f_p)</td>
<td>536.0</td>
<td>1973.2</td>
<td>3340.2</td>
</tr>
<tr>
<td>Lorentz 1 (\gamma)</td>
<td>32.2</td>
<td>97.3</td>
<td>97.2</td>
</tr>
<tr>
<td>Lorentz 2 (\omega_0)</td>
<td>600.7</td>
<td>514.5</td>
<td>471.4</td>
</tr>
<tr>
<td>Lorentz 2 (f_p)</td>
<td>5002.8</td>
<td>4021.4</td>
<td>3685.5</td>
</tr>
<tr>
<td>Lorentz 2 (\gamma)</td>
<td>1026.0</td>
<td>685.0</td>
<td>534.4</td>
</tr>
<tr>
<td>Lorentz 3 (\omega_0)</td>
<td>1143.8</td>
<td>1068.9</td>
<td>1037.1</td>
</tr>
<tr>
<td>Lorentz 3 (f_p)</td>
<td>4400.2</td>
<td>5186.3</td>
<td>5530.3</td>
</tr>
<tr>
<td>Lorentz 3 (\gamma)</td>
<td>915.0</td>
<td>821.4</td>
<td>814.6</td>
</tr>
<tr>
<td>Lorentz 4 (\omega_0)</td>
<td>2003.6</td>
<td>2003.6</td>
<td>2003.6</td>
</tr>
<tr>
<td>Lorentz 4 (f_p)</td>
<td>2354.5</td>
<td>2577.5</td>
<td>2662.6</td>
</tr>
<tr>
<td>Lorentz 4 (\gamma)</td>
<td>943.5</td>
<td>943.5</td>
<td>943.5</td>
</tr>
<tr>
<td>Lorentz 5 (\omega_0)</td>
<td>2564.6</td>
<td>2564.6</td>
<td>2564.6</td>
</tr>
<tr>
<td>Lorentz 5 (f_p)</td>
<td>3208.1</td>
<td>3208.1</td>
<td>3208.1</td>
</tr>
<tr>
<td>Lorentz 5 (\gamma)</td>
<td>1262.8</td>
<td>1262.8</td>
<td>1262.8</td>
</tr>
<tr>
<td>Phonon 1 (\omega_0)</td>
<td>-</td>
<td>-</td>
<td>20.5</td>
</tr>
<tr>
<td>Phonon 1 (f_p)</td>
<td>-</td>
<td>-</td>
<td>256.0</td>
</tr>
<tr>
<td>Phonon 1 (\gamma)</td>
<td>-</td>
<td>-</td>
<td>1.0</td>
</tr>
<tr>
<td>Phonon 2 (\omega_0)</td>
<td>-</td>
<td>-</td>
<td>25.4</td>
</tr>
<tr>
<td>Phonon 2 (f_p)</td>
<td>-</td>
<td>-</td>
<td>166.1</td>
</tr>
<tr>
<td>Phonon 2 (\gamma)</td>
<td>-</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>Phonon 3 (\omega_0)</td>
<td>-</td>
<td>-</td>
<td>28.5</td>
</tr>
<tr>
<td>Phonon 3 (f_p)</td>
<td>-</td>
<td>-</td>
<td>239.9</td>
</tr>
<tr>
<td>Phonon 3 (\gamma)</td>
<td>-</td>
<td>-</td>
<td>1.2</td>
</tr>
</tbody>
</table>
around 0.07 eV and 1 eV show a strong temperature dependence, while the other transitions do not.

Figure 4.3: (a) Real part of the optical conductivity on the logarithmic energy scale at selected temperatures. Dashed lines are extrapolations to low energy derived from the Drude Lorentz models. At room temperature, a clear Drude response dominates the low energy range. In contrast, the 16 K data appears to be gapped with a possible remnant of a Drude peak below our experimental window. The short, vertical dashed lines indicate the cut-off energies for the integrated spectral weight curves presented in Fig. 4.4. (b) similar, but with temperatures spanning the range between the lowest measured temperature and T_c. (c) The imaginary component of the optical conductivity at selected temperatures. (d) additional temperatures to illustrate the emergence of low energy divergence associated with Non-Drude behaviour.

The evolution of the optical conductivity in the CDW phase is presented in Fig. 4.3(b)&(d). Below 0.2 eV, the optical conductivity is dominated by a Drude peak at room temperature, which becomes narrower as the temperature is reduced. At temperatures below the CDW transition temperature, the far-infrared optical response undergoes a strong suppression and this removal of spectral weight goes hand in hand with an enhancement of the optical transition centred around 0.07 eV. The modelling of the reflectivity indicates that part of the spectral weight remains as a broad Drude response with approximately half of the total low spectral weight below 50 meV. This broad Drude response is visible in Fig. 4.3 as the flat conductivity indicated by dashed lines (below our experimental window).

The Drude-Lorentz modelling further indicates that the remainder of the spectral weight moves to a very sharp mode with a lifetime broadening well below our experimental window, which is necessary to reproduce the reflectivity plateau below 10 meV. An important aspect of CDW phases is that the breaking of translational symmetry should give rise to a Goldstone mode [57].
context of CDW phases, these are better known as sliding modes, where the charge density wave modulation moves freely against the periodicity of the underlying lattice. Such sliding modes contribute to the real part of the optical conductivity at zero frequency. However, when the periodicity of the CDW modulation is commensurate with the lattice periodicity, the sliding modes get pinned to the underlying lattice and will require finite energy to slide. This pushes the contribution in the optical response to finite frequency and this could be the source for the sharp mode in our Drude-Lorentz model.

Importantly, these modes are optically active and their formation can be observed from a careful analysis of the optical sum rules [53]. An estimate of the sliding mode contribution is obtained from an analysis of the optical spectral weight using the f-sum rule. This rule states that the integral of the optical conductivity, i.e., spectral weight, is proportional to the ratio of the charge density to the effective mass [88]. In Fig. 4.4(a) we present the temperature-dependent spectral weight for suitably chosen cut-off frequencies of the optical conductivity integral (indicated by vertical, dashed lines in Fig. 4.3). Our choices are determined by the optical conductivity data of Fig. 4.3: we present one integral with an energy cutoff at 0.05 eV (yellow) covering most of the Drude response, but not the peak centred around 0.07 eV; one integral with cut-off energy of 0.24 eV (red) that includes this transition and finally one integral with a cut-off around 0.54 eV (green) that includes the interband transitions at higher energy. We observe that the spectral weight with low energy cut-off (orange) drops sharply below \(T_c \). This can be explained as a sudden depletion of spectral weight that sets in at \(T_c \), which is linked to the suppression of the Drude peak.

The red curve presented in Fig. 4.4(a) integrates the data to 0.24 eV, which is the energy of the valley in the low-temperature optical conductivity data. If the CDW transition simply involves a transfer of spectral weight from intra-band to interband response (for example, by opening a gap around the entire Fermi surface), we expect that the spectral weight is transferred to the prominent, optical transition centered at 0.07 eV, which appears below \(T_c \). We see that there is still a noticeable change of slope taking place at \(T_c \) in the red curve, indicating that spectral weight is transferred outside this energy window. Finally, we plot the spectral weight integrated up to 0.54 eV (shown in green), which includes the interband transition that is already visible in the 300 K data. Here, the change of slope at \(T_c \) is difficult to discern, but a more careful analysis will show that the spectral weight is still not fully recovered.

Apart from spectral weight transfer between intra-band and interband transitions, one also needs to consider that the collective excitations of the CDW phase could respond to applied electromagnetic fields. The energy scale where these modes typically appear is well below our experimental window, so we expect that some of the missing spectral weight is transferred to the energy range below our measured data (\(\omega < 10 \) meV). To estimate the spectral weight of such a collective excitation we make use of the Ferrell-Glover-Tinkham (FGT) sum rule [90, 91]. This sum rule states that the difference between normal state
4.3. Optical conductivity and spectral weight transfer

Figure 4.4: (a) Integrated spectral weight of the optical conductivity for selected cut-off energies. Shown are integrals from 0 to 0.05 eV (gap energy scale), 0.24 eV (covering both the gap and coherence energy range) and 0.54 eV (including the first interband transition). The dotted line presents the fit of the normal state spectral weight using Eq. 4.3. Also indicated is the difference, \(\Delta 1 \), which is the missing spectral weight in the CDW phase (see text for details). (b) Spectral weight contained in the mid-infrared peak between 0.24 eV and 0.54 eV. At \(T_c \) this peak gains spectral weight, \(\Delta 2 \), as can be seen by comparing data to the extrapolated normal state trend (indicated by the dashed line). (c) Partial spectral weight integral for the 1 eV interband transition. No notable change in the spectral weight temperature dependence is observed around \(T_c \).
The collective excitation of CDW in transition metal dichalcogenides

spectral weight and CDW state spectral weight equals the spectral weight of the collective mode, W_{CM}:

$$W_{CM} = \int_{0+}^{\Omega} [\sigma_{1,N}(\omega, T) - \sigma_{1,CDW}(\omega, T)] \, d\omega \, .$$

(4.2)

where $\sigma_{1,N}(\omega, T)$ is the normal state optical conductivity and $\sigma_{1,CDW}(\omega, T)$ the optical conductivity of the CDW state and Ω is the cut-off energy. Note that the integral starts at a lower cutoff energy $0+$, indicating that the $\omega = 0$ contribution is not included. The difficulty with this sum rule is that the conductivity curves have to be compared at the same temperature. Since the low temperature, and normal state optical conductivity is not accessible, one typically has to resort to extrapolations of the normal state spectral weight.

Returning to Fig. 4.4, we observe a strong temperature dependence in the normal state spectral weight integrated up to 0.24 eV. Different interpretations for the temperature dependence of the integrated spectral weight with finite cut-off energy have been considered in the context of the cuprate high-T_c superconductors [109–111]. In Ref. [111] it is shown that a relatively small cut-off energy of the spectral weight integral (compared with the scattering rate γ) and the sharpening of the Drude response with decreasing temperature results in a transfer of spectral weight from high to lower energies. The size of this effect can be modelled starting from the simple Drude model. We integrate the Drude conductivity to find:

$$\int_{0}^{\Omega} d\omega \, \sigma_{1,D}(\omega) = \varepsilon_0 \, \omega_p^2 \, \arctan \left(\frac{\Omega}{\gamma(T)} \right) \, ,$$

(4.3)

in which ε_0 is the vacuum permittivity, ω_p is the plasma frequency (assumed to be temperature independent), $\gamma(T)$ is the temperature-dependent scattering rate and Ω is the cut-off energy [111]. From this, it is straightforward to show that for $\Omega \gg \gamma$, the Drude weight is temperature-independent. However, when the cutoff energies are of the order of the scattering rate or smaller, Eq. 4.3 attains a temperature dependence. Fermi liquid theory predicts $\gamma(T) = \gamma_0 + \beta T + \alpha T^2$ [112] for the scattering rate where the three terms come from impurity scattering, electron-phonon coupling and electron-electron interactions respectively. Together with the plasma frequency as a free parameter, we can use this to fit the normal state temperature dependence and extrapolate the temperature dependence of the normal state spectral weight to zero temperature. The result for cutoff energy $\Omega = 0.24$ eV is shown as the dotted line in Fig. 4.4. From this extrapolation and the measured spectral weight, we can estimate the difference at 16 K (indicated as $\Delta 1$). This gives an estimate of the missing spectral weight, $\Delta W = 4 \times 10^6 \, \Omega^{-1} \, \text{cm}^{-2}$.

One possibility is that this spectral weight goes to even higher energy (into the range of up to 0.5 eV). Unfortunately, it is not possible to use the same extrapolation (based on Eq. 4.3) for higher cutoff energies, due to the presence
of additional interband transitions. Instead, we can estimate how much spectral weight is transferred to the high energy range by calculating the spectral weight integral from a lower to an upper bound, e.g. from 0.24 eV to 0.54 eV. The temperature dependence of this integral, $\Delta W(0.54 - 0.24 \text{eV},T)$ is shown in Fig. 4.4(b) and shows that indeed some additional spectral weight accumulates in this range as is evidenced by the sudden upturn at T_c. We use a simple parabolic temperature dependence to extrapolate the normal state temperature dependence and estimate the difference between the measured data and the extrapolation, indicated by $\Delta 2$, as $\Delta 2 = -2 \times 10^6 \Omega^{-1}\text{cm}^{-2}$. To exclude that the remaining spectral weight is transferred to even higher energy, Fig. 4.4(c) shows the integrated spectral weight $\Delta W(1.3 - 0.54 \text{eV},T)$. In this energy range, we do not observe any CDW-related changes. We are now in a position to determine the missing spectral weight according to the FGT sum rule, Eq. 4.3 as:

$$W_{CM} = \Delta_1 + \Delta_2 = 2 \times 10^6 \Omega^{-1}\text{cm}^{-2}$$

(4.4)

Summarizing, we find that a significant portion of the spectral weight moves to the interband transition around 0.4 eV. This leaves spectral weight missing at finite frequency, which most likely contributes to a collective mode below our experimentally accessible energy range.

4.4. THE LOW ENERGY DYNAMICS OF THE COLLECTIVE MODE IN $\sigma_2(\omega)$ AND $\varepsilon_1(\omega)$

An independent test of the presence of a collective mode makes use of the real part of the dielectric function of VSe$_2$, or of the imaginary part of the optical conductivity. The optical response of the collective mode in the CDW phase is described as a δ-function contribution to $\sigma_{1,CDW}(\omega,T)$ with strength $A(T)\delta(\omega - \Omega_0)$ where Ω_0 is the pinning energy of the collective mode and $A(T)$ is a measure of the density of electrons contributing to the CDW phase [53, 57]. Both the presence of impurities and coupling to the lattice could result in the pinning of the sliding mode, which moves the δ-function away from zero energy and leads to the broadening of the δ-function response. Typical pinning frequencies and broadening factors are expected to be small compared to the energy scale in our experiment and for our purposes, we can consider this as a δ-function response. Even though this singular response in $\sigma_1(\omega)$ is below our experimental energy range, its presence will be revealed non-locally in the imaginary part of the optical conductivity $\sigma_2(\omega)$ or equivalently in the real part of the dielectric function $\varepsilon_1(\omega)$ through Kramers-Kronig relation:

$$\sigma_{2,CDW} = \frac{1}{4\pi} \frac{\omega_{p,s}^2}{\omega}$$

$$\varepsilon_{1,CDW} = -\frac{\omega_{p,s}^2}{\omega^2},$$

(4.5)
The collective excitation of CDW in transition metal dichalcogenides

Figure 4.5: Estimate of the collective mode contribution according to Eq. 4.5. The normal state data extrapolates to zero for $\omega \to 0$. This trend sets in at the critical temperature, as the inset demonstrates by plotting the temperature dependence of the function $-\omega^2 \varepsilon_1(\omega)$ for $\omega_0 = 10\,\text{meV}$. The extrapolation to zero frequency is indicated by the black error bar. The full, black symbol is the value obtained from the Drude-Lorentz model presented in Table 4.1 for comparison.

where the $\omega_{p,s}$ denotes the spectral weight of the collective mode. Thus $\sigma_{2,\text{CDW}}(\omega)$ as well as $\varepsilon_{1,\text{CDW}}(\omega)$ diverges as ω^{-2} when ω approaches zero. On the contrary, the Drude response gives a distinctly different asymptotic response in the zero energy limit:

$$\lim_{\omega \to 0} \sigma_{2,\text{DL}}(\omega) \to 0$$
$$\lim_{x \to 0} \varepsilon_{1,\text{DL}}(\omega) \to \text{Const.} \quad (4.6)$$

This difference in the asymptotic behaviour of the collective mode can be used to detect the collective mode contribution in the low-frequency behaviour of $\sigma_2(\omega)$. Fig. 4.3(d) shows the $\frac{1}{\omega}$ divergence at low energy. A quantitative estimate of $\omega_{p,s}$ is obtained by multiplying $\varepsilon_1(\omega)$ by ω^2. The Drude and Lorentz terms converge to 0 for $\omega \to 0$, while the collective mode response converges to $\omega_{p,s}^2$. This is borne out by the data presented in Fig. 4.5, which show that indeed $-\omega^2 \varepsilon_1(\omega)$ extrapolates to zero at zero energy in the normal state, while it extrapolates to a finite value at 16 K. The inset of Fig. 4.5 shows the temperature dependence of $-\omega^2 \varepsilon_1$ at $\omega_0 = 10\,\text{meV}$. Below T_c this function starts to deviate from zero and suggests the emergence of a collective mode resembling Eq. 4.5 in the CDW phase.

The weight of the collective mode, $\omega_{p,s}$ can therefore be extracted by extrapolating to $\omega = 0$. The extrapolated range of values is indicated by a black error bar in Fig. 4.5, offset from zero to finite frequency for clarity. This
gives an estimate of the spectral weight associated with the collective mode of $4.4 \pm 1.5 \times 10^6 \Omega^{-1} \text{cm}^{-2}$ with a large uncertainty as a result of our limited low energy data range. The value for the collective mode spectral weight has a range covering our previous estimate, obtained from the spectral weight analysis of the optical conductivity data. Finally, we note that these values also agree with the weight in a collective mode obtained through optimising a Drude-Lorentz model fitted to the reflectivity data (see Table 4.1). The value obtained from the Drude-Lorentz model is indicated in Fig. 4.5 as a black square.

4.5. Possible mechanisms of Drude component suppression

The optical conductivity of VSe$_2$ undergoes a large reorganisation of the low energy, bulk electronic structure below the charge density wave transition. The Drude peak is suppressed and this is accompanied by the emergence of a collective mode below our experimental window and an optical transition centred at 0.07 eV. Next to these observations, one feature remains difficult to reconcile with earlier experiments: the almost complete suppression of the Drude response. The simplest interpretation for this would be the opening of a full gap around the Fermi surface. However, angle resolved photoemission spectroscopy, electrical transport and theoretical studies of VSe$_2$ show that only a small portion of the Fermi surface is gapped in the low temperature phase [13, 14, 100].

We see three possible scenarios for this discrepancy: (i) the matrix elements contributing to the conductivity anomalously enhance the portion of the Fermi surface where a gap opens in the CDW phase, (ii) a strong electron-phonon interaction in the CDW state pushes spectral weight to finite frequency, e.g. a shake-off band or polaron formation or (iii) the temperature dependence is partially governed by band structure effects unrelated to the formation of the CDW state. In the following, we discuss each of these possibilities in turn.

Within the Kubo formalism, the optical response is governed by dipole matrix elements, $\langle \psi_f | \hat{d} | \psi_i \rangle$ that weigh the contributions from different parts of the Fermi surface. It is in principle possible that the optical response is anomalously enhanced by the parts of the Fermi surface that are gapped as the CDW phase evolves. From previous work we know that the gap opens only on a small part of the Fermi surface close to the new (folded) zone boundary [14]. An explicit calculation of the matrix elements (see Appendix 4.6) shows that the dipole moment associated with the region where the gap opens varies over k-space, but is not significantly larger in the regions where gaps open.

The second possibility to consider is that the free carrier response is significantly modified by interactions. The spectral weight in the free charge response is proportional to the ratio of carrier density and effective mass according to $\omega_p^2 \propto n/m_{\text{eff}}$. It is possible that the formation of the CDW phase is accom-
panied by a significant mass renormalisation rather than a large change in carrier density. Although it is hard to completely rule out this scenario, we note that dynamical mean field theory calculations of the optical response predict an enhancement of spectral weight below the critical temperature for the case of strong electron-phonon coupling \[113\]. Taking the Drude-Lorentz model describing the reflectivity data at face value, we can estimate that the mass enhancement factor associated with the sliding mode is of the order \(m^*/m \approx 3\). This value is obtained by taking the ratio of the normal state spectral weight of the first Drude mode at \(T_c\) to the spectral weight in the collective mode \[53\].

![Figure 4.6: Hall coefficient of a single crystal from the same batch as the crystal used for this study.](image)

The third possibility is a temperature-dependent band structure effect unrelated to the CDW transition itself. Early measurements of the Hall coefficient provide the first clue: it displays a significant temperature dependence already in the normal state indicating a strongly temperature-dependent carrier density \[94, 95, 114\]. Upon entering the CDW phase this trend is even further enhanced. Fig. 4.6 shows the Hall resistivity measured on a similar crystal used in this study. From the Hall coefficient, it follows that the carrier density decreases by an order of magnitude between 220 K \(n_H = 1.2 \times 10^{22} \text{ cm}^{-3}\) and 5 K \(n_H = 0.65 \times 10^{21} \text{ cm}^{-3}\). Given that the partial gap opening at the Fermi surface cannot be responsible for the large temperature-dependent change in the Hall coefficient, we need an alternative explanation. One explanation could be the gradual freezing out of carriers with decreasing temperature associated with band edges close to the Fermi level. Indeed, ARPES data shows a large pocket grazing, but not crossing, the Fermi level around the Γ point of the Brillouin zone \[12, 13, 100\]. At elevated temperatures, the thermal excitation of carriers will contribute to both the Hall coefficient and the Drude weight. This contribution freezes out when the temperature becomes smaller than the
energy difference between the band maximum and E_F (so-called Pauli blocking), resulting in a significant reduction of the carrier density. This scenario could explain the strong reduction of the Drude response we observe in our experiments, as well as the decrease in resistivity due to the removal of an additional scattering channel.

Returning to the spectral weight analysis, we can estimate the relative importance of each of these possibilities explaining the absence of a visible Drude response. The spectral weight associated with the normal state free charge carrier response at T_c corresponds to approximately $n_f = 5.8 - 9.2 \times 10^{21} \text{cm}^{-3}$. These numbers are determined by taking the plasma frequency of the narrow Drude mode reported in Table 4.1 as a lower bound and the combined plasma frequency of the two Drude terms as an upper bound. Depending on how we count the contribution of the two Drude terms, the real value will be somewhere in between. This is consistent with the Hall data provided we take the lower side of this range. At the lowest temperature in our experiments, we find $n_f = 1.6 \times 10^{21} \text{cm}^{-3}$ for the normal charge carriers contributing to the optical conductivity. This also agrees with the Hall coefficient data. One interpretation that is consistent with our Drude-Lorentz model, is that there are additional charge carriers (present at all temperatures) that contribute to transport with a relatively large scattering rate. Such a large scattering rate could well be a result of a relatively strong interaction of these carriers with the lattice, as evidenced by the mass enhancement factor estimated above. This Drude response corresponds to the background conductivity indicated with dashed lines in Fig. 4.3(b).

To summarize the preceding discussion, the large suppression of the Drude response most likely results from a convolution of the freezing out of carriers at low temperatures and interactions of the remaining electrons with the lattice. In addition, we find strong evidence for the emergence of a sliding mode linked to the formation of the CDW phase in VSe$_2$. The remaining feature in our reflectivity data, the plateau in the reflectivity most likely results from this pinned collective mode as we now explain. The reflectivity of a fully gapped s-wave superconductor at zero temperature is unity below the superconducting gap. At finite temperatures, thermal excitations result in a simultaneous normal state and superconducting response and this lowers the reflectivity. This behaviour is often modelled using a Drude-Lorentz model consisting of a zero frequency δ-function contribution, a Drude function and a Lorentz oscillator to mimic interband transitions across the superconducting gap. A similar model holds for the optical response of a CDW system.

Fig. 4.7 shows this model (red curves) calculated with the parameters presented in Table 4.1. The reflectivity (panel b) is very close to unity, but continuously deviates from unity for any finite frequency. As this model is an oversimplified picture of the true optical response of an s-wave superconductor, we also show the response calculated using the numerical model of Ref. [48] (implemented in the software package RefFit [81]). For this model (blue curves),
Figure 4.7: (a) Simulated optical conductivities with three possible scenarios for the distribution of low energy spectral weight between a Drude response and a collective mode (see text for detailed discussion). Also shown is a calculation using the BCS optical conductivity. Note that the $\sigma(\omega)\delta(\Gamma)$ for a free (red) and pinned (black) collective mode are identical. The difference is only visible in $\sigma_2(\omega)$. (b) corresponding reflectivity curves. The key difference we aim to highlight is the deviation of the reflectivity from unity.
we used the same Drude response as before, but replace the \(\delta \)-function contribution with a condensate response with the same spectral weight and calculated at a temperature corresponding to the 16 K data (i.e. \(T/T_c \approx 0.1 \)). Although the difference in the optical conductivity is significant, the changes in the reflectivity are rather modest. The most prominent feature is the distinct step that happens at the gap edge (where we have chosen \(2\Delta = 14 \text{ meV} \)). Importantly, at these elevated temperatures, one would still not expect the reflectivity to be exactly unity inside our experimental window.

Next we show the conductivity and reflectivity for a pinned, but undamped collective mode (\(\delta(\omega = 5 \text{ meV}) \), black curves) in addition to the Drude response. The associated optical conductivity is indistinguishable from the red curve, but the reflectivity shows a distinct difference compared to the previous models. Above the collective mode, the reflectivity increases to unity as a result of the singular response in the dielectric function associated with the collective mode. As a consequence of this a rest-strahlen type band appears, and we believe this is what we observe in our experiments.

Finally, we also show calculations for the same model, but now with a damped collective mode response (green curves), where we have chosen a damping of 2 meV. The optical conductivity of this model would be consistent with our optical conductivity data and spectral weight analysis, but the calculated reflectivity is distinctly lower compared to our experimental data at 16 K.

We conclude that our experimental data is most consistent with a pinned but weakly damped collective mode. Within our experimental uncertainty we can exclude a damped collective mode with width larger than 1 meV, as this lead to discrepancy with our measured reflectivity. However, we cannot exclude that the collective mode is unpinned. The real part of the optical conductivity (blue curve, Fig. 4.7(a)) right above the gap edge in our simulation changes due to the piling up of spectral weight related to optical transitions across the gap. Comparing this to the data presented in Fig. 4.3, we note that there is no enhancement of spectral weight visible in the data around 11 meV. In Fig. 4.3 we see a strong enhancement of spectral weight in the energy range above 40 meV and this would suggest that \(2\Delta \approx 40 \sim 50 \text{ meV} \), much larger than what one would guess based on the reflectivity data.

Pinned or not, our data strongly indicate the presence of a sliding mode contribution. These collective modes have previously mostly been observed in quasi-one-dimensional materials, such as NbSe\(_3\) [54], TaS\(_3\) [115], K\(_{0.3}\)MoO\(_3\) [116], (TaSe\(_4\))\(_2\)I [58], and (TMTSF)\(_2\)PF\(_6\) [58, 60]. The observation of these collective excitations is intrinsically more difficult in higher dimensional materials due to the large contribution from carriers that do not contribute to the CDW phase formation (as is the case here), but pinned modes have been observed in various transition metal oxides and Bechgaard salts [117, 118]. However, in TMDC materials there are very few reports, except perhaps some indirect indications of their existence (for example, Ref.’s [23, 63, 64, 119]). One particular exception is work by Barker et al., who inferred the existence of a CDW sliding
The collective excitation of CDW in transition metal dichalcogenides

mode in 2H-TaSe$_2$ and 1T-TaS$_2$ from a spectral weight transfer analysis [65]. However, more precise measurements with far-infrared data down to 3 meV seem to rule out this interpretation [66, 67]. The indirect observation of the sliding mode in VSe$_2$ that we report here is therefore unusual and we speculate that this observation is made possible by the freezing out of normal charge carriers. This makes VSe$_2$ an interesting subject for future sub-THz experiments to further explore the dynamics of collective excitations in two-dimensional materials.

4.6. Appendix: Matrix elements

Previous work has shown that the weak-coupling charge-density-wave phase of VSe$_2$ generates small suppressions of spectral weight, in regions of the band-structure close to the Fermi level that is separated by one CDW wave-vector [14]. This is corroborated by the minimal change in density of states near E_F as seen by scanning tunnelling microscopy [102]. Based on this, the small CDW gap that opens is expected to affect only a few percent of the Fermi surface. Since the optical conductivity is additive, the only way that the opening of such a small gap could explain a strong suppression of the free carrier response would be if the optical matrix elements (as defined in the Kubo-Greenwood formula) have a significant maximum around the regions where gaps open.

To test whether this could be the case, we constructed a tight-binding model by considering symmetry-allowed hopping (in the Slater-Koster formalism [120]) between Vanadium d_{xy}, d_{yz} and d_{xz} orbitals and Selenium p_x, p_y and p_z orbitals in the 1T-VSe$_2$ lattice, up to second nearest neighbours. This generates a 9×9 Hamiltonian, which is fitted to the ab initio bandstructure given in [14]. We then compute the matrix elements, given by $|\langle \Psi_k | \nabla_{k_i} \hat{H} | \Psi_k \rangle|^2$. Here, $|\Psi_k \rangle$ is the eigenvector of the tight-binding Hamiltonian at momentum k, and $\nabla_{k_i} \hat{H}$ is the gradient of the Hamiltonian along k_i ($i = \{x, y, z\}$), where the latter is the momentum direction parallel to the probed direction of conductivity. Since our experiments probe the in-plane optical response, only the in-plane directions (k_x and k_y) should be relevant. As demonstrated by Figure 4.8, the maximum variation of the matrix elements in the k_x-k_y plane at the two values of k_z where the largest gaps are expected to open [14] is less than a factor of four. Additionally, the maxima of the matrix elements lie away from the regions of the Brillouin zone where gaps are expected to open. We, therefore, conclude that there is no reason why the optical conductivity would be most sensitive to the gapped parts of the Fermi surface.
Figure 4.8: Matrix elements at selected k_z momenta on fixed colour scale with arbitrary units. The Fermi surface contours in the CDW phase are overlaid to illustrate the sections of the Fermi surface that contribute the most.