Acidities of confined water in interlayer space of clay minerals

Published in:
Geochimica et Cosmochimica Acta

DOI:
10.1016/j.gca.2011.06.011

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Download date: 19 Dec 2018
Acidities of confined water in interlayer space of clay minerals

Xiandong Liu a,⇑, Xiancai Lu a, Rucheng Wang a, Evert Jan Meijer b, Huiqun Zhou a

a State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, PR China
b Van’t Hoff Institute for Molecular Sciences and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Received 6 December 2010; accepted in revised form 8 June 2011; available online 15 June 2011

Abstract

The acid chemistry of confined waters in smectite interlayers have been investigated with first principles molecular dynamics (FPMD) simulations. Aiming at a systematic picture, we establish the model systems to take account of the three possible controlling factors: layer charge densities (0 e, 0.5 e and 1.0 e per cell), layer charge locations (tetrahedral and octahedral) and interlayer counterions (Na + and Mg 2+). For all models, the interlayer structures are characterized in detail. Na + and Mg 2+ show significantly different hydration characteristics: Mg 2+ forms a rigid octahedral hydration shell and resides around the midplane, whereas Na + binds to a basal oxygen atom and forms a very flexible hydration shell, which consists of five waters on average and shows very fast water exchanges. The method of constraint is employed to enforce the water dissociation reactions and the thermodynamic integration approach is used to derive the free-energy values and the acidity constants. Based on the simulations, the following points have been gained. (1) The layer charge is found to be the direct origin of water acidity enhancement in smectites because the neutral pore almost does not have influences on water dissociations but all charged pores do. (2) With a moderate charge density of 0.5 e per cell, the interlayer water shows a pKa value around 11.5. While increasing layer charge density to 1.0 e, no obvious difference is found for the free water molecules. Since 1.0 e is at the upper limit of smectites’ layer charge, it is proposed that the calculated acidity of free water in octahedrally substituted Mg 2+-smectite, 11.3, can be taken as the lower limit of acidities of free waters. (3) In octahedrally and tetrahedrally substituted models, the bound waters of Mg2+ show very low pKa values: 10.1 vs 10.4. This evidences that smectites can also promote the dissociations of the coordinated waters of metal cations. The comparison between the two Mg 2+-smectites reveals that different layer charge locations do not lead to obvious differences for bound and free water acidities.

1. INTRODUCTION

Confined waters are ubiquitous in nature and they play important roles in geological, biological and technical processes (Wang et al., 2003; Brovchenko and Oleinikova, 2008). Water under confinement shows different behaviors from the bulk due to the influences from the limiting boundaries and this has received great attention (Dysthe and Wogelius, 2006; Brovchenko and Oleinikova, 2008). Smectites, a big family of 2:1 type phyllosilicates, widely distribute in soils and sediments and they contain considerable confined waters in their interlayer pores (Grim, 1962; Bergaya et al., 2006). The layering structure of smectites is formed by stacking along c-axis the “T–O–T” layers, which consist of an octahedral sheet sandwiched by two tetrahedral sheets (Grim, 1962; Brindley and Brown, 1980; Bleam, 1993). Therefore, 2-D pores are made by the opposite “T–O–T” layers. The isomorphic substitutions in octahedral and/or tetrahedral sheets make the clay frameworks bear negative charges, which are compensated by interlayer counterions. Water and organics can enter interlayer regions and this lead to clay swelling phenomena, resulting in an enlarged interlayer space (e.g. Mooney et al., 1952a,b; Karaborni et al., 1996). Because of their high

⇑ Corresponding author.
E-mail address: xiandongliu@gmail.com (X. Liu).
porosities and high specific surface areas, smectites not only play key roles in many natural processes but also find wide applications in engineering and industries (Bergaya et al., 2006). For example, people have utilized smectites for a long time in many fields such as environmental engineering, catalysis, and drug industry. Therefore, the naturally occurring 2-D nanopore architecture of smectites provides a good model system for studying the confinement effects for both theoretical and practical reasons. Indeed, people have been studying the novel properties of confined water and organics in clay interlayer spaces for decades. For example, according to numerous experimental and theoretical studies, it has been well recognized that in interlayer spaces, water can form integer-number molecular layers and organic ions (e.g. alkylammoniums) can form layering or paraffin configurations depending on the layer-charge characteristics (Mooney et al., 1952a,b; Bérend et al., 1995; Boek et al., 1995; Skipper et al., 1995a,b; Karaborni et al., 1996; Cases et al., 1997; Chang et al., 1998; Skipper, 1998; Smith, 1998; Sutton and Sposito, 2001; Tambach et al., 2004a,b; Lagaly et al., 2006; Liu and Lu, 2006; Skipper et al., 2006; Liu et al., 2007, 2008a, 2009; Cygan et al., 2009; Suter et al., 2009; Anderson et al., 2010).

Acidity is a fundamental aspect of molecular reactivity. Water molecules in interlayer space of clay minerals can donate protons and thus serve as the major Lewis acid sites in the interlayer regions (Bergaya et al., 2006). The 2-D environments alter the properties of confined waters from many aspects. (1) The hard clay layers physically limit the mobility of waters on the direction perpendicular to the basal surfaces. (2) The oxygen atoms on basal surfaces interact with interlayer waters via H-bonding. The clay layer charges polarize the waters to a large extent and thus impose effects on their interactions with surfaces. (3) Some counterions form strong chemical bonds with waters and thus rigid hydration shells. The positive charges of central cations repel protons of water ligands, which promote water dissociations. Furthermore, for the bound waters of cations close to solid surfaces, their pKas are also influenced by the surfaces, e.g. Criscenti and Sverjensky (1999). Based on these reasons, one can expect that the confined water has different acid–base properties from the bulk. Previous experimental studies (e.g. Mortland et al., 1963; Pinnavaia, 1983; Adams and McCabe, 2006) have indicated that some chemical reaction rates can be increased in smectites and from these observations, people have deduced that clay interlayer spaces enhance water acidity and that eventually accelerates the chemical reactions. However, since the chemical reactions occur in very narrow clay pores, it is still impossible to do in situ measurements of water acidity constants with modern experimental techniques. Therefore, up to now the absolute acidities of confined waters and the confinement effects of clay pores have not been revealed clearly. The lack of quantitative pictures not only makes it very difficult to uncover the acid–base chemistry of the interlayer waters but also prevents the further developments of practical applications (Adams and McCabe, 2006).

First principles molecular dynamics (FPMD) technique (Car and Parrinello, 1985), based on density functional theory and MD, has been proven a powerful tool to investigate proton transfer processes in condensed matters. The transfer of excess protons in liquid water has been studied with FPMD and the Grothuss mechanisms are clearly illustrated (Tuckerman et al., 1997; Marx et al., 1999, 2010; Geissler et al., 2001; Tuckerman et al., 2002; Marx, 2006). By combining FPMD and free-energy calculation, Sprik (2000) investigated the self-dissociation of liquid water and predicted the pKw value to be about 13. Since that encouraging study, the methodology has been applied on more complicated condensed phase systems, e.g. pentaoxyphosphoranes (Davies et al., 2002; Doltisnis and Sprik, 2003), Al-aqua and Si(OH)$_4$ (Liu et al., 2010a), and carboxylic acid conformers (Liu et al., 2010b). Recently, Churakov and Kosakowski (2010) employed FPMD to study the transfer events of excess protons occurring in the interlayer regions of smectites and found that similar to the bulk, the proton transfer processes are barrier free.

In this study, we employed FPMD technique to investigate the acid chemistry of the interlayer water molecules. The following points have been focused on: (1) the origin of promotion effects of clay interlayers, (2) the influences of layer charge densities and locations (i.e. tetrahedral and octahedral), and (3) the effects of counterion species. For these aims, both the charged and neutral clay pores are built for the purpose of comparisons. For the charged models, Na$^+$ and Mg$^{2+}$, the commonly occurring cations in clays, are taken as the interlayer counterions, which correspond to the low and high layer charge densities of clays, respectively. For Mg$^{2+}$-smectite models, the tetrahedral and octahedral substitutions are both considered. By using FPMD simulations, the interlayer microscopic structures of the models are characterized in detail. Then, the FPMD simulations combined with the method of constraint are carried out to investigate the dissociation mechanisms of the interlayer waters and thus, their acidity constants are derived. According to the detailed analyses, we theorize the clear picture about the effects of clay pores on acidities of water molecules.

2. METHODOLOGY

2.1. Systems

The clay framework model was derived from the report of Viani et al. (2002), which was also used in our previous simulations (Liu et al., 2008b; 2010a,b,c). The unit cell formula is X$^{(12-a-b)}$[Si$_b$Al$_{8-a}$] [Al$_b$Mg$_a$]O$_{20}$(OH)$_4$, where X, Al$_b$ and Mg$_a$ denote the monovalent counterion, isomorphous substitutions in tetrahedral and octahedral sheets, respectively. The crystallographic parameters are: $a = 5.18$ Å, $b = 8.98$ Å, $c = 10$ Å and $\beta = \gamma = 90^\circ$. The simulated systems (Fig. 1) consist of two unit cells ($2a \times b \times c$). For the neutral model, there is no isomorphic substitution in clay layers. For Na$^+$-smectite, one Mg replaces one Al in the octahedral sheet and a Na$^+$ ion is introduced into the interlayer region. For Mg$^{2+}$-smectites, two atoms are replaced in either the tetrahedral or the octahedral layer to give the framework a -2 charge and this charge is compensated by introducing one Mg$^{2+}$ into the interlayer.
the tetrahedral one (named as \(\text{Mg}^{2+}\text{-Tetra} \)), two Al atoms replace two Si in the upper and the lower T-sheets, respectively and for the octahedral one (\(\text{Mg}^{2+}\text{-Octa} \)), two Mg atoms replace two Al which are not linked via an O.

Previous experimental and simulation studies have proved that \(\text{Na}^{+} \) and \(\text{Mg}^{2+} \) smectites can swell to 1 and 2 respectively and for the octahedral one (\(\text{Mg}^{2+}\text{-Octa} \)), two Mg atoms replace two Al which are not linked via an O.

The electronic structures are calculated by using density functional theory with the BLYP functional (Becke, 1988; Lee et al., 1988), which can accurately describe the behaviors of water and proton (e.g. Laasonen et al., 1993; Sprik et al., 1996; Marx et al., 1999, 2010; Marx, 2006). The norm-conserving Martins–Trouillier pseudopotentials (Trouillier and Martins, 1991) with the Kleinman-Bylander scheme (Kleinman and Bylander, 1982) are used to describe the interactions of the valence electrons and the core states. The orbitals are expanded in plane wave basis sets with a kinetic energy cutoff of 70 Ry.

All FPMD simulations are performed with the CPMD package (CPMD version 3.11.2) (Car and Parrinello, 1985). All hydrogen atoms are assigned a mass of deuterium. The fictitious electronic mass is set to 800 a.u. and the equation of motion is integrated with a time step of 0.144 fs, which maintains the adiabatic conditions of CPMD. The temperature is controlled at 300 K with the Nosé-Hoover chain thermostat. For the constrained simulation, MD is carried out with the reaction coordinate fixed at the desired value. Each unconstrained/constrained MD trajectory includes a production step of 12 ps and a prior equilibration run of at least 3 ps. The statistics are collected every six steps for all simulations.

2.3. pKa calculation and method of constraint

For the dissociation reaction of liquid water \(\text{H}_{2}\text{O} \rightarrow \text{H}^{+} + \text{OH}^{-} \) with a free energy change \(\Delta F \), the acidity of the water can be calculated with,

\[
pKa = -\frac{\Delta F}{k_BT \ln(10)}
\]

Here \(k_B \) and \(T \) are Boltzmann constant and temperature, respectively.

The dissociation reaction event is enforced to happen with the method of constraint and the relative free energies (\(\Delta F \)) are calculated by integrating the averaged force (\(f \)) along the reaction coordinates via the thermodynamic integration relation (Carter et al., 1989; Sprik and Ciccotti, 1998),

\[
\Delta F(Q) = -\int_{Q_0}^{Q} dQ f(Q)
\]

Here the coordination number (CN) of the reactive hydroxyl oxygen is selected as the reaction coordinate (\(Q \)) to represent the reaction progress.

In the simulations, the CN of the reactive oxygen (O') runs over all water hydrogen in the model,

\[
m_Q = \sum_{i=1}^{N_W} S(|r_{H_i} - r_{O'_i}|)
\]

The function \(S(r) \) is used to weight the contributions of all water hydrogen with a suitable distance dependent function. In this study we employ the Fermi function (Sprik, 1998, 2000),

\[
S(r) = \frac{1}{\exp[\kappa(r - r_c)] + 1}
\]

where \(\kappa \) and \(r_c \) denote the inversion of the width and the cutoff and the hydrogen atoms outside the interval of \(r_c - \kappa < r < r_c + \kappa \) are effectively counted as 1 or 0. In our calculations, 0.10 Å and 1.35 Å are used for \(\kappa \) and \(r_c \), respectively.
As mentioned above, all hydrogen has a mass of D for computation efficiency. Because the nuclei are treated as classical particles in the used CPMD technique, the quantum effects of hydrogen cannot be captured. Therefore, the subtle acidity differences of D and H (pKw(D2O) - pKw(H2O) ≈ 0.7 (Wynne-Jones, 1936)) would not be distinguished. For the purpose of clarity, we use H2O instead of D2O in the text.

Within constrained FPMD simulation times (~15 ps), the mean forces can reach reasonable convergences within 1.8 kcal/mol. (see the electronic annex). This sets an upper limit of 1.1 pKa units to the statistical uncertainty in our acidity calculations.

3. RESULTS AND DISCUSSIONS

3.1. Interlayer structures

The density profiles of interlayer atomic species are derived to characterize the interlayer structures (Fig. 2). On these plots, the middle planes of the pores are taken as the origins and the distances (~4 to 4 Å) approximately correspond to the distances between the basal oxygen planes above and below the origins because the pore widths are around 8 Å. All density curves of water oxygen show two well separated peaks, which indicates the water molecules form two layers. On all plots, the density curves of water hydrogen represent considerable distributions in the middle, indicating that some H-bonds exist between the lower and upper water layers. For the neutral pore, the hydrogen mainly distributes from ~2.5 to 2.5 Å on the distance axis, i.e. they are mostly over 1.5 Å away from the clay surfaces. In contrast, for the three charged models, hydrogen represents considerable distributions in the ranges <1.5 Å away from the surfaces. This obvious difference is caused by the layer charges, which encourages H-bonding between water hydrogen and surface oxygen atoms.

For Na+-smectite, the cation shows a distribution peaked at about 1.0 Å (Fig. 2B), indicating that Na+ cations do not favor staying around the midplane. As revealed by the radial distribution function curve of cation-water oxygen (Fig. 3A), the first peak ranges from 2.0 to 3.0 Å, which amounts to about five on the accumulated coordination number profile. Fig. 4A illustrates a representative snapshot, which shows that Na+ binds to one basal oxygen and five water molecules. This observation is consistent with a previous CPMD simulation report (Suter et al., 2008). In that study, they found that the most stable complex has a very similar configuration as shown in Fig. 4A, which is of a lower free-energy than that one located at the exact midplane.

For both Mg2+-smectites, the cations reside around the midplanes during the simulations (Fig. 2C and D). Mg2+-O RDF curves (Fig. 3B and C) show very sharp first peaks ranging 1.9–2.5 Å and the accumulated coordination number curves indicate that Mg2+ cations form very structured first hydration shells consisting of six waters (Callahan et al., 2010). This is consistent with the previous classical MD study of Mg2+ cations in clay interlayers (Greathouse et al., 2000). The derived snapshot (Fig. 4B) illustrates the octahedral hydration shell.

In the simulation of Na+-smectite, it is found that the hydration shell of Na+ is very flexible and the exchange between the 1st shell and the other waters happens quite frequently. Fig. 5 plots the trajectories of distances between the cations and the leaving waters for in liquid water and in smectite interlayer. One can see that for both cases the first shell waters leave on a picosecond timescale, which
indicates that the interaction between Na\(^+\) and water is relatively weak. In contrast, the hydration shell of Mg\(^{2+}\) is very rigid and no exchange event has been observed during the simulations.

3.2. Acid chemistry

3.2.1. pK\(_a\)s of Na\(^+\)-aqua and Mg\(^{2+}\)-aqua in liquid water

As shown in Fig. 6, the calculated free energy change for the dissociation of a water molecule bound to Mg\(^{2+}\) in liquid water is about 16 kcal/mol and the pK\(_a\) is about 11.8. This result coincides well with the experimental measurement, 11.4 (Westermann et al., 1986). In a previous AIMD study of Mg\(^{2+}\) (Bernasconi et al., 2006), 11.6 was obtained with a slightly different post-processing approach. For Na\(^+\) in water, due to the water exchange as discussed above, the focused water molecule would quickly get off from the first shell in the simulation and therefore, the final
result is actually equal to the pH, 13.0 (Sprik, 2000). This also explains why Na⁺ hardly influences the dissociations of water molecules (Westermann et al., 1986).

3.2.2. General pictures of confined water dissociation

For the neutral model and Na⁺-smectite, all waters are equal and thus the dissociating water molecules are selected randomly. For the two Mg²⁺-smectites, one bound water (i.e. one in Mg(H₂O)₆²⁺) and one free water are selected to do the dissociation simulations, respectively.

To show the water dissociating process, the simulations of bound water in Mg²⁺-Octa are taken as an illustrative example (Fig. 7). On the initial steps (CN = 1.8, Fig. 7A), the breaking O–H bond is stretched a little from the equilibrium and the H-bond between the leaving proton and the

![Fig. 6. Free energy profile for the dissociation of a 1st-shell water of Mg²⁺ as a function of the number of H around the reactive O (CN). The curve is used to guide eyes.](image)

![Fig. 7. Snapshots derived from the dissociation simulations of 1st-shell water in Mg²⁺-smectite (octahedral substitution). For the purpose of clarity, the other water molecules are removed. (A) CN = 1.8, (B) CN = 1.5, and (C) CN = 1.2. In the pictures, O = red, H = white, Si = yellow, Al = light purple and Mg = green. The white numbers denote the bonds between the leaving proton and the accepting oxygen, the blue numbers indicate the bonds between the leaving proton and the donating oxygen. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)](image)

![Fig. 8. Free energy profiles calculated for water dissociations in clay interlayer spaces. The curves are used to guide eyes.](image)
Table 1

<table>
<thead>
<tr>
<th>System</th>
<th>Bound water</th>
<th>Free water</th>
<th>pKα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk water/Na⁺</td>
<td></td>
<td></td>
<td>13.0</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td></td>
<td></td>
<td>11.8</td>
</tr>
<tr>
<td>Neutral model</td>
<td></td>
<td></td>
<td>12.6</td>
</tr>
<tr>
<td>Na⁺-smectite</td>
<td></td>
<td></td>
<td>11.5</td>
</tr>
<tr>
<td>Mg²⁺-Octa</td>
<td>Bound water</td>
<td></td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>Free water</td>
<td></td>
<td>11.3</td>
</tr>
<tr>
<td>Mg²⁺-Tetra</td>
<td>Bound water</td>
<td></td>
<td>10.4</td>
</tr>
<tr>
<td></td>
<td>Free water</td>
<td></td>
<td>12.1</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

In this study, the acid chemistry of confined waters in interlayer space of smectites is investigated with FPMD simulations. The method of constraint is employed to enforce the reactions and thermodynamic integration is used to derive the free-energy changes and thus the acidity constants. Three possible controlling factors have been taken into account: layer charge densities (0.5 e per unit cell), layer charge locations (tetrahedral vs octahedral) and interlayer counterions (Na⁺ vs Mg²⁺). According to detailed analyses, the following points have been achieved.

1. Na⁺ and Mg²⁺ cations show significantly different complexing characteristics in clay pores. Mg²⁺ forms a very rigid octahedral hydration shell and behaves as outer-sphere complexes. Na⁺ binds to one basal oxygen atom and forms a very flexible hydration shell of five waters on average, which shows very fast water exchanges. This explains why Mg²⁺ promotes water dissociation obviously but Na⁺ almost does not.

2. The neutral clay framework does not enhance water dissociations whereas all charged do. This evidences that layer charge is the direct origin for enhancing the acidity of interlayer water.

3. With a moderate charge density 0.5 e per unit cell, the interlayer water shows a pKα of 11.5 in smectites. Increasing layer charge density to 1.0 e does not lead to obvious further enhancement on the acidities of the free water molecules. Because 1.0 e is at the upper limit of charge densities of smectites, we propose that the acidity calculated here (11.3) can be viewed as the lower limit of the acidities of free interlayer waters.

4. The 1st-shell waters of Mg²⁺ show very low pKα values (10.1 vs 10.4) for octahedrally and tetrahedrally substituted models. By comparing them with the bulk value of Mg²⁺-aqua, 11.8, it is clear that clay frameworks can also enhance acidities of the cation-bound waters. Because many highly acidic cations (e.g. Mg²⁺, Ca²⁺, Al³⁺, Fe³⁺) occur as counterions in nature, their presence eventually makes the interlayer region a chemical environment of high acid activity. Furthermore, the results of the two Mg²⁺-models reveals that layer charge locations show trivial influences on the acidities of both free and coordinated waters.

ACKNOWLEDGMENTS

We thank Dr. Donald Sparks, Dr. Frank Podosek and anonymous reviewers for their generous helps on improving the paper.
We are grateful to the High Performance Computing Center of Nanjing University for doing the calculations on its IBM Blade cluster system. Authors acknowledge Natural Science Foundation of China (Nos. 41002013 and 40973029), Natural Science Foundation of Jiangsu Province (BK2010008), and the support (No. 2009-II-3) from the State Key Laboratory for Mineral Deposits Research, Nanjing University.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.gca.2011.06.011.

REFERENCES

Associate editor: Donald L. Sparks