Bifurcations of indifference points in discrete time optimal control problems

Moghayer, S.M.

Publication date
2012

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 1

2 Phase space methods in discrete time optimal control 11

2.1 First variation and Hamiltonian formalism 11

2.1.1 Definitions and problem specification. 12

2.1.2 Variations. 14

2.1.3 The discrete Hamiltonian. 19

2.1.4 The phase map. 20

2.1.5 Comparison with continuous time case. 21

2.2 Local and associated value functions 23

2.2.1 Integrability and symplectic forms. 24

2.2.2 Invariant manifolds. 26

2.3 Value comparison theorems 33

2.3.1 Regions and area. 33

vii
3 The indifference-attractor bifurcation

3.1 Heteroclinic orbits and indifference-attractor bifurcations

3.1.1 Phase maps.

3.1.2 Description of the context.

3.1.3 The main result and its interpretation.

3.1.4 Optimal maps.

3.2 Regions and orientations

3.3 Proofs of the theorems

3.3.1 Local preliminaries.

3.3.2 Estimating value differences using the area rule.

3.3.3 Proof of Theorem 3.2.1.

3.3.4 Proof of Theorem 3.2.2.

3.3.5 Proof of Theorem 3.2.3.

4 Numerics of invariant manifolds, indifference points, and indifference-attractor bifurcations

4.1 The family of optimisation problems