Bifurcations of indifference points in discrete time optimal control problems

Moghayer, S.M.

Citation for published version (APA):
List of Figures

1.1 The parameter space of the discrete lake system: ‘economic importance of clean lake’ versus ‘natural robustness of lake’. In the bifurcation diagram, dashed lines are saddle-node bifurcation curves, separating the region of parameters for which there is a unique equilibrium in the state-costate system from the region of multiple equilibria. In the ‘low pollution’ region, solutions tending to the clean equilibrium are optimal; in the ‘high pollution’ region, solutions tending to the polluted equilibrium are optimal. Solid lines indicate heteroclinic bifurcation curves. These curves bound the region for which indifference thresholds exist in the lake optimal control problem. In each of these regions the optimal dynamics are depicted; attractors are marked by a circle, indifference thresholds by a diamond. ... 8

2.1 The area rule. ... 38
2.2 The iterated area rule: as $z_1 + z_2$ is negatively oriented with respect to A, then $v(\beta) - v(\alpha) = area(A)$. Even if z_1 and hence A were not defined, still $v(\beta) - v(\alpha) = e^{-\rho T} area(\hat{A})$.

2.3 Relation between values and area: $v(\beta) - v(\alpha) = area(A)/(e^\rho - 1)$. The boundary of A is the curve $\alpha \rightarrow \beta \rightarrow \hat{\beta} \rightarrow \hat{\alpha} \rightarrow \alpha$; it is negatively oriented, consequently the orientation of A is negative as well and $\Omega(A) = area(A)$.

3.1 The stable manifold W^s_+ of z_+ (solid) and the unstable manifold W^u_- of z_- (dashed). The stable manifold W^s_+ is composed of all points that are forward asymptotic to z_+; likewise, W^u_- is composed of all points backward asymptotic to z_-. A heteroclinic point is an intersection of W^s_+ and W^u_-, hence a point that is forward asymptotic to z_+ and backward asymptotic to z_-. As both manifolds contain infinitely many orbits, they do not necessarily coincide (unlike in the continuous time case).

3.2 Relative position of W^u_- (dashed) and W^s_+ at z_-, depending on the parameter μ. At $\mu = \mu_1$ and $\mu = \mu_2$, W^u_- and W^s_+ exhibit heteroclinic tangencies; for $\mu_1 < \mu < \mu_2$, the manifolds intersect transversally.

3.3 Orientation of the intersections.

3.4 Definition of the region $A = A^+ + A^-$.

3.5 Definition of the segment $W^s_{+,t}$, as well as the points q_t.

3.6 The regions A^+ and A^- are respectively positively and negatively oriented.
3.7 The images of the regions A^+ and A^- under φ^t, i.e. $\varphi^t(A^+)$ and $\varphi^t(A^-)$. ... 69

3.8 The regions B^\pm_t and C^\pm_t. The regions B^+_t and B^-_t are respectively positively and negatively oriented by definition. In the situation depicted in the upper figure, C^+_t and C^-_t are both positively oriented, whereas in the lower figure, only C^-_t is negatively oriented, while C^+_t has both a positively and a negatively oriented component. ... 71

3.9 Several intersections of W^s_+ and $\varphi^{-t}\tilde{\ell}_t$ following an upward intersection. ... 74

3.10 Region E is negatively oriented, $\Omega(E) > 0$. 77

3.11 Intersections of W^s_+ with the line $x = x_-$ (solid) and the line $x = \xi$ (dashed). ... 79

3.12 Situations $\xi = \xi^r_2$ and $\xi = \xi^r_1$. .. 80

4.1 Illustration of the algorithm for computing the local stable manifold. ... 86

4.2 The plot on the left shows a part of the stable manifold W^s parametrised by a parameter $\sigma \in \mathbb{R}$ as $z(\sigma) = (x(\sigma), y(\sigma))$. In the right hand plot, the orbit value function v, which associates the value $v(\sigma) = v(z(\sigma))$ to a point $z(\sigma) \in W^s$, is shown. The value function \tilde{V} associated to W^s is indicated by a black thick line. The state $x = x_0$ corresponds to an indifference point; at this state, the value function \tilde{V} has a kink. 89

4.3 Discrete turning points ζ_1 and ζ_2 of W. 91
4.4 The region A, bounded by the curve $c = c^s + c^u$ 95

5.1 Location of fixed points for constant pollution streams $u_t = u$
for all t, plotted for $b = 0.6$, and for (a) weakly ($q = 2$) and (b)
strongly responsive lakes ($q = 4$). Indicated are stable (solid)
and unstable fixed points (dashed). 102

5.2 Irreversibility; location of fixed points for constant pollution
streams $u_t = u$ for all t, plotted for $b \approx 0.57$ and $q = 4$.
Indicated are stable (solid) and unstable fixed points (dashed). 103

5.3 Subfigures (a) and (b) show affecter-friendly configurations
(low values of c), and subfigure (c) depicts an enjoyer-friendly
configuration (high value of c). Solid lines indicate stable mani-
folds, dotted lines unstable manifolds; optimal solutions are
marked by thick lines. Note that $y < 0$ throughout, so that the
x-axis is at the top of the figure. On the x-axis, the optimal
dynamics are indicated; attractors are marked by a circle, the
indifference threshold by a diamond. 106

5.4 For $c = 0.1541$, the equality $\Omega(A) = 0$ holds, and consequently
there is an infinity of indifference points. 108

5.5 Bifurcation diagram of the highly responsive lake ($q = 4$). . . . 109
5.6 Figure 6(a) and 6(b) show the bifurcation diagram of the discrete time lake system in the \((b, c)\)-parameter space for \(q = 2\) and \(q = 4\) respectively. The dashed curve represents saddle-node bifurcations of the state-costate system, separating the region of values of the parameters for which the phase map has a fixed point from the region of multiple fixed points. Solid lines indicate indifference-attractor bifurcation curves, separating four regions of values of the parameters: (i) the low pollution region for which the clean steady state is globally optimal, (ii) the high pollution region for which the turbid steady state is globally optimal, (iii) the dependent on the initial state region for which both the clean steady state and turbid steady state are locally optimal, and (iv) the unique equilibrium region.