Effects of maternal thyroid status on thyroid hormones and growth in congenitally hypothyroid goat fetuses during the second half of gestation

Piosik, P.A.; van Groenigen, M.; van Doorn, J.A.; Baas, F.; de Vijlder, J.J.M.

Published in:
Endocrinology

DOI:
10.1210/en.138.1.5

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Effects of Maternal Thyroid Status on Thyroid Hormones and Growth in Congenitally Hypothyroid Goat Fetuses during the Second Half of Gestation*

P. A. PIOSIK, M. VAN GROENIGEN, J. VAN DOORN, F. BAAS, AND J. J. M. DE VIJLDER

Departments of Neurology (P. A. P., M. v. G., F. B.) and Pediatrics (J. J. M. d. V.), Academic Medical Center, University of Amsterdam, Amsterdam; and the Department of Endocrinology, Wilhelmina Children’s Hospital (J. v. D.), Utrecht, The Netherlands

ABSTRACT
Congenital hypothyroidism in Dutch goats is due to a thyroglobulin (TG) synthesis defect that is inherited in an autosomal recessive manner. Minute amounts of mutated TG messenger RNA are translated into glycosylated TG fragments that contain the N-terminal hormonogenic site and are able to form T4, albeit less efficiently. We analyzed the effects of maternal thyroid status on fetal plasma thyroid hormones and growth during the second half of gestation (E90–E150).

Maternal hypothyroidism, present from midgestation, resulted in decreased brain and cerebellum weights of affected goitrous fetuses, most evident at term gestation (E150). Brain and cerebellum weights of affected fetuses from unaffected mothers were not decreased. T4 and FT4 levels in affected fetuses were dependent on the maternal phenotype, as was the degree of enlargement of the goiter at E150. Newborn unaffected lambs from affected mothers had plasma T4 levels within the normal range.

The present data show that in late gestation, fetal goats have to rely on their own thyroidal T4 production. The results suggest that affected fetuses are able to maintain sufficiently high T4 and T3 levels to prevent severe adverse effects of thyroid hormone deficiency on the brain if maternal iodide supply is adequate, although a possible increased transfer of maternal T4 to affected fetuses cannot be excluded. Under normal conditions, sufficient amounts of iodine are provided by the efficient iodine metabolism in euthyroid mothers. In affected mothers, much iodine is wasted because the thyroid also iodinates proteins other than the aberrant TG, resulting in insufficient iodine provision of the fetus and, consequently, in severe hypothyroidism. *(Endocrinology 138: 5–11, 1997)*

THE TRANSFER OF thyroid hormones, t-thyroxine (T4) and 3,5,3′-triiodo-l-thyronine (T3), from mother to fetus and the effects of maternal thyroid status on fetal development have been studied in various species. In man, embryonic tissues contain T3 and T4 before the onset of fetal thyroid function, giving evidence that the thyroid hormones present are of maternal origin (1–3). Also, during late gestation, substantial amounts of maternal T4 are transferred to the fetus, as was indicated by the presence of T4 in cord serum and shortly after birth in serum of neonates with severe congenital hypothyroidism due to a total iodide organification defect or thyroid agenesis (4). This might explain why most of the neonates who subsequently suffer from severe hypothyroidism show no clear features of the condition at birth. Because T4 has a relatively short half-life in neonates, treatment must be started immediately after detection of hypothyroidism (4). Untreated severe congenital hypothyroidism may lead to mental retardation and other neurological deficits (5).

Most data on maternal-fetal transfer of thyroid hormones and brain development were obtained in rats and sheep in which hypothyroidism was experimentally induced by thyroidectomy. In rats, both T4 and T3 are transferred from mother to fetus in early and late gestation. This was indicated by the presence of T4 and T3 in embryonic tissues before the onset of fetal thyroid function (6, 7). In addition, maternal thyroidectomy in rat resulted in undetectable T4 and T3 levels in the fetus before the onset of fetal thyroid function and reduced fetal body weight and the weights of organs such as brain, liver, and lung near term (8). T4 and T3 infusion experiments in hypothyroid rat mothers showed transfer of thyroid hormones to fetuses until term (9, 10). In sheep, maternal thyroid metabolism is also important for fetal sheep development during early gestation. Maternal thyroidectomy before conception caused a reduction in fetal brain and body growth at midgestation, which was not evident at term. Also, from midgestation on, fetal plasma T4 levels were not different from those of control fetuses, indicating that from midgestation onward, the fetus can provide its own T4 (11). Placental transfer of thyroid hormones in sheep seems to be absent or minimal in the second half of gestation. Fetal thyroidectomy decreased fetal serum T3 and T4 to undetectably low levels and caused severe somatic damage, retarded fetal brain development, and early postnatal death (12–14). Combined early maternal and fetal thyroidectomy (15) and iodine deficiency (16, 17) caused even more severe fetal brain retardation than only fetal thyroidectomy. Thus, in sheep, placental transfer of thyroid hormones is important during early gestation, but, in contrast to man and rat, seems to be absent or at least strongly diminished in the second half of gestation.

Received February 7, 1996.
Address all correspondence and requests for reprints to: Dr. F. Baas, Department of Neurology, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
* This work was supported by Graduate School Neurosciences Amsterdam and the Ludgardine Bouwman Foundation.
In an inbred strain of Dutch goats, congenital hypothyroidism and goiter due to a thyroglobulin (TG) synthesis defect have been studied extensively. The disease is inherited in an autosomal recessive way (18). The TG synthesis defect is due to a point mutation in exon 8 of the TG gene, which creates a premature stop codon (19). In the goiter, the mutated TG messenger RNA, which is present in a very low concentration (20), is translated into TG fragments of at most 40 kDa. T4 formation is possible because these fragments contain the N-terminal hormonogenic site (21, 22).

Animals

Dutch goats with congenital hypothyroidism (24) were bred at the Academic Medical Center animal facilities. The maintenance and handling of the animals were as recommended by the Dutch guidelines on the care and use of laboratory animals. Fetal age was calculated from dated matings. In hypothyroid animals, term gestation is 153 ± 5 days; in euthyroid animals, it is 146 ± 3 days (25). Affected goitrous goats, which are homozygous for the TG synthesis defect are indicated by TG−, whereas unaffected, normal goats, which are either heterozygous for the defect or homozygously normal are indicated by TG+. Affected TG− fetuses from unaffected TG+ mothers are indicated by TG+/TG− (fetal phenotype/maternal phenotype in italics), affected TG− fetuses from unaffected TG+ mothers are indicated by TG−/TG−+, and affected TG− fetuses from affected TG− mothers are indicated by TG−/−TG−. No attempt was made to analyze the data with respect to sex or litter size.

Experimental design

TG+/+ TG−, TG−/TG− fetuses, and TG−/TG− fetuses and TG−/TG− fetuses were studied in the following periods: 90–96 days gestation (E90), 112–129 days of gestation (E120), and 144 days gestation-newborn (E150). The number of animals per group is indicated in Fig. 1 and Tables 1–4. In view of the low conception frequency and the high abortion rate in severely hypothyroid animals, supplementary iodine was administered to all ewes through their food until 60 days after conception, i.e., before the onset of fetal thyroid function (26). Increased iodine intake ameliorates the clinical state (23). The additional iodine supply to the TG− ewes resulted in plasma T4 levels comparable to those in normal goats until 3 months of gestation (data not shown). After this period, plasma T4 levels in TG− ewes decreased to below the levels in euthyroid TG+ ewes. Blood samples were taken from mothers and fetuses for T3, T4, free T4, TSH, and IGF-I determinations. Maternal T3, T4, and FT4 values from E120 and E150 fetuses were pooled and represent the mean ± SEM. Statistical analysis was performed by ANOVA. Final significance (P < 0.05) was assessed by the two-sample t test and was performed when the number of animals per group was three or more. Within each bar the number of animals per group is indicated. Filled circles show the values of individual animals when n = 2. *, Significantly different from TG+/TG− group at the same gestational age; +, significantly different from TG+/TG− group at the same gestational age; ◇, significantly different from the E150 TG+/TG− fetal group when comparing all TG+/TG− groups.

Plasma T3, T4, and FT4 determinations

Plasma T3 and T4 values were determined by RIA (27). The lower limit of detection for T3 was 5 nmol/liter. The intraassay coefficient of variation was 5% or less (each sample was assayed twice). The interassay coefficient of variation was 7% or less. The lower limit of detection for T4 was 5 nmol/liter. The intraassay coefficient of variation was be-
Plasma T4 and FT4 levels in normal fetuses from normal mothers (TG+/TG+ fetuses) were significantly higher than levels in TG−/TG− fetuses at E150 [T(12) = 4.57; P = 0.001] and TG−/TG− fetuses were not significantly different from levels in TG+ fetuses at E120 [T(5) = 24.12; P < 0.001] and E150 [T(9) = 7.59; P < 0.001; Fig. 1A and Table 1]. At E90, the two TG−/TG− values (16.0; 18.0 nmol/liter) were below the 95% confidence interval for the mean plasma T4 level of E90 TG+ fetuses (72.2 to 119.8 nmol/liter). The T4 levels in TG− fetuses from TG+ mothers (TG−/TG− fetuses) were significantly higher than levels in TG−/TG− fetuses at E150 [T(8) = 5.30; P = 0.001] and did not differ significantly from levels in TG+ fetuses at E150 (Fig. 1A and Table 1). The two TG−/TG+ values at E90 (85.0; 77.0 nmol/liter) and E120 (220.0; 240.0 nmol/liter) were within the 95% confidence interval for the mean plasma T4 level in E90 (Fig. 1B) and E120 (217.0 to 264.0 nmol/liter) TG+ fetuses. The T4 levels in newborn TG+ lambs from affected TG− mothers (TG+/TG−) were significantly higher than levels in TG−/TG− animals [T(9) = 10.39; P < 0.001], whereas they were not significantly different from levels in TG+/TG+ and TG−/TG− animals (Table 1).

At E150, plasma FT4 levels in TG−/TG− fetuses were significantly reduced compared to levels in TG+/TG+ fetuses [T(9) = 12.54; P < 0.001] and TG−/TG+ fetuses [T(8) = 9.0; P < 0.001; Fig. 1B]. The two TG−/TG− values at E90 (3.8; 3.4 pmol/liter) and E120 (5.4; 6.3 pmol/liter) were below the respective 95% confidence intervals for the mean plasma FT4 levels of TG+ fetuses (E90, 16.9–27.6 pmol/liter; E120, 38.1–64.8 pmol/liter). The FT4 levels in TG−/TG− fetuses did not differ significantly from levels in TG+/TG+ fetuses at E150 (Fig. 1B). The two TG−/TG+ FT4 values at E90 (20.4 and 20.0 pmol/liter) and E120 (39.6 and 40.8 pmol/liter) were within the respective 95% confidence intervals for the mean plasma FT4 levels of TG+/TG+ fetuses (see above).

At E150, plasma T3 levels were significantly reduced in TG−/TG− fetuses compared to TG+/TG+ fetuses [T(9) = 5.43; P < 0.001] and TG−/TG+ fetuses [T(8) = 3.51; P = 0.008; Fig. 1C]. At E120, plasma T3 levels were significantly higher in TG−/TG− fetuses compared to levels in TG+/TG+ fetuses [T(5) = 2.57; P = 0.05]. At E90, the two TG−/TG− T3 levels (0.55; 0.50 nmol/liter) were within the 95% confidence interval for the mean plasma T3 level of E90 TG+/TG+ fetuses (0.21–0.56 nmol/liter). The T3 levels in TG−/TG− fetuses did not differ significantly from levels in TG+/TG+ fetuses at E150 [T(9) = 1.97; P = 0.08]. The two TG−/TG+ T3 values at E90 (0.4 and 0.32 nmol/liter) were within the 95% confidence interval for the mean plasma T3 levels of E90 TG+/TG+ fetuses (0.45–0.66 nmol/liter).
Effects of congenital hypothyroidism on fetal plasma IGF-I concentrations

In view of the proposed effect of thyroid status on IGF-I (31), we determined circulating levels of IGF-I in all goats (Table 2). At E150, the plasma IGF-I levels of TG+/TG+, TG−/TG−, and TG−/TG+ fetuses did not differ significantly. At E120, no significant differences were found between IGF-I levels of TG+/TG+ and TG−/TG− fetuses. The two TG−/TG+ plasma IGF-I values at E120 were within (101 ng/ml) and above (137 ng/ml) the 95% confidence interval for the mean IGF-I concentration of E120 TG+/TG+ fetuses (41.52–111.02 ng/ml). At E90, the two TG−/TG− plasma IGF-I values (38 and 47 ng/ml) were within the 95% confidence interval for the mean plasma IGF-I level of E90 TG+ fetuses (38 and 47 ng/ml) and above (137 ng/ml) the 95% confidence interval for the mean thyroid gland wt (g) of TG+ fetuses (0.29–2.11 g).

Effects of congenital hypothyroidism on weights of fetuses and their organs

Thyroid glands of TG−/TG− fetuses were visibly and significantly enlarged compared to those of TG+ fetuses from 90 days of gestation until term [E90; T(5) = 4.98; P = 0.004; E120; T(7) = 5.23; P = 0.001; E150; T(7) = 3.95; P = 0.006; Table 3]. At E150, the thyroid glands of TG−/TG+ fetuses were significantly larger than those of TG+/TG+ [T(8) = 4.36; P = 0.002] and TG−/TG− fetuses [T(7) = 2.86; P = 0.024]. At E90 and E120, the two individual values of TG−/TG+ fetuses were above the 95% confidence interval for the mean thyroid gland weight of TG+ fetuses (E90, 0.5–2.0 g; E120, 0.42–0.73 g), whereas compared with the 95% confidence interval for the mean thyroid gland weight of TG−/TG− fetuses (E90, 0.06–4.67 g; E120, 12.4–33.24 g), no consistent increase in goiter weight was found. The enlargement of TG−/TG− goiters was approximately 50-fold at E90, 66-fold at E120, and 197-fold at E150, thus showing a progressive increase.

At E150, the body weight of TG− fetuses from either TG− or TG+ ewes was comparable to that of TG+/TG+ fetuses (Table 4). Also, no significant difference was found between body weights of TG+/TG+ and TG−/TG− fetuses at E120. The body weights of the two TG−/TG− fetuses were within the 95% confidence interval for the mean body weight of E120 TG+/TG+ fetuses (1046.6–2412.55 g). At E90, the body weights of TG−/TG− and TG−/TG+ fetuses were all, except for one TG−/TG+ value (368 g), below the 95% confidence interval for the mean body weight of TG+/TG+ fetuses (360.91–401.24 g).

At E150, brain and cerebellum weights of TG−/TG− fetuses were significantly reduced compared to brain and cerebellum weights of TG+/TG+ fetuses [T(9) = 3.23; P = 0.01 and T(9) = 3.35; P = 0.009, respectively; Table 4]. Total brain weights of E150 TG−/TG+ fetuses tended to be significantly different from weights of TG+/TG− fetuses [T(8) = 2.205; P = 0.059], and cerebellum weights were not significantly different from cerebellum weights of TG−/TG− fetuses [T(8) = 1.805; P = 0.109]. Also, no significant difference was found between brain and cerebellum weights of E150 TG−/TG+ and TG−/TG−/TG+ fetuses [brain: T(9) = 0.64; P = 0.54; cerebellum: T(9) = 0.60; P = 0.56]. At E120, no significant difference between brain and cerebellum weights of TG−/TG+ and TG−/TG+ fetuses was found. The brain weights of the two E120 TG−/TG+ fetuses were within (37.3 g) and below (36.2 g) the 95% confidence interval for the mean brain weight of E120 TG+/TG+ fetuses (36.75–46.7 g). The cerebellum weights of these two TG−/TG+ fetuses were both within the 95% confidence interval for the mean cerebellum weight of TG+/TG+ fetuses at E120 (3.51–6.59 g). At E90, the number of observations was too low for statistical analysis. However, the brain weights of the two TG−/TG− fetuses and the two TG−/TG+ fetuses were below and within, respectively, the 95% confidence interval for the mean brain weight of TG+ fetuses at E90 (11.76–15.09 g). The cerebellum weights of TG−/TG− and TG−/TG+ fetuses were all, except for one TG−/TG− value (0.2 g), within the 95% confidence interval for the mean cerebellum weight of TG+ fetuses at E90 (0.29–2.11 g).

**Discussion**

Effects of maternal thyroid status on fetal growth and thyroid parameters during the second half of gestation

In the present study, the ewes received iodine supplementation for the initial 2 months of gestation to avoid the severe hypothyroidism, low conception frequency, and high abortion rate in affected ewes. Thus, before the onset of fetal thyroid function at approximately 70 days gestation (26),

<table>
<thead>
<tr>
<th>Group</th>
<th>Thyroid gland wt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E90</td>
</tr>
<tr>
<td>TG+/TG+</td>
<td>59.75 ± 2.81 (4)</td>
</tr>
<tr>
<td>TG−/TG−</td>
<td>38/47 (2)</td>
</tr>
<tr>
<td>TG−/TG+</td>
<td>68/73 (2)</td>
</tr>
</tbody>
</table>

Shown are the mean ± SEM; the number of goats is given in parentheses; individual values are given when n = 2. TG−, Affected goitrous goat, homozygous for the thyroglobulin (TG) synthesis defect; TG−/+ unaffected normal goat; TG−/TG−, TG− fetus from TG− mother; TG−/TG+, TG− fetus from TG+ mother. Gestational age is indicated as E (days). Statistical analysis was performed by ANOVA.
Statistical analysis was performed by ANOVA. Final significance (the number of animals per group was three or more.

weights of TG fetuses) at E150 were not affected compared to those of TG fetuses from TG mother; TG/TG fetuses from TG mother; TG/TG, TG− fetuses from TG+ mother. Gestational age is indicated as E (days). Statistical analysis was performed by ANOVA. Final significance (P < 0.05) was assessed by the two-sample t test and was determined when the number of animals per group was three or more.

The present findings show that a goiter is present in TG− fetuses during all stages of gestation studied (E90, E120, and E150). Remarkably, the degree of enlargement of the goiter in TG− fetuses is dependent on the maternal phenotype at E150. At E90 and E120, no clear dependency is evident, although the number of observations is too low for statistical analysis. Two possible mechanisms might account for the difference in goiter increase at E150. Firstly, the goiter increase might reflect the progressive increase in pituitary TSH secretory capacity (33), which might be delayed in TG−/TG− fetuses due to a delayed maturation of the hypothalamo-pituitary-thyroid system. Secondly, IGF-I plasma concentrations might be diminished in malnourished hypothyroid TG−/TG− fetuses compared to TG−/TG+ fetuses, producing less thyroid growth ability in response to TSH (31, 34). However, our data show that this is not the case in this study, thus favoring the first possibility.

Plasma T4 and FT4 concentrations in TG− fetuses are dependent on the maternal phenotype, as studied during the second half of gestation (E90–E150). Two possible mechanisms could account for the normal plasma thyroid hormone levels in TG−/TG+ fetuses: increased iodine availability for the fetal thyroid and/or increased transfer of T4 from the mother in TG−/TG+ fetuses compared to TG−/TG− fetuses. We favor the former possibility as a major source of thyroid hormones in the second half of gestation for the following reasons. First, newborn TG+ lambs from TG− mothers (TG+/TG− lambs) are indistinguishable from TG+/TG+ lambs and have plasma T4 levels within the normal range. This demonstrates that in late gestation, fetal goats, like fetal sheep (11, 13, 35), have to rely on their own thyroidal T4 production. In addition, TG−/TG+ fetuses have much higher plasma T4 and FT4 concentrations than their TG+ mothers, suggesting fetal thyroid hormone synthesis. Second, if in TG−/TG+ fetuses plasma T4 would originate from the mother, the goiter size would be much smaller, as has been observed in human pathology (36). The selective effect of the maternal TG genotype on fetal T4 levels can be explained by the former mechanism as follows. Due to the inefficient thyroid hormone formation in the TG− goats, an inefficient iodine metabolism occurs. Not only is the iodine rapidly released from the thyroid gland in the form of serum protein-bound iodine (21, 23, 37, 38), but a marked increase in urinary excretion of low mol wt iodinated ma-

### TABLE 4. Effects of hypothyroidism on weights of body, total brain, and cerebellum in fetal goats

<table>
<thead>
<tr>
<th>Age Group</th>
<th>n</th>
<th>BW (g)</th>
<th>Brain wt (g)</th>
<th>Cerebellum wt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E90</td>
<td>TG+/TG+</td>
<td>4</td>
<td>381.1 ± 6.3</td>
<td>13.4 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>TG−/TG−</td>
<td>2</td>
<td>267/296</td>
<td>11.5/11.5</td>
</tr>
<tr>
<td></td>
<td>TG−/TG+</td>
<td>2</td>
<td>303/368</td>
<td>12.0/12.3</td>
</tr>
<tr>
<td>E120</td>
<td>TG+/TG+</td>
<td>4</td>
<td>1729.6 ± 214.6</td>
<td>41.7 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>TG−/TG−</td>
<td>3</td>
<td>1642.1 ± 29.4</td>
<td>34.6 ± 5.1</td>
</tr>
<tr>
<td></td>
<td>TG−/TG+</td>
<td>2</td>
<td>1614/1685</td>
<td>37.3/36.2</td>
</tr>
<tr>
<td>E150</td>
<td>TG+/TG+</td>
<td>6</td>
<td>2978.3 ± 302.7</td>
<td>54.8 ± 1.1</td>
</tr>
<tr>
<td></td>
<td>TG−/TG−</td>
<td>5</td>
<td>2611.0 ± 237.4 (4)</td>
<td>45.4 ± 2.9a</td>
</tr>
<tr>
<td></td>
<td>TG−/TG+</td>
<td>5</td>
<td>3066.5 ± 452.4</td>
<td>57.6 ± 4.7</td>
</tr>
</tbody>
</table>

Shown are the mean ± SEM. n, Number of goats; different number of goats are shown in parentheses; individual values are given when n = 2. TG−, Affected goitrous goat, homozzygous for the thyroglobulin (TG) synthesis defect; TG−/TG+, unaffacted normal goat. TG+/TG+, TG−/TG− fetuses from TG− mother; TG−/TG− fetuses from TG− mother; TG−/TG+, TG− fetuses from TG+ mother. Gestational age is indicated as E (days). Statistical analysis was performed by ANOVA. Final significance (P ≤ 0.05) was assessed by the two-sample t test and was determined when the number of animals per group was three or more.

a Significantly different from TG+/TG+ group at the same age.

TG− (for definition of phenotype, see Materials and Methods) mothers were comparable to TG+ mothers. Therefore, the influence of maternal thyroid status can only be related to the second half of gestation. This might explain why the most significant difference in total brain and cerebellum weight between affected goitrous TG− fetuses from TG− mothers (TG−/TG− fetuses) and normal TG+ fetuses from normal TG+ mothers (TG+/TG+ fetuses) is found at term gestation (E150). It might also explain why the observed effects in TG−/TG− goats appear to be less severe than the fetal brain retardation caused by combined maternal and fetal thyroidectomy in sheep (15), as in the latter, maternal hypothyroidism was already present from conception. At E120, no significant difference between brain and cerebellum weights of TG−/TG− and TG+/TG+ fetuses is found. At E90, the brain weights of the two TG−/TG− fetuses were below the 95% confidence interval of TG+/TG+ fetuses, but these results should be interpreted with caution.

In contrast to TG−/TG− fetuses, the brain and cerebellum weights of TG− fetuses from TG+ mothers (TG−/TG+ fetuses) at E150 were not affected compared to those of TG+/TG+ fetuses. Furthermore, the difference in mean brain weight between TG−/TG+ fetuses and TG−/TG− fetuses at E150 is quite large and tends to be significant, suggesting that the brain weight of TG− fetuses might depend on the maternal phenotype at E150. These findings are in contrast to the retarded brain development observed in thyroidectomized fetal sheep from normal mothers (12–14) and can be explained by the remaining thyroid function, albeit impaired, in the TG−/TG+ fetuses, resulting in plasma FT4 and T4 levels in the normal range, whereas perinatal plasma T4 concentrations in thyroidectomized sheep are undetectable (12, 13, 15). No significant effect of maternal and fetal hypothyroidism on body weight at E120 and E150 was found, which is in agreement with previous findings in goitrous newborn goats (32). The finding that the body weights of the two TG−/TG− fetuses at E90 lie below the 95% confidence interval for the mean body weight of TG+/TG+ fetuses may suggest a transient effect of hypothyroidism on growth. However, more information is needed regarding E90 body weights before the present results can be adequately interpreted.
Developmental changes in fetal $T_4$, $FT_4$, and $T_3$ concentrations

The developmental increase in $T_4$ and $T_3$ concentrations in TG+/TG+ fetuses is in agreement with data obtained in sheep (16, 40). The increase in plasma $FT_4$ concentration parallels the increase in plasma $T_4$ levels, suggesting that there is no major developmental change in $T_4$-binding protein concentrations after E90. The low plasma $T_3$ concentrations at E90 and E120 probably reflect low levels of type I deiodinase (ID-I) activity in fetal tissues (33, 41–44). At E150, the high $T_3$ concentrations are in agreement with studies in sheep describing a prenatal $T_3$ increase and a postnatal $T_3$ surge that occur within the first hour after caesarean section delivery as well as after spontaneous labor (41, 45, 46). This $T_3$ increase might result from increased ID-I activity and/or an increased TSH secretion immediately after birth (33).

The developmental increase in plasma $T_3$ levels in TG−/TG− fetuses is not progressive; $T_3$ levels are unchanged at E90, elevated at E120, and strongly reduced at E150 compared to those in TG+/TG+ fetuses. The increased plasma $T_3$ levels at E120 might be due to increased thyroidal ID-I activity and/or increased type II deiodinase (ID-II) activity. The former was increased in hypothyroid rats and humans (47, 48), and the latter was increased in brown adipose tissue and brain in hypothyroid rats (49, 50) and sheep (43, 44). The decreased plasma $T_3$ levels at E150, might result from decreased conversion of $T_4$ to $T_3$ by ID-I due to low $T_4$ availability and/or reduced hepatic and renal ID-I activity, as was found in the hypothyroid fetal sheep until late in the third trimester (43).

Summary and conclusions

The present data indicate that in late gestation fetal goats have to rely on their own thyroidal $T_4$ production. Most likely, affected goitrous TG− fetuses are able to produce sufficient $T_4$ and $T_3$ to maintain the euthyroid status, provided that the maternal iodine supply to the fetus is adequate, although a possible increased transfer of maternal $T_4$ to TG−/TG+ fetuses cannot be excluded. The fetal thyroid hormone production suffices for preventing severe adverse effects of thyroid hormone deficiency on the brain. TG+ mothers with a normal efficient thyroid function provide sufficient iodine to the fetus. However, in TG− mothers, much iodine is wasted, because the thyroid iodinates proteins other than the aberrant TG fragment, such as serum albumin (38, 51), and the goats excrete iodinated peptides in the urine, thus loosing iodine (25, 39). This results in iodine deficiency of the fetus that also inefficiently metabolizes the iodine supplied. Consequently, it results in severe hypothyroidism, with marked effects on brain development.

Acknowledgments

We thank Prof. Dr. D. F. Swaab for critical remarks on the manuscript, the Gemeenschapstely Dieren Institut Amsterdam for animal care, and Dr. E. Endert for thyroid hormone assays.

References

16. Potter BJ, Mano MT, Belling GB, McIntosh GH, Hua C, Cragg BG, Marshall J, Welby ML, Heitel BS 1982 Retrodial fetal brain development resulting from...
severe dietary iodine deficiency in sheep. Neupathol Appl Neurobiol 8:303–313
17. Puter BJ, Mano MT, Belling GB, Martin DM, Cragg BG, Chavadej J, Hetzel BS 1984 Restoration of brain growth in fetal sheep after iodized oil admin-
istration to pregnant iodine-deficient ewes. J Neurol Sci 66:15–26
Autosomal recessive inheritance of goiter in Dutch goats. J Hered 78:298–300
Abnormal cellular localization of thyroglobulin mRNA associated with her-
editary congenital goiter and thyroglobulin deficiency. Proc Natl Acad Sci
USA 75:74–78
Normal-sized thyroglobulin messenger ribonucleic acid in Dutch goats with a
thyroglobulin synthesis defect is translated into a 35,000 molecular weight
N-terminal fragment. Endocrinology 124:477–483
22. Den Hartog MT, Sijmons CC, Kristel PMP, Bakker O, De Vijlder JJM 1993
Expression of a functional thyroglobulin fragment in a baculovirus system. J
Mol Endocrinol 11:161–166
23. Van Voorhuisen WF, De Vijlder JM, Van Dijk JE, Tegelaers WHH 1978b
Euthyroidism via iodide supplementation in hereditary congenital goiter with
thyroglobulin deficiency. Endocrinology 103:2105–2111
WHH 1979 Hereditary congenital goiter in an inbred strain of goats. In:
Hommes FA (ed) Models for the Study of Inborn Errors of Metabolism.
Elsevier, Amsterdam, pp 81–94
versity of Amsterdam, Amsterdam, The Netherlands
26. Fisher DA, Dussault JH, Sack J, Chopra IJ 1990 Two pathways for thy-
roglubin degradation and transport in the circulation of fetal sheep. Endocrinology 115:2394–2405
tabolism in goats with congenital goitre and hypothyroidism. Br Vet J
133:495–503
WHH 1978 Hereditary congenital goiter with thyroglobulin deficiency in a
breed of goats. Endocrinology 102:1214–1222
diagnosis of a thyroglobulin synthesis defect in goats. Acta Endocrinol
(Copenh) 110:83–89
30. Wu SY, Polk D, Wong S, Reviczky A, Vu R, Fisher DA 1992 Thyroxine sulfate is a major thyroid hormone metabolite and a potential intermediate in the
monodeiodination pathways in fetal sheep. Endocrinology 131:1751–1756
31. Wu SY, Klein AH, Chopra IJ, Fisher DA 1978a Alterations in tissue thyroxine
5′-monodeiodinating activity in perinatal period. Endocrinology 103:235–239
32. Polk DH, Wu SY, Wright C, Reviczky AL, Fisher DA 1988 Ontogeny of thyroid hormone effect on tissue 5′-monodeiodinase activity in fetal sheep.
Am J Physiol 254:E337–E341
33. Wu SY, Merryfield ML, Polk DH, Fisher DA 1990 Two pathways for thy-
roglubin degradation and transport in the circulation of fetal sheep. Endocrinology 115:2394–2405
34. Nathanialson PW, Silver M, Comline RS 1973 Plasma triiodothyronine con-
35. Klein AH, Oddie TH, Fisher DA 1978 Effect of parturition on serum iodo-
thyronine concentrations in fetal sheep. Endocrinology 103:1453–1457
F, Kuma K, Imura H 1983 Induction of outer ring and inner ring monodeio-
dinase in human thyroid gland by thyrotropin. J Clin Endocrinol Metab
57:500–505
Thyroid Hormone Metabolism. Marcel Decker, New York, pp 189–229
38. Silva JE, Larsen PR 1982 Comparison of iodothyronine 5′-deiodinase and other thyroid-hormone-dependent enzyme activities in the cerebral cortex of
hypothyroid neonatal rat. Evidence for adaptation to hypothyroidism. J Clin
Invest 70:1110–1123
39. Silva JE, Matthews PS 1984 Thyroid hormone metabolism and the source of
plasma triiodothyronine in 2-week-old rat: effects of thyroid status. Endo-
crinology 115:2394–2405