Measuring more or less: Estimating product period penetrations from incomplete panel data
Hoogendoorn, A.W.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1. **Introduction**
 1.1 Motivation
 1.2 Overview of the thesis

2. **Optimising response burden**
 2.1 Introduction
 2.2 Preliminary notation and relations
 2.3 Models for response burden and attrition
 2.4 Practical considerations
 2.5 Summary and conclusions
 2.6 Appendix
 2.6.1 Design of the multi purpose panel
 2.6.2 Correlation matrix of weekly purchases on eggs in first half year of 1994
 2.6.3 First and second order approximations in the single purpose panel design
 2.6.4 First and second order approximations in the multi purpose panel design

3. **Poisson based models**
 3.1 Introduction
 3.2 Discussion of models
 3.3 Estimation methods
 3.4 Different observation periods
 3.5 Empirical results for the period of one month
 3.6 Empirical research for periods longer than one month
 3.7 Conclusions
 3.8 Appendix Tables on Poisson based models

4. **Multivariate heterogeneous Poisson processes**
 4.1 Introduction
 4.2 Bivariate Poisson processes
 4.2.1 The bivariate Poisson Gamma process
 4.2.2 The bivariate Poisson Spike process
 4.3 Estimation based on correlation in a two way table
 4.3.1 Attenuation
 4.3.2 The bivariate Poisson Gamma model
 4.3.3 The bivariate Poisson Spike model
 4.4 Maximum likelihood estimation
 4.4.1 The bivariate Poisson Gamma model
 4.4.2 The bivariate Poisson Spike model
 4.5 Results
 4.6 Discussion of the results
 4.7 Conclusions
5. A variance component model for purchase incidence

5.1 Introduction
5.2 A variance component model
5.3 Censoring
5.3.1 Right censoring
5.3.2 Left censoring
5.3.3 Finding estimates in the case of censored observations
5.3.4 Some results on synthetic data
5.4 Unknown interpurchase times
5.4.1 The EM-algorithm
5.4.2 The MCEM-algorithm
5.4.3 Imputation of interpurchase times
5.5 Unknown number of purchases
5.6 Empirical data
5.7 Comparing the variance component model and Poisson based models
5.8 Conclusions and discussion
5.9 Appendix
5.9.1 Conditional distributions for the uncensored case
5.9.2 Densities of failure time selected and forward recurrence time
5.9.3 Conditional expectation for the censored case
5.9.4 Additional tables

6. A variance component model for more than one period

6.1 Introduction
6.2 Parameter estimation based on correlation in a two way table
6.2.1 The number of events in a time interval for a given individual
6.2.2 The number of events in a time interval in a heterogeneous situation
6.2.3 Attenuation
6.2.4 Correlations between frequencies of action in different periods
6.2.5 An estimator for the dependency parameter given the marginal distributions
6.3 A method for simultaneous estimation of all parameters
6.4 Estimating product period penetrations for the combined period.
6.5 Results for empirical data
6.5.1 Estimation based on correlation in a two way table
6.5.2 Simultaneous estimation of all parameters
6.6 Discussion and conclusions
6.7 Appendix
7. Moment estimators for the variance component models

7.1 Introduction
7.2 Moment estimators
7.2.1 Moment estimators based on mean, variance and penetration.
7.2.2 Moment estimators based on mean, variance and internal correlation.
7.3 Application to simulated data
7.4 A comparison with Poisson based models
7.5 A method for more than one period
7.6 Empirical data
7.7 Discussion and conclusions
7.8 Appendix
7.8.1 Moment estimates from the sample mean, variance and penetration
7.8.2 Moment estimates from the sample mean, variance and internal correlation
7.8.3 Estimating the penetration from given parameter estimates.

8. Summary, conclusions and recommendations

Bibliography

Samenvatting