Competing electron transfer proton abstraction and nucleophilic substitutions in gas-phase reactions of (radical) anions with chloro- and bromomethanes.

Staneke, P.O.; Groothuis, G.; Ingemann Jorgensen, S.; Nibbering, N.M.M.

Published in:
Journal of physical organic chemistry

DOI:
10.1002/(SICI)1099-1395(199607)9:7<471::AID-POC807>3.0.CO;2-I

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
COMPETING ELECTRON TRANSFER, PROTON ABSTRACTION AND NUCLEOPHILIC SUBSTITUTIONS IN GAS-PHASE REACTIONS OF (RADICAL) ANIONS WITH CHLORO- AND BROMOMETHANES

P. O. STANEKE, G. GROOTHUIS, S. INGEMANN AND N. M. M. NIBBERING*

Institute of Mass Spectrometry, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam, The Netherlands

The product ion distributions and rates of the gas-phase reactions of two series of (radical) anions with chloro- and bromomethanes (CH₃Cl, CH₃Cl₂, CHCl₃, CCl₄, CH₂Br, CH₃Br₂, CHBr₃ and CBr₄) were determined with the use of Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The first series consists of anions (HO-, CH₃O-, C₆H₅O-, C₆H₄O- and CH₂S-), for which the corresponding neutral radicals have a relatively high electron affinity (EA > 150 kJ mol⁻¹). The second series consists of (radical) anions (CH₂S⁻, CH₂⁻,CH₂CH⁻, CH₂═C(CH₃)₂CH⁻, C₆H₄⁻ and C₂H₅⁻), for which the corresponding neutral species have a relatively low electron affinity (EA < 100 kJ mol⁻¹). These (radical) anions react mainly with the halomethanes to afford (i) halide ions, (ii) halomethyl anions with the same number of halogen atoms as in the parent halomethane and (iii) halomethyl anions with one halogen atom less than the parent substrate. The last process involves nucleophilic attack on a halogen atom and is particularly important in the reactions with substrates containing three or four halogen atoms. The halide ions may arise by a number of different pathways, such as S₂₂ substitution, α-elimination, halogen attack followed by dissociation of the thus formed halomethyl anion and overall dissociative electron transfer. The S₂2 process is held responsible for the formation of halide ions in the reactions with monohalomethanes, whereas α-elimination is likely to be of importance only for the reactions with trichloro- and tribromomethanes. Attack on a halogen atom followed by dissociation of the ion generated initially is likely to be important if CCl₄ or CBr₄ is the substrate. Electron transfer is only a dominant pathway in the reactions of the CH₂S⁻ ion with the halomethanes. The occurrence of electron transfer in the reactions of this ion with CHCl₃, CCl₄ and CHBr₃ is evidenced by the formation of minor amounts of stable halomethane radical anions in addition to the generation of CH₃SCI⁻ or CH₂SBr⁻ ions and abundant halide ions. The interplay between the various possible reactions is discussed on the basis of thermodynamic considerations and the rates of the overall processes.

INTRODUCTION

The transfer of a single electron has become recognized as a central step in many organic reactions described commonly as two electron centered processes. In particular, the role of single electron transfer (SET) in organic processes has been studied extensively since the pioneering work of Kornblum, Russell and Bunnett concerning nucleophilic aromatic substitutions proceeding by a pathway which is now known as the Sₙ₂₁ mechanism. The experimental results of a large number of studies concerned with electron transfer reactions in organic systems provide evidence that SET can merge and compete with processes such as the Sₙ₂ substitution in the reactions of anions (A⁻) or radical anions with haloalkanes (RX). The electron transfer process leads initially to a molecular radical anion of the haloalkane as indicated in equation (1). For most haloalkanes, the molecular radical anion is not observed as a stable species and dissociation into an alkyl radical and a halide ion is normally considered to occur concomitantly with or essentially synchronous with electron transfer.

A⁻ + R → [A⁻ R] → A⁻ + R⁻ + X⁻ (1)

In the condensed phase, the products corresponding to the overall substitution process arise mostly by subsequent bond formation between the A⁻ ion and the R⁻ radical followed by oxidation to a neutral species or by coupling between the R⁻ and A⁻ radicals. In the well known Sₙ₂ reaction, the product of substitution, RA, arises directly by nucleophilic attack from the backside of the carbon–halogen bond leading to cleavage of this bond with the formation of a halide ion and inversion of

Received 9 October 1995
Revised 14 February 1996
the configuration of the carbon atom:19,20

\[
\begin{align*}
A^- + \text{C}_2\text{H}_4\text{X} & \rightarrow A^-\text{C}_2\text{H}_4^- + X^- \\
(2)
\end{align*}
\]

From a theoretical point of view, these two processes have been related to each other on the basis of a configuration mixing model, which describes the pathways as involving a so-called single electron shift.10,21–24 Within the terminology of the Marcus theory for electron transfer reactions,35 electron transfer to form a radical anion of the substrate which is stable within the time-scale of a given experiment has been referred to as an outer-sphere process, whereas electron transfer occurring concomitantly with bond formation and bond cleavage has been described as an inner-sphere process.15,36 Experimentally, the Marcus theory has often been applied in the analysis of kinetic data with the purpose of determining whether a given chemical system reacts by a SET process or an SN\textsubscript{2} substitution.1,11,13–18 This distinction has been accomplished also on the basis of the detection of products of radical processes such as cyclization of an \textit{R} radical containing a remote double bond.3,27 In addition, the degree of inversion of configuration in reactions with stereochemically pure substrates has been utilized as a measure of the extent to which SN\textsubscript{2} substitution competes with a SET process, since the latter is expected to lead to a racemic mixture of the final products.1,11,12

Almost all of the studies concerned with the interplay between SET and SN\textsubscript{2} processes have been focused on reactions occurring in the condensed phase. Under these conditions, the competition between the different processes can be influenced by solvation phenomena and thus only limited insight may be obtained into the molecular properties which determine the extent to which SET occurs for a given chemical system. Obviously, the effects of solvation can be avoided by performing ion–molecule reactions in the gas phase as has been documented extensively in the last few decades for a variety of organic and inorganic systems.24–30 However, only a limited number of these studies have addressed the extent to which SET competes with polar processes in typical organic ion–molecule reactions in the gas phase. Pertinent examples of gas-phase studies involving positive ions include the nitration of aromatic species,\textsuperscript{3,32} acylation of heteroaromatic compounds with acylum ions33,34 and the competition between E2, SN\textsubscript{2} and SET in the reactions of the methyldiethyloxonium ion with amines.35 With respect to reactions of negative ions, the interplay between electron transfer and substitution processes has been discussed for the reactions of a limited number of (radical) anions with some halomethanes. In particular, electron transfer has been observed from the O− anion to halomethanes such as CF\textsubscript{2}Cl\textsubscript{2} and CFCl\textsubscript{3},36–38 and also from the radical anions of substituted nitrobenzenes and azulene to the halomethanes CHCl\textsubscript{3}, CCl\textsubscript{4}, CH\textsubscript{2}Br\textsubscript{2}, CH\textsubscript{2}I, CF\textsubscript{3}Cl, CF\textsubscript{3}Br, and CCl\textsubscript{3}Br.39 Furthermore, the azobenzene radical anion is reported to react with only the chloro- and bromomethanes with more than a single halogen atom in the gas phase if dissociative electron transfer with formation of free halide ions is exoergic.40 Recently, we observed that the thioformaldehyde radical anion, CH\textsubscript{2}S−, reacts with C\textsubscript{6}Cl\textsubscript{4} (X = H, F and Cl) halomethanes to afford minor amounts of stable radical anions of these species.41 In addition, we have reported that the CH\textsubscript{2}S− ion reacts efficiently by electron transfer with various completely halogen-substituted fluorochloro- and fluorobromomethanes in the gas phase and also with some esters of trifluoroacetic acid.32,43

The radical anions of azobenzene and substituted nitrobenzenes are relatively large species with delocalized charge and radical centers. For such radical anions, the SN\textsubscript{2} pathway may be associated with a substantial kinetic barrier causing these species to react with halomethanes preferentially by the SET pathway. Likewise, the thioformaldehyde radical anion is a weak nucleophile in the gas phase and reacts mostly, if not exclusively, as an electron donor.41–43 However, a systematic study concerned with the interplay between SET and nucleophilic processes in the gas-phase reactions of various anions and radical anions with halomethanes has not been performed. To this end, we decided to react a variety of (radical) anions with the complete series of chloro- and bromomethanes in the gas phase.

A disadvantage of studying reactions of (radical) anions with halomethanes in the gas phase is that only halide ions may be detected, irrespective of whether the reaction proceeds by the SET or, for example, the SN\textsubscript{2} pathway. However, under normal operating conditions only overall thermoneutral or exoergic processes are observed with the most common mass spectrometric instrumentation applied for studies of ion–molecule reactions in the gas phase. Thermodynamic considerations of the overall reactions may thus allow the formation of halide ions to be assigned, for example, to an SN\textsubscript{2} process if dissociative electron transfer is endoergic. Of course, both processes can be thermoneutral or exoergic for ion–molecule systems, indicating that thermodynamic considerations do not necessarily permit this distinction to be achieved. In these situations, a possible approach involves the determination of the rates of the overall reactions. As indicated by a number of studies, a SET reaction may be a relatively fast process in the gas phase even if only slightly exoergic,44 whereas, for example, an SN\textsubscript{2} substitution is often a slow process notwithstanding that the overall process is strongly exoergic.45–49 In order to examine whether this conjecture applies to the interplay between SET and nucleophilic substitutions in the reactions of (radical)
anions with halomethanes, we decided to determine the rates and the product ion distributions of the reactions of two series of ions with the various chloro- and bromomethanes. The first series consists of anions (HO\(^{-}\), CH\(_3\)O\(^{-}\), C\(_2\)H\(_4\)O\(^{-}\) and CH\(_3\)S\(^{-}\)) for which the corresponding neutral species have a relatively high electron affinity (EA > 150 kJ mol\(^{-1}\)). \(^{30}\) SET for these ions is expected to be prohibited by the endoergicity of this process, whereas S\(_2\)2 substitution is estimated to be exoergic. The second series consists of (radical) anions (CH\(_2\)S\(^{-}\), CH\(_2\)CH\(_2\)\(^{-}\), CH\(_2\)C(CH\(_3\))CH\(_2\)\(^{-}\), C\(_6\)H\(_4\)\(^{-}\) and C\(_6\)H\(_5\)\(^{-}\)) for which the corresponding neutral species have a relatively low electron affinity (EA < 100 kJ mol\(^{-1}\)). \(^{30}\) For these ions, both pathways are expected to be thermodynamically feasible for most of the chloro- and bromomethanes included in the present study.

EXPERIMENTAL

The experiments were performed with use of a Fourier transform ion cyclotron resonance (FT-ICR)\(^{31}\) instrument designed and constructed at the University of Amsterdam.\(^{32}\) The experimental procedure for studying ion–molecule reactions with this instrument has been described in previous papers from our group.\(^{33,34}\) The primary negative ions O\(^{-}\), NH\(_2\)\(^{-}\) and HO\(^{-}\) were generated by dissociative electron attachment to N\(_2\)O (electron energy 1.2–1.5 eV), NH\(_3\) (5 eV) and H\(_2\)O (6 eV; electron capture leads to H\(^{+}\) ions which react with H\(_2\)O to afford HO\(^{-}\)), respectively. The radical anion of 1,2-dehydrobenzene, C\(_6\)H\(_4\)\(^{-}\), and the thiophenol radical anion, CH\(_3\)S\(^{-}\), were generated by a formal 1,2-H\(_2\)\(^{+}\) abstraction in the reactions of O\(^{-}\) with benzene\(^{55,56}\) and methanethiol, \(^{57}\) respectively. The CH\(_2\)═CHCH\(_2\)\(^{-}\) and CH\(_2\)═C(CH\(_3\))CH\(_2\)\(^{-}\) ions were generated by first forming HO\(^{-}\) in the reactions of the O\(^{-}\) ion with propane and 2-methylpropane, respectively, and then allowing the HO\(^{-}\) ions to abstract a proton from one of the alkenes. The CH\(_3\)S\(^{-}\) ions were generated by proton transfer from the methanethiol to O\(^{-}\) or HO\(^{-}\), whereas C\(_6\)H\(_4\)\(^{-}\) was formed by proton abstraction from benzene by the NH\(_2\)\(^{-}\) ion. The RO\(^{-}\) ions (R = CH\(_3\), CH\(_3\)CH\(_2\) and CH\(_3\)CH\(_2\)CH\(_2\)) were generated by proton abstraction from the corresponding alcohols with the use of HO\(^{-}\) as the Brønsted base. The ions of interest were reacted selectively with a given halomethane by ejecting all other ions from the FT-ICR cell as described in detail elsewhere.\(^{58,59}\) abundant halide ions were formed by dissociative capture of low energy electrons to the halomethanes containing three or four halogen atoms. The occurrence of this process during the period in which a given ion was allowed to react with a halomethane was suppressed by ejecting the low energy electrons from the FT-ICR cell as described previously.\(^{60}\) A complete inhibition of the capture of low-energy electrons was achieved in most instances with the exception of some of the experiments with CH\(_3\)Br\(_2\), CHBr\(_3\) and CBr\(_4\). For these substrates, ejection of the primary reactant ion followed by a time-delay of 1–2 s proved that dissociative capture of residual electrons trapped in the FT-ICR cell may have contributed to the formation of 10–20% of the Br\(^{+}\) ions generated under normal operating conditions.

In the experiments concerned with the reactions of the O\(^{-}\) ion with the halomethanes, the pressure of N\(_2\)O was 3 \(\times\) 10\(^{-6}\) Pa, whereas a given halomethane was present at an indicated pressure of 3 \(\times\) 10\(^{-5}\)–4 \(\times\) 10\(^{-5}\) Pa. A low partial pressure of N\(_2\)O was chosen in order to minimize the occurrence of the reaction of the O\(^{-}\) ion with nitrous oxide, which yields NO\(^{-}\) ions.\(^{64,65}\) With nitrous oxide present at a low partial pressure, NO\(^{-}\) ions were not observed, indicating that the reaction with N\(_2\)O could not compete with the reaction of O\(^{-}\) with a halomethane under the chosen experimental conditions. The details of the reactions of the O\(^{-}\) ion with various halomethanes are given elsewhere.\(^{49}\)

In most of the experiments, the total pressure was normally around 10\(^{-6}\) Pa and the ratio between the partial pressures of the precursor of the primary negative ions, the parent compound of the reactant ion of interest and the halomethane was approximately 1:1:1. The pressures were measured with an uncalibrated ionization gauge placed in a side-arm of the main pumping line (see Results). The temperature of the trapping plate situated opposite the filament side was measured to be 330 K. The inlet systems, the leak valves and the vacuum vessel of the instrument were at room temperature.

Materials. All the chemicals used were commercially available and used without further purification, with the exception of tribromomethane, which was purified by distillation.

RESULTS

Reactions with chloromethanes

The product ions formed in the reactions of the RO\(^{-}\) (R = H, CH\(_3\), C\(_2\)H\(_5\) and CH\(_3\)CH\(_2\)CH\(_2\)) and CH\(_3\)S\(^{-}\) ions with the chloromethanes are given in Table 1, which lists the initial normalized abundances of the product ions present in the cell after 90% of the selected anions have reacted with a given substrate. The ions given in Table 1 react with CH\(_3\)Cl to form only Cl\(^{-}\) ions, in agreement with a number of other studies.\(^{45–49}\) With CH\(_3\)Cl\(_2\) and CHCl\(_3\) as the substrates, the dominant reaction is proton transfer with formation of CHCl\(_2\)\(^{-}\) and CCl\(_3\)\(^{-}\) ions, respectively. With CCl\(_4\) as
Table 1. Normalized abundances of the product ions formed in the reactions of the RO⁻ and CH,S⁻ ions with chloromethanes

<table>
<thead>
<tr>
<th>Compound</th>
<th>Product ion</th>
<th>HO⁻</th>
<th>CH₂O⁻</th>
<th>C₂H₄O⁻</th>
<th>C₂H₂O⁻</th>
<th>C₂H₄⁻</th>
<th>CH₅⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Initial</td>
<td>90% conversion</td>
<td>Initial</td>
<td>90% conversion</td>
<td>Initial</td>
<td>90% conversion</td>
</tr>
<tr>
<td>CH₃Cl</td>
<td>Cl⁻</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>CH₂Cl₂</td>
<td>Cl⁻</td>
<td>100</td>
<td>95</td>
<td>100</td>
<td>95</td>
<td>100</td>
<td>95</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>Cl⁻</td>
<td>100</td>
<td>5</td>
<td>100</td>
<td>5</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>CCl₄</td>
<td>Cl⁻</td>
<td>40</td>
<td>20</td>
<td>100</td>
<td>20</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>HO⁻ + CCl₄</td>
<td>Cl⁻ + CCl₃OH (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO⁻ + CCl₄</td>
<td>ClO⁻ + CHCl₃ (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HO⁻ + CCl₄</td>
<td>CCl₃⁻ + HClOCl (5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the reaction of CH₃O⁻ with CCl₄, only CCl₃⁻ ions are generated. Similarly, the CH₃CH₂O⁻ and CH₃CH₂CH₂O⁻ ions react with CCl₄ to afford mainly CCl₃⁻, whereas significant amounts of Cl⁻ are generated in addition to the CCl₃⁻ species if CH₃S⁻ is the reactant (see Table 1).

In several of these systems, the time dependence of the abundance of the Cl⁻ ions indicates that secondary reactions either contribute to the formation of these ions or are the only source of the Cl⁻ ions present after 90% of the reactant ions have reacted to afford products. For example, the slight increase in the relative abundance of Cl⁻ ions in the experiments with CH₂Cl₂ (Table 1) may be a result of a reaction between the CHCl₂⁻ ion and the parent chloromethane as shown in equation (6).

CHCl₂⁻ + CH₂Cl₂ → C₂H₃Cl₃ + Cl⁻ (6)

The Cl⁻ ions may also be generated in secondary reactions of the CHCl₂⁻ ion with the neutral alcohol of the RO⁻ ions as illustrated in equation (7). In this equation, initial proton transfer to CHCl₂⁻ from the ROH species is indicated to lead to a complex of a RO⁻ ion and a CH₂Cl₂ molecule, which can react subsequently to afford Cl⁻ ions. A similar reactivity pattern has been observed in a number of other gas-phase ion–molecule systems as discussed in detail in reports published previously.

CH₂Cl₂⁻ + ROH → [CHCl₂⁻ + ROH]⁻ → [CH₂Cl₂ + RO⁻]⁻ + CH₂ClCl + Cl⁻ (7)

The ions listed in Table 2 display only to some extent a similar reactivity pattern to that observed for the reactions of the HO⁻, RO⁻ and CH₃S⁻ ions with the chloromethanes. As expected, the two allylic anions, CH₂=CHCH₂⁻ and CH₂=C(CH₃)CH⁻, react with CH₃Cl to form only Cl⁻ ions (Table 2). Similarly, the phenyl anion and the o-benzyne radical anion react with CH₃Cl to afford Cl⁻ ions, whereas the thioformaldehyde radical anion shows no reactivity towards this substrate. The CH₃S⁻⁻ ion is also unreactive towards CH₂Cl₂, whereas proton transfer with formation of CHCl₂⁻ occurs readily in the reactions of the other ions in Table 2 with CH₂Cl₂.

A distinct reactivity pattern is observed for the reactions with CHCl₃. For example, the two allylic anions and the phenyl anion react to form Cl⁻, CCl₃⁻ and CHCl₂⁻ ions as shown in equations (8)–(10) for CH₂=CHCH₂⁻. Subsequently, the CHCl₂⁻ product ions react with CHCl₃ by proton transfer, in agreement with the fact that CHCl₃ is more acidic than CH₂Cl₂ in the gas phase.

CH₂ = CH – CH₂ + HCCl₃ → C₃H₇Cl + Cl⁻ (8)
CH₂ = CH – CH₂ + CCl₃ → C₃H₇Cl + C₃H₇Cl (9)
CH₂ = CH – CH₂ + CHCl₂ → C₄H₁₀Cl + Cl⁻ (10)
Table 2. Normalized abundances of the product ions formed in the reactions of selected (radical) anions with chloromethanes*

<table>
<thead>
<tr>
<th>Compound</th>
<th>CH₂CHCH₃⁻</th>
<th>CH₂C(CH₃)CH₂⁻</th>
<th>CH₃S⁻⁻</th>
<th>C₂H₄⁻⁻</th>
<th>C₃H₅⁻⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial At 90% conversion</td>
</tr>
<tr>
<td>CH₃Cl</td>
<td>Cl⁻</td>
<td>100 100</td>
<td>100 100</td>
<td>No reaction</td>
<td>100 100</td>
</tr>
<tr>
<td>CH₂Cl₂</td>
<td>Cl⁻</td>
<td>20 20</td>
<td>20 20</td>
<td>No reaction</td>
<td>30 25</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>Cl⁻</td>
<td>80 80</td>
<td>90 80</td>
<td>70 65</td>
<td>70 75</td>
</tr>
<tr>
<td></td>
<td>CI⁻</td>
<td>25 30</td>
<td>10 10</td>
<td>30 30</td>
<td>40 35</td>
</tr>
<tr>
<td></td>
<td>CCl₂⁻</td>
<td>45 50</td>
<td>55 60</td>
<td>60 60</td>
<td>35 55</td>
</tr>
<tr>
<td></td>
<td>CHCl₂⁻</td>
<td>30 20</td>
<td>35 30</td>
<td>5 5</td>
<td>25 10</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>30 35</td>
<td>5 5</td>
<td>5 5</td>
<td>25 10</td>
</tr>
<tr>
<td>CCl₄</td>
<td>Cl⁻</td>
<td>80 80</td>
<td>50 50</td>
<td>90 90</td>
<td>75 75</td>
</tr>
<tr>
<td></td>
<td>CI⁻</td>
<td>20 20</td>
<td>50 50</td>
<td>25 25</td>
<td>40 40</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>10 10</td>
<td>10 10</td>
<td>10 10</td>
<td>10 10</td>
</tr>
</tbody>
</table>

*The initial product ion abundances are determined by following them as a function of reaction time and subsequently extrapolating to zero time. The values at 90% conversion represent the normalized abundances of the product ions present in the FT-ICR cell after 90% of a given (radical) anion has reacted with the substrate; see also text.

The remaining 35% consists of 30% CH₂Cl⁻ and 5% CH₂SHCl⁻.

The residual 30% corresponds to 10% CHCl₃⁻ and 20% CH₂SCI⁻.

The remaining 35% consists of 30% CH₂Cl⁻ and 5% CH₂SCl⁻.

The 30% ions are formed; see text.

The 10% corresponds to 9% CH₂SCl⁻ and 1% CCl₃⁻ ions.

The 10% consists of 8% CH₃SCI⁻ and 2% CCI₄⁻.

The 10% consists of 8% CH₃SCI⁻ and 2% CCI₄⁻.

The 10% corresponds to 9% CH₂SCl⁻ and 1% CCl₃⁻ ions.

Reactions with bromomethanes

The product ions formed in the reactions of the RO⁻ (R = H, CH₃ and CH₃CH₂CH₃), CH₂⁻(CH₃)CH₂⁻, CH₃S⁻⁻ and C₂H₄⁻⁻ ions with the bromomethanes are collected in Table 3, which lists the initial ion distributions and the relative yields of the product ions present in the cell after 90% conversion into products.

With CH₃Br as the substrate, only Br⁻ ions are formed, whereas proton abstraction with formation of CHBr⁻⁻ competes with Br⁻ generation in the reactions with CH₂Br₂. The slight increase in the relative abundance of the Br⁻ ions with increasing reaction time may be a result of a slow secondary reaction of CHBr⁻⁻ with the neutral species in the cell and/or inefficient ejection of low energy electrons trapped in the FT-ICR cell (see Experimental).

Proton abstraction is the only pathway open in the reaction of HO⁻ with CHBr₃ and dominates for the two alkoxide ions, CH₃O⁻ and CH₃CH₂CH₂O⁻. In addition, the latter two ions react with this substrate to form
The initial product ion abundances are determined by following them as a function of reaction time and subsequently extrapolating to zero time. The values at 90% conversion represent the normalized abundances of the product ions present in the FT-ICR cell after 90% of the (radical) anions have reacted with the given substrate. The slight increase in the relative abundance of the Br ions in some secondary reactions between the primary product ions and the neutral species present in the FT-ICR cell: (13)–(15) and Table 3.

The major uncertainties in the conversion of the slopes of the regression lines into second-order rate constants are related to establishing the temperature of the chemical system and the determination of the pressure of a given halomethane. Examples of the kinetic plots are given in Figure 2, which shows the time dependence of the natural logarithm of the normalized abundances of the reactant ions as a function of reaction time and the pressure of a given halomethane. The linear regression correlation coefficients for these results are >0.990. Similarly, the other rate constants given in Tables 4 and 5 are based on plots with linear regression coefficients of >0.990.

The overall rate constants for the reactions of the (radical) anions and the chloromethanes are given in Table 4 and the values for the reactions with some of these reactant ions and the bromomethanes are collected in Table 5. In addition to the rate constants, we have listed the efficiencies of the processes estimated as the ratio between the corrected overall experimental rate constants and the collision rate constants calculated on the basis of the average dipole orientation (ADO) theory (see below).57

All the reactions occur with pseudo-first order kinetics since the number of ions is roughly a factor of 10^4 lower than that of the neutral reactants in the FT-ICR instrument. The second-order rate constants are thus derived as the ratio between the slope of linear plots of the natural logarithm of the normalized abundances of the reactant ions as a function of reaction time and the pressure of a given halomethane. Examples of the kinetic plots are given in Figure 2, which shows the time dependence of the natural logarithm of the normalized abundances of the o-benzyl radical anion with the full series of chloromethanes. The linear regression correlation coefficients for these results are >0.990. Similarly, the other rate constants given in Tables 4 and 5 are based on plots with linear regression coefficients of >0.990.

The major uncertainties in the conversion of the slopes of the regression lines into second-order rate constants are related to establishing the temperature of the chemical system and the determination of the pressure of a given halomethane in the cell of the instrument. Normally, the pressure in an FT-ICR instrument is too low for assigning a true thermodynamic temperature to the reactant chemical system. It should be emphasized, however, that the observed linear dependence of the natural logarithm of the normalized abundances of the reactant ions indicates that the distribution of the translational and internal energy of the reactant species is similar and relatively
Table 4. Rate constants (*k*) and efficiencies (Eff.) of the reactions of the selected (radical) anions with chloromethanes

<table>
<thead>
<tr>
<th>Reactant ion, A⁻</th>
<th>Eₐ(A)</th>
<th>ΔHʷ₂₉₈(AH)</th>
<th>CH₃Cl</th>
<th>CH₂Cl₂</th>
<th>CHCl₃</th>
<th>CCl₄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(kJ mol⁻¹)</td>
<td>(kJ mol⁻¹)</td>
<td>k</td>
<td>Eff.</td>
<td>k</td>
<td>Eff.</td>
</tr>
<tr>
<td>HO⁻</td>
<td>176</td>
<td>1635</td>
<td>1.8</td>
<td>0.70</td>
<td>2.1</td>
<td>0.86</td>
</tr>
<tr>
<td>CH₃O⁻</td>
<td>156</td>
<td>1592</td>
<td>1.3</td>
<td>0.63</td>
<td>1.4</td>
<td>0.69</td>
</tr>
<tr>
<td>C₂H₅O⁻</td>
<td>168</td>
<td>1579</td>
<td>1.0</td>
<td>0.52</td>
<td>1.3</td>
<td>0.75</td>
</tr>
<tr>
<td>C₃H₇O⁻</td>
<td>172</td>
<td>1573</td>
<td>0.73</td>
<td>0.42</td>
<td>0.94</td>
<td>0.59</td>
</tr>
<tr>
<td>CH₃S⁻</td>
<td>183</td>
<td>1493</td>
<td>0.11</td>
<td>0.05</td>
<td>No reaction</td>
<td>1.2</td>
</tr>
<tr>
<td>CH₄S⁻</td>
<td>45</td>
<td>1434</td>
<td>No reaction</td>
<td>No reaction</td>
<td>0.83</td>
<td>0.54</td>
</tr>
<tr>
<td>CH₂CH₂⁻</td>
<td>35</td>
<td>1635</td>
<td>0.31</td>
<td>0.16</td>
<td>0.56</td>
<td>0.31</td>
</tr>
<tr>
<td>CH₂C(CH₃)CH₂⁻</td>
<td>35</td>
<td>1633</td>
<td>0.40</td>
<td>0.23</td>
<td>1.2</td>
<td>0.73</td>
</tr>
<tr>
<td>C₆H₅⁻</td>
<td>54</td>
<td>1592</td>
<td>0.04</td>
<td>0.03</td>
<td>0.68</td>
<td>0.46</td>
</tr>
<tr>
<td>C₆H₅⁻</td>
<td>100</td>
<td>1677</td>
<td>0.56</td>
<td>0.33</td>
<td>0.96</td>
<td>0.66</td>
</tr>
</tbody>
</table>

*Bimolecular rate constants in units of 10⁻⁹ cm³·molecule⁻¹·s⁻¹. The efficiency of a given reaction is obtained as the ratio between the experimental rate constant and the collision rate constant calculated from the average dipole orientation (ADO) theory; see text and Ref. 67.

Table 5. Rate constants (*k*) and efficiencies (Eff.) of the reactions of selected (radical) anions with bromomethanes

<table>
<thead>
<tr>
<th>Reactant ion</th>
<th>CH₃Br</th>
<th>CH₂Br₂</th>
<th>CHBr₃</th>
<th>CBr₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃O⁻</td>
<td>1.4</td>
<td>0.72</td>
<td>2.2</td>
<td>1.1</td>
</tr>
<tr>
<td>C₂H₅O⁻</td>
<td>1.9</td>
<td>1.2</td>
<td>1.9</td>
<td>1.3</td>
</tr>
<tr>
<td>CH₃S⁻</td>
<td>0.6</td>
<td>0.34</td>
<td>1.3</td>
<td>0.8</td>
</tr>
<tr>
<td>CH₂C(CH₃)CH₂⁻</td>
<td>1.7</td>
<td>1.1</td>
<td>2.1</td>
<td>1.4</td>
</tr>
<tr>
<td>C₆H₅⁻</td>
<td>0.50</td>
<td>0.35</td>
<td>1.0</td>
<td>0.75</td>
</tr>
</tbody>
</table>

*Bimolecular rate constants in units of 10⁻⁹ cm³·molecule⁻¹·s⁻¹. The efficiency of a given reaction is obtained as the ratio of the experimental rate constant to the collision rate constant calculated from the average dipole orientation (ADO) theory; see text and Ref. 67.

In other words, this may imply that an assumed temperature may be assigned to the reactant chemical system. With respect to the instrument used in the present study, the inlet lines and the main vacuum system are kept at room temperature, suggesting that the chemical system can be assumed to have a temperature of 298 K (see also Discussion).

A considerable uncertainty is associated with the determination of the pressures of the various halomethanes. The low pressures in the instrument necessitate the use of an ionization gauge whose sensitivity is dependent on the nature of the chemical species. The correction of an ionization gauge pressure reading is often achieved by first determining the rate constant for the reaction between the CH₄⁺ radical cation and CH₄ with the given instrument and then comparing the result with the average value of the reported rate constants for this process (1.13 × 10⁻¹⁴ cm³·molecule⁻¹·s⁻¹).⁴⁶,⁶⁸ Subsequently, the correction factor needed for other compounds may be estimated with the method based on an indicated linear dependence of the response of an ionization gauge with the polarizability of the neutral species in question.⁶⁹ Following this procedure yielded reasonable rate constants for the reaction of the various ions with chloromethane (see below), whereas the values for the rate constants of the reactions with tetrachloromethane and tetrabromomethane obtained by this method were considered to be unrealistic, that is, a factor of 2 or more greater than the *k*ₐ₀ rate constant. We decided, therefore, to perform the correction of the indicated pressure of chlor-
omethane, the reaction with HO⁻ was chosen as a reference since the rate constants for this process obtained with different experimental methods are in reasonable agreement with each other (average value 1.8 × 10⁻⁹ cm² molecule⁻¹ s⁻¹). Based on this approach, we obtain a rate constant for the reaction of CH₃O⁻ with chloromethane which is in agreement with the values reported in other studies, that is, 1.3 × 10⁻⁹ cm² molecule⁻¹ s⁻¹. Similarly, we obtained the same value for the rate constant for the reaction of the CH₂S⁻ ion with CH₃Cl (0.11 × 10⁻⁹ cm² molecule⁻¹ s⁻¹) as reported previously.

For the two substrates CH₂Cl₂ and CHCl₃, a recent study indicated that the O⁻⁻ ion reacts with these substrates with rate constants which are close or equal to the collision rate constant as determined by the ADO theory. The rate constants given in Table 4 for the reactions of the various ions with these two substrates are therefore based on the assumption that the O⁻⁻ ion reacts with the ADO collision rate constant also under the present experimental conditions. With this procedure for correcting the pressure readings of CH₂Cl₂ and CHCl₃, we obtain for the proton transfer reactions of the HO⁺ ion with CH₂Cl₂ and CHCl₃ (see Table 1) efficiencies of 0.9-1.1. This lends credibility to the procedure for correcting the pressure readings of these substrates, since exothermic proton abstractions in the gas phase involving small and charge-localized anions often proceed with an efficiency close to unity.

The value in Table 4 for the rate constant of the reaction of the o-benzyne radical anion with CH₂Cl₂ is lower than the value obtained with the flowing afterglow (FA) method (1.01 × 10⁻⁹ cm² molecule⁻¹ s⁻¹). A possible reason for this may be sought in the difference in the pressures used in the FA and the FT-ICR methods. In the former method, the reactions are performed in a flow of helium at a pressure of ca 70 Pa, whereas the pressure in an FT-ICR instrument is normally 10⁻⁴ Pa or lower. The much higher pressure in the FA method may lead to collisions between the intermediate short-lived complexes formed by the approach of the reactants to each other and as a result the internal energy of these complexes may be lowered. For the overall process, this implies that the observed rate constant increases in line with the fact that rates of gas-phase ion–molecule reactions often display a negative temperature dependence.

With CCl₄ as the substrate, a recent study indicates that the reaction with O⁻ proceeds at room temperature with a rate constant (1.8 × 10⁻⁹ cm² molecule⁻¹ s⁻¹) which is about 10% lower than the ADO collision rate constant. Irrespective of whether the correction of the ionization gauge reading for the pressure of CCl₄ is based on the reported rate constant or the assumption that this reaction proceeds with the ADO collision rate constant under our experimental conditions, we obtain for the reactions of the second series of (radical) anions efficiencies ranging from 1.1 to 1.7. These efficiencies could suggest that the reported rate constant for the O⁻⁻ reaction with CCl₄ is in error, thus leading to an inaccurate pressure correction. If an average value for the rate constant of the reaction of O⁻⁻ with CCl₄ (ca 1.4 × 10⁻⁹ cm² molecule⁻¹ s⁻¹) is used for the pressure corrections, the efficiencies are decreased to ca 80% of the values given in Table 4, that is, for the second series of ions, we obtain efficiencies ranging from 0.9 to 1.3. However, the ADO theory is known to underestimate the collision rate constants and efficiencies larger than unity have been reported for gas-phase ion–molecule reactions, such as exothermic electron transfer reactions involving ionized noble gas atoms and organic molecules and also for exothermic proton transfer reactions. For the present systems, the efficiencies for the reactions of the second series of (radical) anions with CCl₄ should only be taken as an indication that these processes are essentially collision controlled.

The rate constants for the reactions with the bromomethanes are also based on the assumption that the reaction of the O⁻⁻ ion with these substrates proceeds with the rate constant k_ADD. With this assumption, we obtain a value for the reaction of the HO⁺ ion with CH₂Br which is close to a recent value (2.3 × 10⁻⁹ cm² molecule⁻¹ s⁻¹). For the remaining bromomethanes, no rate constants have been published for the reactant ions given in Table 5, thus preventing an evaluation of the obtained results. We note, however, that the results in Table 5 are in keeping with the fact...
that the strongly exothermic proton abstractions from the CH₂Br₂ and CHBr₃ species with, for example, the HO⁻ ion proceed essentially with the collision rates.

In conclusion, it can be mentioned that the rate constants given in Tables 4 and 5 are reproducible to within ca 20% over an extended period of time if the procedure outlined for the corrections of the pressure readings is followed repeatedly. The absolute error on the values for the rate constants for the reactions with the various halomethanes is unknown, however, irrespective of the fact that we obtained reasonable agreement with literature values and the expected behavior for strongly exothermic proton transfer reactions (see above).

DISCUSSION

Reaction pathways and thermodynamics

The combined results reveal that the various (radical) anions react mainly with the chloro- and bromomethanes (CH₄-Xₐ) with the formation of halide ions, X⁻ [equation (16)], and halomethyl anions containing either the same number of halogen atoms as in the parent compound [CH₄₋ₓXₓ₋₁, equation (17)] and/or one halogen atom less [CH₄₋ₓXₓ₋₂⁻, equation (18)].

\[
A^- + CH₄₋ₓXₓ₋₁ \rightarrow X^- + \text{neutral products} \quad (16)
\]

\[
CH₄₋ₓXₓ₋₁ \rightarrow CH₄₋ₓXₓ₋₂⁻ + AH \quad (17)
\]

\[
CH₄₋ₓXₓ₋₂⁻ \rightarrow CH₄₋ₓXₓ₋₃⁻ + AX \quad (18)
\]

The halomethyl anions CH₃₋ₓXₓ⁻ are evidently a result of proton abstraction, whereas the ions CH₄₋ₓXₓ₋₋₁ in a formal sense arise by transfer of a halogen cation from the substrate molecule to the reactant ion (see below). For a few of the reactant systems other ionic products are generated. In particular, stable radical anions of CHCl₃, CCl₄, and CHBr₃ are formed in low yields together with CH₃SCl⁻ or CH₂SBBr⁻ ions if CH₃S⁻ is the reactant ion. In addition, minor amounts of C₆H₄Cl⁻ ions are generated in the reaction of C₆H₄⁻ with CHCl₃ [Table 2 and equation (11)].

Irrespective of the apparent simplicity of some of the product ion distributions, various reaction types may play a role in the ion–molecule chemistry of the halomethanes. This holds in particular for the formation of halide ions which may arise as a result of a number of pathways, including Sₙ₂ substitution, α-elimination and/or dissociative electron transfer (see Scheme 1). The various processes leading to halide ions yield, of course, different neutral species and their occurrence in the reactions of a particular (radical) anion with a halomethane could in principle be ascertained by an analysis of the neutral products. Notwithstanding that the neutral products of gas-phase ion–molecule reactions have been characterized in a few instances with the use of specialized and dedicated instrumentation, the most commonly applied methods do not allow for a direct identification of the neutral species generated in the reactions. This holds also for the FT-ICR method applied in the present study, thus implying that the role of the various pathways leading to the halide ions in the reactions with the halomethane can be assessed only indirectly.

A possible procedure for obtaining insight into the role of the different pathways in Scheme 1 is to rely on thermodynamic considerations in keeping with the fact that only overall exoergic or thermoneutral reactions occur under normal operating conditions of an FT-ICR instrument. In other words, if an overall process is estimated to be exoergic or thermoneutral, its occurrence cannot be excluded. A weak aspect of this approach is, of course, that an exoergic process may be prevented by an insurmountable kinetic barrier. Furthermore, the application of thermodynamic considerations in determining the role of different pathways leading to the same ionic product necessitates the assignment of a temperature to the reactant chemical system. In this respect, the low-pressure conditions in the present series of experiments cause the reactant species to be isolated species and as a result hamper the assignment of a true thermodynamic temperature to the reactant system. Nevertheless, the criterion of exoergicity with respect to the spontaneous occurrence of a reaction is commonly observed to be valid and in support of the assignment of a temperature to the reactant system, it should be noted that thermodynamic results obtained with low pressure methods, such as FT-ICR, mostly agree with the results obtained with the use of the high pressure methods flowing afterglow (FA) and high pressure mass spectrometry (HPMS). For the present series of results, it can be assumed for simplicity that the temperature of the chemical system is 298 K (see also the sections Determination of reaction rates and Experimental). This allows the use of thermodynamic arguments in the assignments of the pathways which may play a role in the reactions of the various (radical) anions with the halomethanes CH₄₋ₓXₓ⁻ (X = Cl and Br; a = 1–4; see also text).
halomethanes, in particular with respect to the formation of the halide ions.

The reaction enthalpies which could be estimated for the S_N2 substitutions, proton abstractions and the reaction involving formal transfer of a halide cation are given in Table 6 for the chloromethanes and in Table 7 for the bromomethanes. For these pathways, the overall reactions are likely to be associated with a relatively small entropy change and accordingly the occurrence of these processes may, in a thermodynamic sense, be discussed on the basis of the reaction enthalpy. Also included in Tables 6 and 7 are the reaction enthalpies of the a-elimination and halide cation transfer followed by dissociation of the initially formed product ion into a halide ion and a carbene. For these pathways, a significant increase in entropy change is expected for the

Table 6. Reaction enthalpies (in $kJ mol^{-1}$ and at 298 K) for the different possible pathways between the two series of reactant ions and the chloromethanes (see also text)

<table>
<thead>
<tr>
<th>Reactant ion</th>
<th>S_N2</th>
<th>PTa</th>
<th>α-Elb</th>
<th>Cl-atc</th>
<th>α-El</th>
<th>Cl-at</th>
<th>Carbd</th>
<th>α-El</th>
<th>Cl-at</th>
<th>Carbe</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO$^-$</td>
<td>-210</td>
<td>22</td>
<td>140</td>
<td>266</td>
<td>-68</td>
<td>81</td>
<td>186</td>
<td>304</td>
<td>-141</td>
<td>-9</td>
</tr>
<tr>
<td>CH$_3$O$^-$</td>
<td>-190</td>
<td>65</td>
<td>182</td>
<td></td>
<td>-25</td>
<td>123</td>
<td></td>
<td></td>
<td>-98</td>
<td>33</td>
</tr>
<tr>
<td>C$_2$H$_5$O$^-$</td>
<td>-175</td>
<td>78</td>
<td>196</td>
<td></td>
<td>-12</td>
<td>137</td>
<td></td>
<td></td>
<td>-85</td>
<td>47</td>
</tr>
<tr>
<td>C$_3$H$_5$O$^-$</td>
<td>-171</td>
<td>84</td>
<td>202</td>
<td></td>
<td>-6</td>
<td>143</td>
<td></td>
<td></td>
<td>-79</td>
<td>53</td>
</tr>
<tr>
<td>CH$_3$S$^-$</td>
<td>-123</td>
<td>164</td>
<td>282</td>
<td></td>
<td>74</td>
<td>223</td>
<td></td>
<td></td>
<td>1</td>
<td>133</td>
</tr>
<tr>
<td>C$_2$H$_5$S$^-$</td>
<td>-66</td>
<td>223</td>
<td>341f</td>
<td></td>
<td>113f</td>
<td>282f</td>
<td></td>
<td></td>
<td>60f</td>
<td>192f</td>
</tr>
<tr>
<td>CH$_3$Br$^-$</td>
<td>-270</td>
<td>22</td>
<td>140</td>
<td>90</td>
<td>-68</td>
<td>81</td>
<td>10</td>
<td>128</td>
<td>-141</td>
<td>-9</td>
</tr>
<tr>
<td>C$_2$H$_5$Br$^-$</td>
<td>-267</td>
<td>24</td>
<td>142</td>
<td>93</td>
<td>-66</td>
<td>83</td>
<td>13</td>
<td>131</td>
<td>-139</td>
<td>-7</td>
</tr>
<tr>
<td>C$_3$H$_5$Br$^-$</td>
<td>-239</td>
<td>65</td>
<td>188</td>
<td></td>
<td>-25</td>
<td>129</td>
<td></td>
<td></td>
<td>-98</td>
<td>39</td>
</tr>
<tr>
<td>C$_2$H$_5$S$^-$</td>
<td>-324</td>
<td>-20</td>
<td>99</td>
<td>46</td>
<td>-110</td>
<td>40</td>
<td>-34</td>
<td>84</td>
<td>-183</td>
<td>-47</td>
</tr>
</tbody>
</table>

aProton transfer.
$^b\alpha$-Elimination.
cAttack on a chlorine atom.
dChlorine atom attack followed by dissociation of the product ion into a carbene molecule and a chloride ion.
eRefers to the formation of a CH$_3$SCH$_2$ radical.

Table 7. Reaction enthalpies (in $kJ mol^{-1}$ and at 298 K) for the different possible pathways between the two series of reactant ions and the bromomethanes (see also text)

<table>
<thead>
<tr>
<th>Reactant ion</th>
<th>S_N2</th>
<th>PTa</th>
<th>α-Elb</th>
<th>Br-atc</th>
<th>α-El</th>
<th>Br-at</th>
<th>Carbe</th>
<th>PTf</th>
<th>Carbg</th>
<th>Br-ath</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO$^-$</td>
<td>-240</td>
<td>8</td>
<td>110</td>
<td>235</td>
<td>55</td>
<td>133</td>
<td>235</td>
<td><-89</td>
<td>194</td>
<td><-14</td>
</tr>
<tr>
<td>CH$_3$O$^-$</td>
<td>-220</td>
<td>51</td>
<td>152</td>
<td></td>
<td>97</td>
<td></td>
<td></td>
<td><-46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_5$O$^-$</td>
<td>-205</td>
<td>64</td>
<td>166</td>
<td></td>
<td>111</td>
<td></td>
<td></td>
<td><-33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_3$H$_5$O$^-$</td>
<td>-201</td>
<td>70</td>
<td>172</td>
<td></td>
<td>117</td>
<td></td>
<td></td>
<td><-27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$S$^-$</td>
<td>-153</td>
<td>150</td>
<td>252</td>
<td></td>
<td>197</td>
<td></td>
<td></td>
<td><-53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_5$S$^-$</td>
<td>-110i</td>
<td>209k</td>
<td>311k</td>
<td></td>
<td>256k</td>
<td></td>
<td></td>
<td><-112k</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH$_3$Br$^-$</td>
<td>-300</td>
<td>8</td>
<td>110</td>
<td>100</td>
<td>55</td>
<td>-2</td>
<td>100</td>
<td><-89</td>
<td>59</td>
<td><-121</td>
</tr>
<tr>
<td>C$_2$H$_5$Br$^-$</td>
<td>-297</td>
<td>10</td>
<td>112</td>
<td>95</td>
<td>57</td>
<td>-7</td>
<td>95</td>
<td><-87</td>
<td>54</td>
<td><-126</td>
</tr>
<tr>
<td>C$_3$H$_5$Br$^-$</td>
<td>-269</td>
<td>51</td>
<td>158</td>
<td></td>
<td>103</td>
<td></td>
<td></td>
<td><-46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C$_2$H$_5$S$^-$</td>
<td>-354</td>
<td>-34</td>
<td>69</td>
<td>52</td>
<td>14</td>
<td>-50</td>
<td>52</td>
<td><-131</td>
<td>11</td>
<td><-169</td>
</tr>
</tbody>
</table>

aThe reaction enthalpy of proton abstraction has not been given since a reliable value has not been reported for the gas-phase acidity of this bromomethane.
bProton transfer.
$^c\alpha$-Elimination.
dAttack on a bromine atom.
eBromine atom attack followed by dissociation of the product ion into a carbene molecule and a bromide ion.
fThe given reaction enthalpies refer to formation of CHBr$_3$ ions. The heat of formation of this ion as given in Ref. 50 is likely to be in error since the quoted value for the gas-phase acidity of the CHBr$_3$ compound given in this reference is probably too high.
gRefers to the formation of a CH$_3$SCH$_2$ radical.
hRefers to the formation of a CH$_3$SH radical.
the reaction Gibbs energies could be estimated, however, and are collected in Table 8.

In the reactions with CH₃Cl, the formation of Cl⁻ ions can be ascribed to an exothermic S₄N₂ substitution, in agreement with various other studies. The S₄N₂ pathway may also be important for the formation of Cl⁻ ions in the reactions with the chloromethanes containing more than a single chlorine atom. The enthalpy changes for the S₄N₂ reactions in these systems are not given in Table 6 since only limited heat of formation data are available for the expected neutral chlorine-containing products of these processes. For the allyl anion as the reactant ion, however, the S₄N₂ substitution with the CH₃Cl, CH₂Cl and CCl₃ is estimated to be exothermic by 283, 285 and 300 kJ mol⁻¹, respectively. Similarly, we expect that an S₄N₂ process is exothermic for the other reactant ions and the chloromethanes with more than a single chlorine atom. From studies of reactions in the condensed phase it is known, however, that the rate of the S₄N₂ process with a halomethane decreases as the number of halogen atoms is increased. For the present systems, the S₄N₂ substitution may be expected, therefore, to decrease in importance as the number of chlorine atoms is increased in the halomethane, even though energetically favourable. Similar considerations apply to the bromomethanes, notwithstanding that the occurrence of dissociative electron transfer in addition to the S₄N₂ substitution cannot be excluded for the reactions of the CH₃S⁻, CH₂=CHCH₂⁻, CH₂=C(CH₃)CH₂⁻ and C₆H₄⁻ ions with CH₂Br (see below).

With respect to the formation of halide ions by α-elimination, this requires that the proton abstraction involved is sufficiently exothermic for the product ion to dissociate into a carbene molecule and a halide ion. For the mono- and dihalogen-substituted methanes, α-elimination is estimated to be significantly endothermic, as can be seen in Tables 6 and 7. Even though the overall process is inclined to be associated with a favorable change in entropy, this change may not be sufficiently large to cause the reaction to be exoergic for most of the reactant systems. For example, the enthalpy change for α-elimination in the reaction of the HO⁻ ion with CH₂Cl is estimated to be 140 kJ mol⁻¹ (Table 6). With an estimated entropy change for this process of -133 J K⁻¹ mol⁻¹, a reaction Gibbs energy of ca. 100 kJ mol⁻¹ is obtained for the overall process if the temperature is assumed to be 298 K. For trichloromethane, the α-elimination pathway is endothermic for most of the (radical) anions but becomes energetically possible for HO⁻, the two allylic anions as well as for the C₆H₅⁻ ion (see Table 6). For tribromomethane, α-elimination may be energetically possible for more reactant ions even though the absence of a heat of formation of the dibromocarbene prevents a determination of the enthalpy changes associated with this process for the various reactant ions.

In addition to substitution and α-elimination, the halide ions may arise by dissociation of an initially formed halomethyl anion containing one halogen atom less than the parent compound. The reaction sequence indicated in Scheme 2 involves an initial nucleophilic attack on a halogen atom followed by dissociation of the generated CH₄⁻X⁻ ion into a carbene and an X⁻ ion.

Table 8. Reaction Gibbs energies (in kJ mol⁻¹ and at 298 K) for dissociative electron transfer between the two series of reactant ions and the bromo- and chloromethanes (see also text)

<table>
<thead>
<tr>
<th>$T\Delta S^\circ$ °</th>
<th>CH₃Cl</th>
<th>CH₂Cl</th>
<th>CHCl₃</th>
<th>CCl₄</th>
<th>CH₂Br</th>
<th>CH₂Br₂</th>
<th>CHBr₃</th>
<th>CBr₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO⁻</td>
<td>143</td>
<td>130</td>
<td>109</td>
<td>78</td>
<td>113</td>
<td>97</td>
<td>85</td>
<td>40</td>
</tr>
<tr>
<td>CH₃O⁻</td>
<td>122</td>
<td>109</td>
<td>88</td>
<td>57</td>
<td>92</td>
<td>76</td>
<td>64</td>
<td>19</td>
</tr>
<tr>
<td>C₃H₅O⁻</td>
<td>137</td>
<td>124</td>
<td>103</td>
<td>72</td>
<td>107</td>
<td>91</td>
<td>79</td>
<td>34</td>
</tr>
<tr>
<td>C₃H₅⁻</td>
<td>138</td>
<td>125</td>
<td>104</td>
<td>73</td>
<td>108</td>
<td>92</td>
<td>80</td>
<td>35</td>
</tr>
<tr>
<td>CH₃S⁻</td>
<td>152</td>
<td>139</td>
<td>118</td>
<td>87</td>
<td>122</td>
<td>106</td>
<td>94</td>
<td>49</td>
</tr>
<tr>
<td>CH₂S⁻</td>
<td>16</td>
<td>3</td>
<td>-18</td>
<td>-49</td>
<td>-14</td>
<td>-30</td>
<td>-42</td>
<td>-87</td>
</tr>
<tr>
<td>CH₂H⁻</td>
<td>5</td>
<td>-8</td>
<td>-29</td>
<td>-60</td>
<td>-25</td>
<td>-41</td>
<td>-53</td>
<td>-99</td>
</tr>
<tr>
<td>CH₂F⁻</td>
<td>2</td>
<td>-11</td>
<td>-32</td>
<td>-63</td>
<td>-28</td>
<td>-44</td>
<td>-56</td>
<td>-101</td>
</tr>
<tr>
<td>C₂H₂⁻</td>
<td>21</td>
<td>8</td>
<td>-13</td>
<td>-44</td>
<td>-9</td>
<td>-25</td>
<td>-37</td>
<td>-82</td>
</tr>
<tr>
<td>C₂H₃⁻</td>
<td>67</td>
<td>54</td>
<td>33</td>
<td>2</td>
<td>37</td>
<td>21</td>
<td>9</td>
<td>-36</td>
</tr>
</tbody>
</table>

The ΔH° and $T\Delta S^\circ$ values used in the estimation of the Gibbs energy changes are based on data given in Refs. 50, 77, 78 and 80. The $T\Delta S^\circ$ value for the reactions with a given halomethane represents the average of the estimates for the individual reactions. The variation in the individual $T\Delta S^\circ$ values for the various reactions with a given halomethane is only a few kJ mol⁻¹.
Scheme 2. Formation of halide ions by initial halogen atom attack in the reactions of the anions (or radical anions) with the halomethanes CH$_{4-a}$X$_a$ (X = Cl and Br; a = 1-4; see also text)

Direct nucleophilic attack on a halogen atom in organic molecules has been described for reactions occurring in the condensed phase and more recently for the reactions of negative ions with fluorochloro- and fluorobromomethanes in the gas phase. Based on the results for the condensed-phase reactions, it has been suggested that this process is less important for chloride-containing species and that it becomes more facile as the number of halogen atoms is increased in the substrate. For the present systems, halogen attack is not observed in the reactions with chloro- and dichloromethane, whereas CHCl$_2^-$ ions are formed in the reactions of most of the second series of ions with trichloromethane. With CHCl$_3$ as the substrate, attack on a chlorine atom is particularly important for the first series of ions, as indicated by the pronounced formation of CCl$_3^-$ ions in these systems (Table 1).

The overall formation of Cl$^-$ ions by chlorine atom attack followed by dissociation of a CHCl$_3^-$ ion is estimated to be endothermic for the reactions of the two allylic anions and the C$_3$H$_5^-$ ion with trichloromethane. As mentioned for α-elimination, such a process is associated with a favorable change in entropy and it cannot be concluded a priori whether Cl$^-$ ions may arise by this pathway in the reactions of, for example, the C$_3$H$_5^-$ ion with CHCl$_3$. For CCl$_4^-$, formation of Cl$^-$ by halogen atom attack followed by dissociation of the CCl$_3^-$ ions is overall exothermic for both the allylic anions and the C$_3$H$_5^-$ ion and may thus contribute to the formation of the observed Cl$^-$ ions.

In the reactions with the bromomethanes, halogen attack is observed as a minor channel in the reactions of the two allyloxy anions with CBr$_3$, notwithstanding that proton transfer is expected to be significantly exothermic (see Tables 3 and 7). With CBr$_4$, the HO$^-$ ion and the allykiloxy anions react to afford exclusively or predominantly CBr$_3^-$ ions by bromine atom attack, whereas the 2-methylallyl anion and the CH$_2$S$^-$ radical anion react with this substrate to form only Br$^-$ ions. The extent to which these Br$^-$ ions arise by initial attack on a bromine atom in CBr$_4$ followed by dissociation of the CBr$_3^-$ ion is uncertain. Furthermore, the absence of a heat of formation of the CBr$_2$ carbene hampers the determination of the exothermicity of the overall process involving Br$^-$ formation by this pathway.

In addition to δ substitution, α-elimination and halogen atom attack, dissociative electron transfer may lead, in principle, to halide ions in the reactions of the various (radical) anions with the halomethanes. Dissociative electron transfer is endoergic, however, for the first series of ions and all the substrates studied but is, as expected, exoergic for the second series of ions (with the exception of the C$_4$H$_7^-$ species) and CHCl$_3$, CCl$_4$ and all the bromomethanes (Table 8). In addition, dissociative electron transfer is estimated to be associated with a negative Gibbs energy if one of the two allylic anions is the reactant ionic species and CH$_2$Cl as the substrate, whereas this reaction with the CH$_3$S$^-$ ion is estimated to be slightly endoergic (Table 8).

The dissociative electron transfer to the halomethanes could also be suggested to yield the halomethyl anions, CH$_{4-a}$X$_{a-1}^-$. However, this process is significantly endoergic for the halomethanes examined in this study, as exemplified by an enthalpy change of 126 kJ mol$^{-1}$ for this reaction of the ally1 anion with tetrachloromethane:

$$\text{CH}_2=\text{CHCH}_2^- + \text{CCl}_4 \rightarrow \text{CCl}_3^- + \text{Cl}^+ + \text{C}_3\text{H}_5^- \quad (19)$$

A unfavourable enthalpy change for electron transfer leading to the CCl$_3^-$ ion is also directly indicated by the much larger electron affinity of, for example, the chlorine atom (EA = 350 kJ mol$^{-1}$) than of the CCl$_4^-$ radical (EA = 211 kJ mol$^{-1}$).

Even though an exoergic or thermoneutral nature of the overall reaction is a requirement for its occurrence under the present experimental conditions, it is not a sufficient criterion. For example, dissociative electron transfer from CH$_2$S$^-$ to CH$_2$Cl is essentially thermoneutral but only slightly exoergic with CHCl$_3$ as the substrate (Table 8). Nevertheless, the CH$_2$S$^-$ ion displays no reactivity towards CH$_2$Cl, but reacts readily with CHCl$_3$ to afford Cl$^-$ and CH$_2$SCI$^-$ ions in addition to minor amounts of the radical anion of CHCl$_3$ (Table 2). The formation of a stable radical anion of CHCl$_3$ and also of the halomethanes, CCl$_4$ and CBr$_4$, provides direct evidence for the occurrence of electron transfer from the CH$_2$S$^-$ ion. In addition, the formation of the CH$_3$SCI$^-$ ion and also the CH$_2$SBr$^-$ ion in the reactions with CH$_4$Br and CHBr$_3$ is taken as an indication of the occurrence of electron transfer followed by
halide ion transfer in the thus formed complex of a halomethane radical anion and a thioformaldehyde molecule, as depicted in Scheme 3.

For the other ions of the second series, stable radical anions are not formed in the reactions with any of the halomethanes. Dissociative electron transfer may, of course, still be important and its occurrence in other systems is indicated in part by the additional formation of C,H,CI- ions in the reactions of the C,H, radical anion with CHCl, (see Scheme 3) and the C,H, radical anions, respectively, as electron donors. For these reactant ions, the implied tertiary complex contains, of course, the neutral molecule corresponding to the reactant ion, a halomethyl radical and halide ion instead of two radicals which may undergo the suggested coupling reaction.

These considerations imply that the initial electron transfer from the reactant ion to the halomethane is energetically feasible for the reacting systems. In the absence of insight into the details of energy surfaces describing these reactions, one could utilize the difference in electron affinity between a given halomethane and the neutral species related to the electron donor to probe some features of these surfaces. Unfortunately, accurate electron affinities have not been reported for the full series of halomethanes included in the present study. Electron transmission spectroscopic studies indicate, however, that the mono- and dichloromethanes have negative vertical electron affinities.\(^{6,8}\) In addition, electron attachment to these halomethanes may be an inherently dissociative process,\(^{6,9}\) that is, electron transfer to these species from a negative ion in the gas phase may occur to a repulsive potential energy surface without a minimum corresponding to a radical anion of the halomethane. For the substrates, CH,Cl and CHCI,, direct evidence is not obtained for the formation of halide ions by electron transfer. This may suggest that the attainment of such a dissociative surface is not feasible for the reactant ions and these simple halomethanes.

The details of the potential energy surfaces describing electron transfer to the halomethanes containing three or four halogen atoms are also largely unknown. Based on the formation of stable radical anions of CHCl, and CCl, we reported recently that the electron affinity is likely to be between 45 and 75 kJ mol\(^{-1}\) for CHCl, and between 45 and 110 kJ mol\(^{-1}\) for CCl,\(^{41}\) In addition, stable radical anions are observed for CHBr,, whereas CBr, ions have been reported previously to arise in the reaction of the azobenzene radical anion with CBr, in the gas phase.\(^{40}\) Electron transfer to these halomethanes is best described, therefore, as involving the initial formation of a complex containing a halomethane radical anion and the neutral species related to the reactant ion (see also Scheme 3). As indicated by a number of theoretical studies and supported by experiments described in a previous paper,\(^{46} \) the radical anions of CHCl, and CCl, are weakly bonded with respect to dissociation into a halide ion and halogen-containing methyl radical.\(^{56,67}\) Subsequent facile dissociation of the
initially generated halomethane radical anion may thus occur for most reactant ions and cause halide ions to be the main or exclusive observed ionic products of an initial electron transfer to the tri- or tetrahalomethanes.

Trends in the efficiencies of the overall reactions

The thermodynamic considerations in combination with the observed product ion distributions lead in part to a definition of the different pathways which may be of importance in the reactions of the various anions with the halomethanes. Some of these mechanistic considerations may be substantiated by the rate constants and efficiencies obtained for the overall processes (see Tables 4 and 5). With respect to the reactions with chloromethane, the trend in the efficiencies in Table 4 is in line with previous studies which indicate that S_{eq}2 substitutions in the gas phase can be associated with a significant local energy barrier causing the overall process to be slow irrespective of a favourable enthalpy change. For example, CH_3S^- reacts with a much lower efficiency than CH_3O^- (Table 4), even though both processes are exothermic. For the two allylic anions and the C_2H_5^- ion, it can be noticed that these react with chloromethane with moderate efficiencies. By contrast, the radical anion C_2H_5^- reacts with an efficiency that is ten times lower than the value obtained for the C_nH_2^- ion, irrespective of the fact that S_{eq} 2 substitution is exceedingly exothermic in both instances.

With the dichloro- and trichloromethanes, the first series of ions react mainly or exclusively by an efficient exothermic proton abstraction. The second series of ions react with these two substrates with a lower average efficiency than the first series of ions, whereas the reverse situation applies to the reaction with CCl_4. With this substrate, the first series of ions react with a lower efficiency than the second series of ions. This indicated increase in efficiency of the overall reaction as the number of halogen atoms increases is observed for all ions of the second series. In particular, the C_2H_5^- radical anion reacts with an efficiency of 0.03 with chloromethane and essentially with unit efficiency if tetrachloromethane is the substrate. A similar situation holds for the allyl anion and also the CH_3S^- radical anion, which reacts only with the tri- and tetrahalomethanes. For the latter reactant ion, electron transfer is indicated to be the main or only pathway open and the high efficiencies of the overall reactions may thus indicate that this is a facile process. As a result, the increase in the efficiencies of the reactions of the other ions in the second series as the number of halogen atoms is increased in the substrate may suggest that electron transfer is also becoming more important, even though the product ion distributions indicate that the chlorine atom attack is also a pronounced process, in particular for tetrachloromethane as the substrate.

With the bromomethanes most of the ions react readily with efficiencies approaching or equal to unity (Table 5). For bromomethane and dibromomethane, the two radical anions CH_3S^- and C_2H_5^- react less efficiently than the even electron negative ions, irrespective of the fact that substitution and dissociative electron transfer are thermodynamically feasible for these systems. As observed also for the chloromethanes, an increase in reaction efficiency with an increasing number of bromine atoms in the substrate is observed for the two radical anions (Table 5). The extent to which this is related to a more pronounced occurrence of electron transfer remains to be solved considering that the Br$^-$ ions formed in these reactions may arise also by other processes (see above).

CONCLUSIONS

The present results indicate that electron transfer is likely to be an important pathway in the reactions between the (radical) anions related to a neutral species with a relatively low electron affinity with the chloromethanes, CHCl_3 and CCl_4. In the reactions of these (radical) anions with the bromomethanes, (dissociative) electron transfer may play a role even for the CH_3Br or CH_2Br_2 species. For the halomethanes containing three or four halogen atoms, formation of halide ions is considered to involve initial electron transfer to give a weakly bonded radical anion of the halomethane followed by dissociation of this species into a halomethyl radical and the observed ionic products. Overall, this appears to be an efficient process, notwithstanding that the halide ions may arise also by other pathways, such as a-elimination and halogen atom attack followed by dissociation of the thus generated halomethyl anions. The high efficiencies of the overall reactions with, in particular, the tetrachloro- and tetrabromomethanes in combination with the relatively high yields of the product ions of initial halogen atom attack indicate also that the latter process is facile and capable of competing effectively with the overall dissociative electron transfer process.

ACKNOWLEDGEMENT

The authors thank the Netherlands Organization for Scientific Research (SON/NWO) for financial support.

REFERENCES

GAS-PHASE REACTIONS OF ANIONS WITH HALOMETHANES