\(^{125}\text{Te}\) NMR study of the bulk of topological insulators Bi\(_2\)Te\(_3\) and Sb\(_2\)Te\(_3\)

Nachtigal, J.; Chong, S.V.; Williams, G.V.M.; Isaeva, A.; Oeckler, O.; Haase, J.; Guehne, R.

DOI
10.1002/zaac.202200208

Publication date
2022

Document Version
Final published version

Published in
Zeitschrift fur Anorganische und Allgemeine Chemie

License
CC BY

Citation for published version (APA):
The narrow band gap semiconductors Bi$_2$Te$_3$ and Sb$_2$Te$_3$ are well known for their room temperature thermoelectric performance. Recently, they were shown to serve as model systems of three-dimensional topological insulators with a bulk band gap and very robust, spin-resolved surface states due to a special band inversion in their periodic bulk. Evidently, it is of interest to investigate the special surface states with a local probe like nuclear magnetic resonance (NMR). However, especially the bulk NMR of these materials shows peculiar and rather unexpected phenomena, e.g., a magnetic field induced deformation of the local charge symmetry and excessive line broadening due to a special internuclear coupling. Here we report a comprehensive account of the room temperature NMR properties of the spin-1/2 nucleus 125Te of single crystalline Bi$_2$Te$_3$ and Sb$_2$Te$_3$. This includes a very unusual spin-lattice relaxation that seems not to be reflected in the NMR shift, as well as an exchange enhanced NMR line broadening.

Introduction

The tetradymite-type compounds Bi$_2$Te$_3$ and Sb$_2$Te$_3$ have been studied for a long time due to their excellent room temperature thermoelectric performance.[1-3] In 2009, these materials and the isotypic Bi$_2$Se$_3$ were recognized as model systems of three-dimensional topological insulators with special metallic surface states that fuel expectations in the fields of quantum computing and spintronic applications.[4-6] Swiftly, nuclear magnetic resonance (NMR) as a powerful bulk probe with local resolution for very small samples, boundaries can no longer be ignored as well due to quantum size effects, i.e., when the electronic band structure is analyzed. Uncertainties stem from, first, the fact that the bulk NMR of these compounds is not fully understood, although required to correctly separate the NMR signals coming from the surface.[10] Second, the electronic band structures of nanocrystalline samples can be altered as well due to quantum size effects, i.e., for very small samples, boundaries can no longer be ignored when the electronic band structure is analyzed.[11,12] In other words, it is by far not a trivial question what a sample actually represents from an electronic point of view, if the grains are reduced to nanometer dimensions.

While the above points establish NMR as a suitable probe for characterizing topological materials through their surface state properties, researchers are just at the beginning to unravel these and other properties of strongly spin-orbit coupled systems. For example, it has been shown that even the bulk NMR properties of these materials can provide crucial insight and hold fascinating phenomena. As illustrated in Figure 1, the real-space signature of the band inversion in Bi$_2$Se$_3$ (and similarly in Bi$_2$Te$_3$ and Sb$_2$Te$_3$) can be seen as a charge redistribution between different crystal sites, mainly Bi and Se

Note: The full text contains detailed information about the materials, their properties, and the NMR study, including specific equations and references to previous studies. The text is structured to provide a comprehensive understanding of the research, including the introduction, methodology, results, and conclusions.
Results and Discussion

With the crystal structure of Bi₂Te₃ and Sb₂Te₃ (space group R3m) and its main building block of a quintuple layer (cf. isostructural Bi₃Se₃ in Figure 1 and details in the experimental section) comprising two outer Te atomic sheets (Te_{out}) two chemically equivalent pnictogen sheets (Bi/Sb), and one inner Te sheet (Te_{in}), one expects two ¹²⁵Te NMR signals for both single crystalline compounds. The relative number of nuclei occupying outer and inner lattice positions then result in a 2 to 1 signal intensity for Te_{out}: Te_{in}, that can be used to assign single crystal resonances to the two chemically and crystallographically non-equivalent crystal sites.[14,24] Note, that the two signals can be measured under identical experimental conditions if T_s and T_r are known, and thus, signal intensities can directly be compared.

Figure 2 shows typical ¹²⁵Te spectra obtained from Sb₂Te₃ (sample ST1) and Bi₂Te₃ (sample BT3) for various crystal orientations with respect to the external magnetic field B_0 where \(\beta \) denotes the angle between the crystal c-axis (crystallographic [001] direction) and B_0. For Sb₂Te₃, the two signals can only be accessed individually for angles close to \(\beta \approx 90^\circ \), cf. Figure 1B. Again, their relative signal intensity allows for a clear identification as Te_{out} and Te_{in} as given in the figure. That the overlap of the two signals in both compounds is so different, i.e., that Te resonances in Bi₂Te₃ are well separated while for Te in Sb₂Te₃, the two resonances overlap essentially for all crystal orientations, already points to a peculiar shift phenomenology as discussed below. The full set of available NMR parameters for the five samples investigated within this work is summarized in Table 1.

Figure 1. Sketches of the energy band gap in Bi₃Se₃ without (A) and with (B) topological band inversion induced by spin-orbit interaction. Since the band inversion alters the occupation of those bands involved - i.e. Bi bands (red) can be associated with the conduction band in the trivial case (A), while Se bands (blue and grey) form the valence band - in real space charges are re-located among the different crystal sites (dark green spheres in bottom panels). This charge re-distribution due to the band inversion can be measured quantitatively with NMR and calculated with DFT, thus providing a method to identify topological systems from their bulk properties. Note that both the crystal structure as well as the concept of band inversion apply similarly to Bi₂Te₃ and Sb₂Te₃.[4]

green spheres.[12] Hence, NMR together with DFT can be used to identify Bi₃Se₃ as a topological insulator even from its bulk properties. Another intriguing effect revealed by bulk NMR of Bi₃Se₃ and Bi₂Te₃ concerns a highly unusual magnetic field induced charge symmetry, i.e., the implication of so far unknown rotational degrees of freedom of electronic states subject to strong spin-orbit coupling (SOC) with potential consequences for other electronic properties such as heat capacity or magnetoresistance.[13–15]

Additionally, an exchange enhanced intranuclear coupling (U-coupling) is believed not only to universally govern the behavior of each nuclear magnetic moment in the present systems, but may also be a substantial factor for magnetism in closely related compounds, such as magnetically doped Bi₂Te₃-type materials or magnetic topological insulators.[16–19] This enhanced coupling is believed to be of Bloembergen-Rowland (BR) type which is an extension of Ramsey’s theory of the indirect nuclear coupling in molecules to insulating solids, and a complement to the well-known Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction found in metallic solids.[20–22] As this special nuclear coupling has so far only been described with ⁷⁷Se NMR in Bi₃Se₃, one objective of the present manuscript is to work out evidence of such an unusually strong, indirect nuclear coupling in Bi₂Te₃ and Sb₂Te₃ as well, using magnetic field dependent ¹²⁵Te NMR. Furthermore, a comprehensive set of room temperature NMR parameters including inconsistent spin-lattice relaxation and shift is reported and analyzed to broaden the experimental basis required to stimulate a deeper understanding in exchange with theoretical studies, such as that reported by Boutin et al.[23]
Table 1. Room temperature NMR properties of 125Te in Bi$_2$Te$_3$ and Sb$_2$Te$_3$ for various samples obtained at 11.74 T. Isotropic (K_{iso}) and anisotropic (K_{anis}) shift contributions and spin-lattice (T_1) and spin-echo decay (T_2) times, as well as field independent (A_0) and dependent linewidths (b) are presented. Relaxation and line broadening data were obtained for $c \parallel B_0$ and $c \perp B_0$ for Bi$_2$Te$_3$ and Sb$_2$Te$_3$, respectively. For comparison, the Se data of Bi$_2$Se$_3$ from Georgieva et al. are shown.\(^{[16]}\)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Label</th>
<th>Site</th>
<th>Shift K_{iso} ppm</th>
<th>Shift K_{anis} ppm</th>
<th>Relaxation T_1 ms</th>
<th>Relaxation T_2 μs</th>
<th>Line broadening A_0 kHz</th>
<th>Linewidth b kHz/T</th>
<th>Linewidth b ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sb$_2$Te$_3$</td>
<td>ST1</td>
<td>Te_{out}</td>
<td>145(30)</td>
<td>-369(23)</td>
<td>30(2)</td>
<td>400(50)</td>
<td>1.5(2)</td>
<td>112(15)</td>
<td></td>
</tr>
<tr>
<td>Sb$_2$Te$_3$</td>
<td>ST1</td>
<td>Te_{in}</td>
<td>318(30)</td>
<td>-455(23)</td>
<td>20(2)</td>
<td>170(30)</td>
<td>2.5(3)</td>
<td>186(22)</td>
<td></td>
</tr>
<tr>
<td>Sb$_2$Te$_3$</td>
<td>ST2</td>
<td>Te_{out}</td>
<td>178(30)</td>
<td>-379(30)</td>
<td>26(2)</td>
<td>414(20)</td>
<td>1.6(3)</td>
<td>119(23)</td>
<td></td>
</tr>
<tr>
<td>Sb$_2$Te$_3$</td>
<td>ST2</td>
<td>Te_{in}</td>
<td>350(30)</td>
<td>-465(30)</td>
<td>19(2)</td>
<td>200(10)</td>
<td>2.5(4)</td>
<td>173(22)</td>
<td></td>
</tr>
<tr>
<td>Bi$_2$Te$_3$</td>
<td>BT1</td>
<td>Te_{out}</td>
<td>375(10)</td>
<td>-156(20)</td>
<td>140(10)</td>
<td>125(5)</td>
<td>21(3)</td>
<td>141(4)</td>
<td>104(8)</td>
</tr>
<tr>
<td>Bi$_2$Te$_3$</td>
<td>BT2</td>
<td>Te_{in}</td>
<td>234(15)</td>
<td>574(45)</td>
<td>310(30)</td>
<td>75(5)</td>
<td>33(3)</td>
<td>2.5(1)</td>
<td>186(8)</td>
</tr>
<tr>
<td>Bi$_2$Se$_3$</td>
<td>BT2</td>
<td>Te_{out}</td>
<td>398(10)</td>
<td>-195(20)</td>
<td>82(4)</td>
<td>120(5)</td>
<td>25(3)</td>
<td>0.4(2)</td>
<td>30(15)</td>
</tr>
<tr>
<td>Bi$_2$Te$_3$</td>
<td>BT3</td>
<td>Te_{in}</td>
<td>259(15)</td>
<td>538(70)</td>
<td>151(6)</td>
<td>63(2)</td>
<td>40(3)</td>
<td>1.7(2)</td>
<td>126(15)</td>
</tr>
<tr>
<td>Bi$_2$Se$_3$</td>
<td>BT3</td>
<td>Te_{out}</td>
<td>437(08)</td>
<td>-242(08)</td>
<td>48(6)</td>
<td>150(5)</td>
<td>24(3)</td>
<td>1.5(1)</td>
<td>112(8)</td>
</tr>
<tr>
<td>Bi$_2$Se$_3$</td>
<td>BT3</td>
<td>Te_{in}</td>
<td>314(10)</td>
<td>469(09)</td>
<td>62(7)</td>
<td>89(2)</td>
<td>40(3)</td>
<td>2.3(1)</td>
<td>171(8)</td>
</tr>
<tr>
<td>Bi$_2$Se$_3$</td>
<td>ST2</td>
<td>Se_{out}</td>
<td>233(7)</td>
<td>89(07)</td>
<td>3000</td>
<td>215(10)</td>
<td>10.9</td>
<td>< 0.4</td>
<td>< 50</td>
</tr>
<tr>
<td>Bi$_2$Se$_3$</td>
<td>ST2</td>
<td>Se_{in}</td>
<td>-427(12)</td>
<td>181(12)</td>
<td>2000</td>
<td>95(10)</td>
<td>24.3</td>
<td>< 0.4</td>
<td>< 50</td>
</tr>
</tbody>
</table>

The spin-lattice relaxation has been measured for both chalcogenides and crystal sites. Due to the overlapping Te signals in Sb$_2$Te$_3$, T_1 was measured for $c \perp B_0$, yielding about 20 and 26 to 30 ms for Te_{in} and Te_{out}, respectively. In Bi$_2$Te$_3$, the spin-lattice relaxation for the three samples under investigation was measured for $c \parallel B_0$. Here, T_1 relaxation times vary substantially, between 50 and 150 ms for Te_{out}, and between 60 and 300 ms for Te_{in}.

The spin-lattice relaxation for spin $1/2$ 125Te in Sb$_2$Te$_3$ and Bi$_2$Te$_3$ is surprisingly rapid. There are significant differences between the two different compositions, and even larger differences for Te in Bi$_2$Te$_3$. Given the high degree of self-doping known in these systems (typical Bi$_2$Te$_3$ and Sb$_2$Te$_3$ samples have carrier concentrations ranging from 10^{16} up to 10^{18}cm$^{-3}$ due to the tendency to form native point defects, such as vacancies and antisite disorder$^{[25-27]}$ fast spin-lattice relaxation hints at an interaction of the nuclear spins with those of free charge carriers. For example, T_1 of Te in Bi$_2$Te$_3$ seems to be shorter for the higher carrier concentration sample BT2 ($\sim 1.7 \times 10^{19}$ cm$^{-3}$ electrons) in comparison to BT1 ($\sim 5 \times 10^{18}$ cm$^{-3}$ electrons),\(^{[15]}\) pointing to a larger Fermi level density-of-states (DOS) and suggesting BT3 to be the Bi$_2$Te$_3$ single crystal with the largest carrier concentration. Relaxation due to free carriers was also considered for 77Se NMR in Bi$_2$Se$_3$, where the T_1 was reduced by about a factor of 10 due to the intercalation of Cu in Cu$_{10}$Bi$_2$Se$_3$, typically yielding much increased carrier concentrations.\(^{[16]}\) But the difference in T_1 of one to two orders of magnitude for Te in Bi$_2$Te$_3$ in comparison to Se in Bi$_2$Se$_3$ (cf. Table 1) can hardly be attributed to a difference in the DOS, or simply to a larger hyperfine coupling constant for Te, as expected for a heavier element. Moreover, the finding of a spin-lattice relaxation as fast as 20 ms for Te nuclei in Sb$_2$Te$_3$ is very unusual and appears to be too short for the expected DOS, even for the typically higher carrier densities of up to 10^{19}cm$^{-3}$ p-type carriers.\(^{[26,27]}\) Spin-lattice relaxation in the present systems, therefore, is not easily explained and requires further investigation. It should be noted, however, that the finding may hint at a so far undocumented spin-lattice relaxation mechanism due to strongly spin-orbit coupled charge carriers as predicted by 209Bi NMR in Bi$_2$Se$_3$.\(^{[13]}\)

Next, the NMR shift anisotropy shall be addressed. From tracing the Te resonance frequencies for their changes under crystal rotation as shown exemplarily in Figure 2, the isotropic (K_{iso}) and axially (K_{anis}) shift components are readily determined and provided in Table 1 (see the experimental section for the definition of the shift components). The isotropic shifts for all Te resonances as given in Table 1 are found to be ranging between 150 and 440 ppm, depending on material, sample, and crystal site. Quite a surprising result is that while the isotropic shifts of the inner signals for Sb$_2$Te$_3$ and Bi$_2$Te$_3$ are rather similar (ranging from 234 to 350 ppm), those of the outer signals are clearly different. The absolute difference between the inner and outer isotropic shifts is about the same for both materials, but K_{iso} for Te_{out} in Sb$_2$Te$_3$ is shifted to lower and for Bi$_2$Te$_3$ to higher values. This suggests a hidden feature which might be related to differences in the material specific chemical shifts or to band structure details and the type of doping (p-type for Sb$_2$Te$_3$, n-type for Bi$_2$Te$_3$). A future study aided by first-principles calculations may yield a better understanding of this behavior as well as of the shift phenomenology in these materials in general.

Comparing the isotropic shift values to the corresponding relaxation times reveals a clear correlation, i.e., the smaller T_1, the larger the K_{iso} (cf. Table 1). This again implies a higher carrier density for BT3 in comparison to other Bi$_2$Te$_3$ samples, as well as a higher n for ST2 compared to ST1. On the other hand, the differences in T_1 found for the same resonances are much greater than the corresponding variation of the isotropic shifts. That is, beyond a clear connection between relaxation, shift, and carrier concentration, there is no obvious model that explains the finding (given the large DOS one may assume a Fermi liquid and $T_1 K_{iso}^2 = \text{const}$). In other words, there must be field fluctuations at the Te nuclei that give rise to spin-lattice relaxation, but do not contribute to the Knight shift. In contrast,
the isotropic shifts of the two Se resonances in Bi$_3$Sb$_2$Te$_3$ are very different, while the corresponding spin-lattice relaxation is slow and almost the same for both crystal sites (cf. Table 1) although a similar DOS as in Bi$_3$Te$_2$ can be assumed. This implies significant differences in the chemical, i.e., charge carrier independent shift for the two resonances which is perhaps more complex than in other systems due to the strong spin-orbit interaction.[23]

From the orientation dependent measurements, an axially symmetric shift anisotropy is found for each pair of resonances in the present samples (Figure 2). Axial shift symmetry is a ubiquitous feature of the bulk NMR of these types of materials, including quadrupole nuclei, in agreement with the local symmetry given by the chemical structure.[13–16]

The axial shift components are very large (e.g., more than 1500 ppm total shift range for the orientation dependence of Te$_{in}$ in Bi$_3$Te$_2$) and show substantial variations across the samples, including different signs. For comparison, the NMR shift anisotropy of Se nuclei in single crystalline Bi$_3$Se$_2$, as taken from Georgieva et al.[16] is reproduced by the yellow lines in Figure 2A and in Table 1. Obviously, the shift phenomenology in this family of compounds as documented in the present work is very complex. Certainly, given the large defect densities and corresponding concentrations of free carriers, charge carrier dependent shift components must be taken into account. However, in order to disentangle the various carrier independent, i.e., chemical shift contributions, from those stemming from free charge carriers, and to allow for a comparison to available theory,[23] systematic temperature dependent investigations of samples with well-defined carrier concentrations are required. Such an investigation may then also allow for a better understanding of the mechanism behind spin-lattice relaxation in the present material.

Beyond the NMR shift anisotropy, the orientation dependent spectra shown in Figure 2 reveal yet another feature of the relaxation in the present material. A better understanding of the mechanism behind spin-lattice relaxation is slow and almost the same for both crystal sites (cf. Table 1) although a similar DOS as in Bi$_3$Te$_2$ can be assumed. This implies significant differences in the chemical, i.e., charge carrier independent shift for the two resonances which is perhaps more complex than in other systems due to the strong spin-orbit interaction.[23]

In Figure 4, the full width at half maximum (FWHM) of each resonance is plotted against B_0. Furthermore, a $$\lambda(B_0) = \sqrt{\lambda_0^2 + (bB_0)^2}$$-relation yielding the solid lines was applied to differentiate between magnetic field independent (λ_0) and magnetic field dependent (bB_0) linewidth contributions. Obviously, Te linewidths in Bi$_3$Te$_2$ are by a factor of 1.5 (λ_{in}) to ~2 (λ_{out}) larger than those for Sb$_2$Te$_3$. Moreover, in all samples λ_{out} line broadening exceeds that of λ_{in} in agreement with observations for Se$_{in}$ and Se$_{out}$ in Bi$_3$Se$_2$. Most of the resonances also show a field independent linewidth of at least 20 kHz (cf. Table 1). Exclusively for λ_{out} in Sb$_2$Te$_3$, the linewidths can be very well accounted for by a $\lambda(B_0) = bB_0$-relation (dashed lines in Figure 4A). As indicated by the red bars in Figure 4, direct dipole-dipole interactions yield linewidths of about 2 to 5 kHz in maximum and can therefore not be the origin for the observed λ_0 (besides, dipole interactions are anisotropic). Thus, isotropic and magnetic field independent linewidths that vastly exceed dipolar couplings prove an enhanced internuclear coupling (J-coupling) mediated via electronic states. For comparison, the λ_0 obtained from 77Se in
Bi$_2$Se$_3$ are also shown in Figure 4 by the grey dotted arrows, including a re-scaling of $x/3$ which accounts for the difference in the gyromagnetic ratios (g) of 125Te and 77Se. The Te data from Bi$_2$Te$_3$ agree surprisingly well with the re-scaled Se linewidths in Bi$_2$Se$_3$ (for $B_0 = 0$). This suggests a similar interaction which differs chiefly due to the different hyperfine couplings of Te and Se, in good approximation relatable to the difference of their nuclear magnetic moments. Whether the coupling is of Bloembergen-Rowland (BR) type cannot readily be assessed. However, given the chemical and electronic similarities of the systems, a BR-coupling is a plausible coupling is of Bloembergen-Rowland (BR) type cannot readily be assessed. However, given the chemical and electronic similarities of the systems, a BR-coupling is a plausible candidate to govern also the interaction between nuclear magnetic moments in Bi$_2$Te$_3$.

In this context, the linewidths of 125Te in Sb$_2$Te$_3$ are interesting. While all other resonances are affected by an enhanced internuclear coupling, Te$_{\text{out}}$ seems not to show any field independent line broadening beyond direct dipole-dipole interactions. The smaller Λ_0 for Te$_{\text{in}}$ in Sb$_2$Te$_3$ compared to Bi$_2$Te$_3$ may hint at a reduced interaction strength due to differences in the energy band gap as well as the nuclear spin (I) and the hyperfine coupling constants of Sb and Bi, which can be assumed to be the sole coupling partners due to the low natural abundance of 125Te of about 7%. However, this consideration would not explain the absence of any enhanced linewidth of Te$_{\text{out}}$ in Sb$_2$Te$_3$. This conundrum cannot be resolved in the present work. Note, however, that this finding is a strong argument against an RKKY-type of internuclear coupling that scales with the density of states (DOS), because Sb$_2$Te$_3$ must be assumed to have a similar, if not higher DOS than Bi$_2$Te$_3$ or Bi$_2$Se$_3$. The finding may also point to band structure details, as for example the band gap and the position of the Fermi level, which then may also be related to the topological non-trivial band inversion equally present for each of the materials under consideration. This observation may further hold key information for a better understanding of the magnetic correlations of localized moments in this type of compounds and related magnetic systems.

Experimental Section

Sample preparation and characterization

The synthesis details and characterisation of the Bi$_2$Te$_3$ crystals Bi$_{1.88}$Te$_{0.12}$ (BT1), Bi$_{2.0}$Te$_{1.0}$ (BT2), and Bi$_2$Te$_3$ (BT3) have been previously reported.\cite{14,15} Sb$_2$Te$_3$ (ST1) was synthesized using the self-flux method. Stoichiometric amounts of high purity elemental Sb and Te (both 99.999%, from Sigma Aldrich) were mixed inside an Ar atmosphere glovebox and loaded into a quartz tube. The ampoule was evacuated, sealed, and then heated to 730 °C. The melted precursors were kept at 730 °C for 24 hrs. The temperature of the furnace was then reduced slowly (2 K/h) to 530 °C, during which period the crystal growth took place (melting temperature of ~630 °C). The ingot obtained from the synthesis is shown in Figure 5B. Single crystals of up to a few millimeters in length and width were easily cleaved from the ingot. The other Sb$_2$Te$_3$ platelet-like crystals (ST2) were grown from a mixture of the elements slightly enriched with Te (the Sb:Te ratio 1:2). The mixture was placed in a silica ampoule, evacuated, and sealed under a dynamic vacuum ($p < 10^{-3}$ mbar), heated up to 580 °C at 2 °C/min, kept at 580 °C for 9 days, and finally water-quenched. Several large Sb$_2$Te$_3$ crystals were mechanically separated from the ingot. Their elemental composition was determined by semi-quantitative energy dispersive X-ray analysis at 20 kV acceleration voltage on a SDD X-MaxN (Oxford). The Sb content has an average value 40.5(3) at.% and that of Te was around 59.5(4) at.%. Powder X-ray diffraction (XRD) was performed using a Bruker D8 diffractometer (Co-radiation) and Sb$_2$Te$_3$ powder obtained from grinding selected crystals cleaved from the center of the ingot. In Figure 5C the powder XRD pattern (top) of the Sb$_2$Te$_3$ ST1 powder and a reference pattern (ICDD reference pattern number 00-015-0874) are shown. The positions of the measured reflections and those from the reference pattern agree well with each other. No additional reflections from impurity phases were observed. Available powder XRD patterns of the Bi$_2$Te$_3$ samples (BT1 and BT2) have been reported.\cite{16} The homogeneity of the single crystal (ST1) was

Conclusions

The 125Te room temperature NMR of three Bi$_2$Te$_3$ and two Sb$_2$Te$_3$ single crystals is reported. In agreement with the local symmetry and the crystal structure, two Te signals are observed for both compositions. Te Spin-lattice relaxation is fast and shows large variations across the samples that cannot easily be brought into connection with the measured shift and thus hints at a special relaxation mechanism. The NMR shift anisotropy has axial symmetry, representing the trigonal symmetry of the crystal structure. Isotropic and anisotropic shift component are documented for each sample. The shift phenomenology is complex and requires further measurements including temperature dependences to allow for a deeper understanding in exchange with theory. Large, isotropic, and magnetic field independent linewidths are observed for most of the resonances in the system, proving an enhanced internuclear coupling mediated by itinerant electrons to be a ubiquitous feature of the NMR of these chalcogenides. The type of coupling mechanism could not yet be determined but may hold crucial insight for the magnetism in closely related topological insulators with localized magnetic moments.

Figure 5. In panel (A), a quintuple layer (QL) of Bi$_2$Te$_3$ and Sb$_2$Te$_3$ is shown. Three QLs stacked along [001] and connected by van-der-Waals interaction built a unit cell. Te$_{\text{in}}$ (green) and Te$_{\text{out}}$ (blue) occupy crystallographically independent Wyckoff sites, yielding two distinct NMR signals for both samples, Te$_{\text{out}}$ and Te$_{\text{in}}$. In panel (B), the Sb$_2$Te$_3$ ingot (ST1) obtained from the synthesis as described in the text is shown, and in (C), the corresponding powder XRD pattern (top) and a reference pattern (bottom) are provided.
Further checked with X-ray diffraction (IPSD I diffractometer, Ag-Kα radiation), revealing, beside clear single crystal reflections, a measurable degree of mosaicity potentially related to small fragments attached to the main crystal.

NMR experiment

NMR of ^{125}Te ($\gamma/2\pi = 13.452 \text{ MHz/T}$, $I=1/2$) was studied in magnetic fields $B_0 = 7 \text{ T}$, 9.4 T, 11.7 T, and 17.4 T, with standard wide-bore NMR magnets and commercial Bruker or Techmag consoles. Small single crystals from the ingot were placed in a home-build probe equipped with a single axis goniometer to investigate angular dependences. Radio frequency coils wound around the crystal had Quality factors, Q, between 50 and 70 at room temperature. NMR spectra were recorded with a spin-echo sequence and $\pi/2$-pulse lengths ranging between 0.5 μs and 4 μs. T_1 was measured using inversion-recovery or saturation-recovery pulse sequences. The NMR shift was determined with respect to (CH$_3$)$_2$Te using the secondary reference methods$^{[16]}$ and ^{64}Cu in Cu metal. The isotropic and anisotropic shift contributions, K_{iso} and K_{anis}, correspond to the resonance frequencies for $C \parallel B_0 \ (K_{22})$ and $C \perp B_0 \ (K_{33})$, as $K_{iso} = -K_{22} + 2K_{33}/3$ and $K_{anis} = -(K_{22} - K_{33})/3$. $^{[16]}$

Acknowledgements

We thank V. Chlan (Prague), I. Garate (Sherbrooke), C. Felser (Dresden) and C. Shekhar (Dresden), as well as G. Klotzsche (Leipzig). We are grateful for the financial support by the Deutsche Forschungsgemeinschaft, Project No. 287442459148, by Leipzig University, and the MacDiarmid Institute for Advanced Materials and Nanotechnology. Open Access funding enabled and organized by Projekt DEAL.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: Topological insulators · nuclear magnetic resonance

Manuscript received: June 16, 2022
Revised manuscript received: August 31, 2022