Search for lepton-flavor-violation in Z-boson decays with τ-leptons with the ATLAS detector

Aad, G.; ATLAS Collaboration

DOI
10.1103/PhysRevLett.127.271801

Publication date
2022

Document Version
Final published version

Published in
Physical Review Letters

License
CC BY

Citation for published version (APA):
Search for Lepton-Flavor Violation in Z-Boson Decays with τ Leptons with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)

(Received 1 June 2021; accepted 5 October 2021; published 28 December 2021)

A search for lepton-flavor-violating \(Z \to e\tau \) and \(Z \to \mu\tau \) decays with \(pp \) collision data recorded by the ATLAS detector at the LHC is presented. This analysis uses 139 fb\(^{-1}\) of Run 2 \(pp \) collisions at \(\sqrt{s} = 13 \) TeV and is combined with the results of a similar ATLAS search in the final state in which the τ lepton decays hadronically, using the same data set as well as Run 1 data. The addition of leptonically decaying τ leptons significantly improves the sensitivity reach for \(Z \to \ell\tau \) decays. The \(Z \to \ell\tau \) branching fractions are constrained in this analysis to \(B(Z \to e\tau) < 7.0 \times 10^{-6} \) and \(B(Z \to \mu\tau) < 7.2 \times 10^{-6} \) at 95% confidence level. The combination with the previously published analyses sets the strongest constraints to date: \(B(Z \to e\tau) < 5.0 \times 10^{-6} \) and \(B(Z \to \mu\tau) < 6.5 \times 10^{-6} \) at 95% confidence level.

DOI: 10.1103/PhysRevLett.127.271801

Three lepton families (flavors) exist in the standard model (SM) of particle physics [1–4], and the number of leptons of each family is conserved in their interactions. Nevertheless, this conservation is not postulated by any fundamental principle of the theory, and neutrino oscillations [5,6] indicate that processes violating this conservation do occur in nature. According to current knowledge, lepton-flavor-violating (LFV) processes in charged-lepton interactions can occur via neutrino mixing but are too rare to be detected by current experiments [7]. An observation of these would be an unambiguous sign of physics beyond the SM. LFV processes occur, for example, in models predicting the existence of heavy neutrinos [8], which may also explain the observed tiny masses and large mixing of the SM neutrinos. In such models, up to one in \(10^5 \) Z bosons would undergo an LFV decay involving τ leptons.

In an earlier analysis, the ATLAS experiment at the LHC set the strongest constraints on the branching fractions \((B) \) of the LFV decays of the Z boson involving a τ lepton by searching for such decays in which the τ lepton decays hadronically [9]. This result was achieved by analyzing proton-proton \((pp) \) collision data corresponding to an integrated luminosity of 139 fb\(^{-1}\) at a center-of-mass energy \(\sqrt{s} = 13 \) TeV and 20.3 fb\(^{-1}\) at \(\sqrt{s} = 8 \) TeV. In that search, ATLAS measured the branching fractions to be \(B(Z \to e\tau) < 8.1 \times 10^{-6} \) and \(B(Z \to \mu\tau) < 9.5 \times 10^{-6} \) at 95% confidence level (C.L.), superseding former limits set by the LEP experiments of \(B(Z \to e\tau) < 9.8 \times 10^{-6} \) [10] and \(B(Z \to \mu\tau) < 1.2 \times 10^{-5} \) [11] at 95% C.L.

This Letter presents a complementary search for \(Z \to e\tau \) decays \((\ell = \text{light charged lepton, i.e., } e \text{ or } \mu) \) in which the τ leptons decay into electrons or muons \((\ell\mu \text{ channel}) \) using 139 fb\(^{-1}\) of \(pp \) collision data at \(\sqrt{s} = 13 \) TeV collected by the ATLAS experiment [12–14]. The search is performed here for the first time at the LHC and is combined with the similar ATLAS search using hadronic τ-lepton decays \((\ell\tau_{\text{had}} \text{ channel}) \) [9]. The two searches follow similar analysis strategies. Neural network classifiers are used for optimal discrimination of signal from backgrounds and their distributions are employed in a binned maximum-likelihood fit to achieve better sensitivity.

ATLAS is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry and a near 4\(\pi \) coverage in solid angle [12,15,16]. It consists of an inner tracking detector surrounded by a superconducting solenoid, electromagnetic and hadronic calorimeters, and a muon spectrometer based on superconducting air-core toroidal magnets. This search analyzes \(pp \) collision events recorded by the ATLAS experiment using single-electron or single-muon triggers [17–19]. Prompt electrons and muons from the Z-boson decays and those from the τ-lepton decays are reconstructed and selected in the same way. Candidates for electrons [20], muons [21], jets [22–24], and visible decay products of hadronic τ-lepton decays \((\tau_{\text{had-vis}}) \) [25,26] are reconstructed from energy deposits in the calorimeters and charged-particle tracks measured in the inner detector and the muon spectrometer. These candidates are selected with sets of requirements similar to those used in Ref. [9]. Electron candidates are required to pass the medium likelihood-based identification requirement [20] and have a transverse momentum

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Funded by SCOAP³.
$p_T > 15$ GeV and a pseudorapidity $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$. The latter selection vetoes electron candidates passing through the transition region between the barrel and end-cap electromagnetic calorimeters. Muon candidates are required to pass the medium identification requirement [27] and have a $p_T > 10$ GeV and $|\eta| < 2.5$. Both the electron and muon candidates must satisfy the tight isolation requirement [20,27], which is intended to reject misidentified candidates produced from the hadronization of quarks or gluons based on tracks and clusters reconstructed collinear to the candidates. Events with exactly one electron and one muon candidate are selected with the requirement that the lepton with higher transverse momentum has a $p_T > 27$ GeV. This selection lies above the threshold for constant efficiency of both single-lepton trigger selections. Events with same-flavor lepton pairs are rejected, in order to reduce the background from $Z \rightarrow \ell\ell$ decays. Events with a leading-p_T electron are used in the search for $Z \rightarrow e\tau$ decays ($e\tau_\ell$ channel), while those with a leading-p_T muon are used in the search for $Z \rightarrow \mu\tau$ decays ($\mu\tau_\ell$ channel), assuming the prompt lepton from the Z-boson decay is the leading one in p_T. In the $\mu\tau_\ell$ channel, the ratio of the electron’s p_T reconstructed in the inner tracking detector to the transverse energy reconstructed in the electromagnetic calorimeter, $p_T^{\mu\tau}(e)/E_T^{\mu\tau}(e)$, is required to be smaller than 1.1 in order to reject $Z \rightarrow \mu\mu$ events. Opposite-charge lepton-pair events are analyzed in the search for signal events, while events with same-charge lepton pairs are used for estimates of background processes. Quark- or gluon-initiated particle showers (jets) are reconstructed using the anti-k_T algorithm [22,23] with a radius parameter $R = 0.4$. Jets fulfilling $p_T > 20$ GeV and $|\eta| < 2.5$ are identified as containing b hadrons if tagged by a dedicated multivariate algorithm [28]. To ensure the samples of selected events do not overlap with those used in the ℓ_τ channel, events with a τ candidate are vetoed. The $E_T^{\mu\tau}$ candidates reconstructed from jets with a $p_T > 10$ GeV and with one or three associated tracks are selected in $|\eta| < 1.37$ or $1.52 < |\eta| < 2.5$. The $E_T^{\mu\tau}$ identification is performed by a recurrent neural network algorithm [25]. A $E_T^{\mu\tau}$ candidate is required to have a $p_T > 25$ GeV and pass the tight identification selection. The missing transverse momentum (E_T^{miss}) is calculated as the negative p_T sum of all fully reconstructed and calibrated physics objects [29,30]. Additionally, the calculation includes inner detector tracks that originate from the vertex associated with the hard-scattering process but are not associated with any of the reconstructed objects.

The $Z \rightarrow \ell\tau \rightarrow \ell\ell' + 2\nu$ signal events are characterized by a final state which has two light charged leptons with different flavor and opposite electric charge, two neutrinos, and an invariant mass of all these particles compatible with the Z-boson mass. In most cases, these two leptons are emitted approximately back-to-back in the plane transverse to the proton beam direction. Since the τ lepton is typically boosted due to the large difference between its mass and the mass of its parent Z boson, the two neutrinos from its decay are usually almost collinear with the charged lepton from the τ-lepton decay. The dominant background contribution is from the lepton-flavor-conserving $Z \rightarrow \tau\tau \rightarrow \ell\ell' + 4\nu$ decays, where the two τ leptons decay leptonically. Subleading background contributions from other SM processes with final states with two prompt leptons include the decays of a top-antitop-quark pair ($t\bar{t}$), two gauge bosons (diboson), or a Higgs boson. Finally, small background contributions come from $Z \rightarrow \ell\ell$ decays, where one of the light charged leptons is misidentified with the wrong flavor, and events with “fake leptons.” The latter type of background events includes mostly $W(\rightarrow \ell\nu) +$ jets events with leptons from heavy-flavor quark decays or with light-quark-initiated jets that are misidentified as electrons or muons. The signal and background events are separated by using a set of selection criteria that define a signal-enhanced sample, referred to as the signal region (SR). The selection criteria are listed in Table I. Three neural network (NN) binary classifiers similar to those used in

<p>| TABLE I. Selection criteria for events in the signal region. The invariant transverse mass of ℓ and E_T^{miss} is defined as $m_T(\ell, E_T^{\text{miss}}) = \sqrt{2p_T(\ell)E_T^{\text{miss}}[1 - \cos(\phi_\ell - \phi_{E_T^{\text{miss}}})]}.$ |</p>
<table>
<thead>
<tr>
<th>Selection criterion</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exactly two isolated light leptons (ℓ_0, ℓ_1) with opposite electric charge and different flavor (e or μ); $p_T(\ell_0) > p_T(\ell_1)$</td>
<td>Select events consistent with signal decays.</td>
</tr>
<tr>
<td>No τ candidate</td>
<td>Complementarity to the ℓ_τ channel.</td>
</tr>
<tr>
<td>Transverse mass $m_T(\ell_1, E_T^{\text{miss}}) < 35$ GeV $</td>
<td>\Delta\phi(\ell_0, E_T^{\text{miss}})</td>
</tr>
<tr>
<td>No b-tagged jets (using the 77% efficiency working point [28])</td>
<td>Reject events incompatible with Z-boson decays.</td>
</tr>
<tr>
<td>Invariant mass of the $\ell_0-\ell_1$ pair $m(\ell_0, \ell_1) > 40$ GeV</td>
<td>Complementarity to the CRZ$\tau\tau$ region.</td>
</tr>
<tr>
<td>Neural network (optimized for signal vs $Z \rightarrow \tau\tau$) output > 0.2</td>
<td></td>
</tr>
<tr>
<td>In $\mu\tau_\ell$ channel: $p_T^{\mu\tau}(e)/E_T^{\mu\tau}(e) < 1.1$</td>
<td></td>
</tr>
</tbody>
</table>

271801-2
Ref. [9] are trained on simulated events to distinguish signal events from $Z \rightarrow \tau\tau$, top-quark pair, and diboson background events individually. The input to these NNs is a mixture of low- and high-level kinematic variables, following the same strategy as in the $\ell\tau_{\text{had}}$ channel [9].

The low-level variables are the momentum components of the reconstructed electron and muon candidates, and the E_T^{miss}. The high-level variables are kinematic properties of the $e-\mu-E_T^{\text{miss}}$ system, such as the collinear mass $m_{\text{coll}}(e, \mu)$, defined as the invariant mass of the $e-\mu-2\nu$ system, where the two neutrinos are assumed to have a vectorial momentum sum that is equal in p_T and the azimuthal angle ϕ around the beam axis to the measured E_T^{miss} and equal in η to the subleading p_T lepton momentum. The outputs of the individual NNs (NN$_i$, with values between zero and one) are combined into a final discriminant as shown in Eq. (1), hereafter referred to as the “combined NN output”:

$$\text{combined NN output} = 1 - \sqrt{\frac{1}{3} \sum_{i=1}^{3} (1 - \text{NN}_i)^2}. \quad (1)$$

Events classified by the NN trained for $Z \rightarrow \tau\tau$ as backgroundlike are excluded from the SR and used in a control region to better determine the $Z \rightarrow \tau\tau$ background in the maximum-likelihood fit (see Table I). The signal acceptance in the SR is 19.5% for the $e\tau_{\text{e}}$ channel and 11.2% for the $\mu\tau_{\text{e}}$ channel, as determined from simulated signal samples. The lower acceptance in the $\mu\tau_{\text{e}}$ channel is due to the higher p_T threshold on the subleading p_T lepton and the additional selection on $p_T^{\text{track}}/E_T^{\text{cluster}}$.

Predictions for signal and background contributions are based partly on Monte Carlo (MC) simulations and partly on estimates from data. Signal and background processes were simulated as in Ref. [9]. The signal events were simulated using PYTHIA8 [32] with matrix elements calculated at leading order (LO) in the strong coupling constant. Nominal signal samples were generated with a parity-conserving $Z\ell\tau$ vertex and unpolarized τ leptons. Scenarios where the decays are maximally parity violating were reweighted to match the simulated events using TAU SPINNER [33], as discussed in Ref. [9]. The $Z \rightarrow \tau\tau$ background events were simulated with the SHERPA2.2.1 [34] generator using the NNPDF 3.0 NNLO PDF set [35] and next-to-leading-order (NLO) matrix elements for up to two partons, and LO matrix elements for up to four partons, calculated with the COMIX [36] and OPEN LOOPS [37–39] libraries. Background $Z \rightarrow \ell\ell'$ events were simulated using the POWHEG-BOX [40] generator with NLO matrix elements. All MC samples include a detailed simulation of the ATLAS detector with GEANT [41,42]. As in Ref. [9], the simulation of Z-boson production is improved through a correction derived from measurements in data. The simulated p_T spectra of the Z boson are reweighted to match the unfolded distribution measured by ATLAS in Ref. [43].

The predicted overall yields of signal and $Z \rightarrow \tau\tau$ events are determined by a binned maximum-likelihood fit to the combined data in the SR and in a control region enhanced in $Z \rightarrow \tau\tau$ events (CRZ$\tau\tau$). This eliminates the theoretical uncertainties in the total Z-boson production cross section (σ_Z), as well as the experimental uncertainties related to the acceptance of the common $\ell\ell'$ final state. The selection criteria for events in the CRZ$\tau\tau$ are the same as those for events in the SR, except that events are required to be classified as $Z \rightarrow \tau\tau$-like, i.e., with an output smaller than 0.2 for the $Z \rightarrow \tau\tau$ NN and greater than 0.2 for both the top-quark and diboson NNs. In the $\mu\tau_{\text{e}}$ channel, a small contribution to the total background originates from $Z \rightarrow \mu\mu$ events in which one muon is misreconstructed as an electron. Such electron candidates may originate from muons that fail the muon selection requirements and whose tracks are associated with a calorimeter energy cluster and reconstructed as electrons. They may also originate from muons undergoing bremsstrahlung. Such events are modeled with simulation and their predicted yield is based on the measured σ_Z [44]. The modeling is validated in a dedicated region which has the same selection as the $\mu\tau_{\text{e}}$ SR except for the inverse selection on $p_T^{\text{track}}(e)/E_T^{\text{cluster}}(e)$. Based on the observed level of agreement between data and simulation, a systematic uncertainty of 15% is assigned to the predicted yield of $Z \rightarrow \mu\mu$ events in the SR, with no further correction.

Events with fake leptons yield a small but still significant background contribution. In most cases, the fake lepton is the subleading one. These events are estimated from data using a “fake-factor method” similar to the one used in Ref. [9]. The fake factor is defined as the ratio $N^{\text{pass-iso}}/N^{\text{fail-iso}}$, where “fake” indicates events with at least one fake lepton and “pass-iso” or “fail-iso” indicate whether the subleading lepton passes or fails the isolation requirement. The fake factor is measured in events with pairs of same-sign leptons (SS). These events are enhanced in $W(\rightarrow \ell\nu) +$ jets, which is the dominant source of events with fake leptons in the SR. Events in the SS region pass the same event selections as those in the SR except for a same-charge requirement. The fake factors are measured as functions of the transverse momentum and pseudorapidity of the leptons, separately for $e\tau_{\mu}$ and $\mu\tau_{\text{e}}$ events. The kinematic properties of events with fake leptons in the SR or in the CRs are estimated by the distributions of events with the subleading lepton failing the isolation requirement, but otherwise satisfying all other selection criteria for that region, multiplied by the fake factor. The total predicted yields of the events with fake leptons in the SR and CRs are instead determined by a combined maximum-likelihood fit to data, separately for $e\tau_{\mu}$ and $\mu\tau_{\text{e}}$ events. The remaining background processes are estimated using simulations. These backgrounds include events from the production and decay of top quarks [32,40], pairs of gauge bosons [34,35], and the Higgs boson [32,40]. The yield of the
events with top quarks is determined in the maximum-likelihood fit to data via the inclusion of a top-quark control region (CRTop). The selection requirements for the CRTop are the same as for the SR except that at least one b-tagged jet is required. The expected event yields of the remaining processes are determined based on their production cross section, the integrated luminosity, and the simulated selection efficiency.

A statistical analysis of the selected events is performed to assess the presence of signal events, following the same method used in Ref. [9]. A simultaneous binned maximum-likelihood fit to the combined NN output distribution in the SR, the \(m_{\text{coll}}(e, \mu) \) distribution in the CRZ\(\tau\tau \), and the event yield in CRTop is used to constrain uncertainties in the predictions and extract evidence of a possible signal. The fit is performed independently for the \(e\tau \) and \(\mu\tau \) channels. The fraction of \(Z \to e\tau \) events selected in the \(\mu\tau \) channel (and vice versa) is negligible and is therefore neglected. In order to improve the discrimination between signal and the events with fake leptons, the events in the SR are further split into two regions based on the transverse momentum of the subleading-\(p_T \) lepton \(\ell_1 \). The low-\(p_T \) SR contains events with a \(p_T(\ell_1) < 20(25) \) GeV in the \(e\tau_\mu \) (\(\mu\tau_\mu \)) channel, while the high-\(p_T \) SR contains the events above these thresholds. Both SRs in the \(e\tau_\mu \) channel have comparable sensitivity, while the low-\(p_T \) SR in the \(\mu\tau_\mu \) channel is more sensitive than the high-\(p_T \) SR. Both SRs are fitted simultaneously. There are four unconstrained parameters in the fits: the parameter of interest determines the LFV branching fraction \(B(Z \to \ell\tau) \) by modifying an arbitrary prefit signal yield, \(\mu_2 \) determines \(\sigma_2 \) times the overall acceptance and reconstruction efficiency of the \(\ell\ell' \) final state in \(Z \to \tau\tau \) and signal events, \(\mu_{\text{top}} \) determines the yield of the top-quark events, and \(\mu_{\text{fakes}} \) determines the yield of the events with fake leptons. Constrained parameters are also introduced to account for systematic uncertainties in the signal and background predictions, as in Ref. [9]. These include uncertainties in simulated events in the modeling of trigger, reconstruction, identification and isolation efficiencies, as well as energy calibrations and resolutions of reconstructed objects. No systematic uncertainties are assigned to the overall yields of events with Z-boson decays, fake leptons, or top quarks as these yields are determined from data. Uncertainties related to events with fake leptons include statistical uncertainties due to the size of the data sample used to measure the fake factors as well as to model their distributions in the SRs and CRs. Systematic uncertainties assigned to events with fake leptons account for: shape differences in the modeling of the combined NN output in the SS events; differences in the composition of the events with fake leptons between SS events and the events in the SRs; and uncertainties affecting the number of events with prompt leptons failing the isolation requirements as estimated by simulation. The dominant uncertainties of the search are statistical in nature.

TABLE II. Summary of the contributions to the uncertainty in the measured \(B(Z \to \ell\tau) \). The uncertainties related to light charged leptons include those in the trigger, reconstruction, identification, and isolation efficiencies, as well as energy calibrations. The uncertainties related to jets and \(E_T^{\text{miss}} \) include those in the energy calibration and resolution. The uncertainty in the \(Z \to \mu\mu \) yield is only applicable in the \(\mu\tau \) channel. The total systematic uncertainty can differ from the sum in quadrature of the different contributions due to correlations among uncertainties as a result of the likelihood fit to data.

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Uncertainty in (B(Z \to \ell\tau)) [(\times 10^{-6})]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic</td>
<td>(\pm 3.5)</td>
</tr>
<tr>
<td>Fake leptons (statistical)</td>
<td>(\pm 0.1)</td>
</tr>
<tr>
<td>Systematic</td>
<td>(\pm 2.7)</td>
</tr>
<tr>
<td>Light charged leptons</td>
<td>(\pm 0.4)</td>
</tr>
<tr>
<td>(E_T^{\text{miss}})</td>
<td>(\pm 0.4)</td>
</tr>
<tr>
<td>Jets</td>
<td>(\pm 1.9)</td>
</tr>
<tr>
<td>Flavor tagging</td>
<td>(\pm 0.5)</td>
</tr>
<tr>
<td>Z-boson modeling</td>
<td>(< 0.1)</td>
</tr>
<tr>
<td>(Z \to \mu\mu) yield</td>
<td>(\pm 0.8)</td>
</tr>
<tr>
<td>Other backgrounds</td>
<td>(\pm 0.1)</td>
</tr>
<tr>
<td>Fake leptons (systematic)</td>
<td>(\pm 0.4)</td>
</tr>
<tr>
<td>Total</td>
<td>(\pm 4.4)</td>
</tr>
</tbody>
</table>

Among the systematic uncertainties, the dominant ones are those in the jet calibration which enter through the calculation of the \(E_T^{\text{miss}} \) [24]. A summary of the uncertainties and their impact on the LFV branching fraction is given in Table II.

The observed and best-fit predicted distributions of the combined NN output in the SRs with the highest sensitivity as well as distributions of the collinear mass in the high-\(p_T \) SRs are shown in Fig. 1. The best-fit yield of \(Z \to \ell\tau \) signal corresponds to the branching fractions \(B(Z \to e\tau) = [-2.6 \pm 3.5(\text{stat}) \pm 2.7(\text{syst})] \times 10^{-6} \) and \(B(Z \to \mu\tau) = [-4.4 \pm 3.9(\text{stat}) \pm 3.4(\text{syst})] \times 10^{-6} \). The best-fit yields of \(Z \to \tau\tau \), top quarks, and events with fake leptons are close to the prefit predicted values and are determined with a relative precision of 2\%–4\%, except the events with fake leptons in the \(\mu\tau_\mu \) channel, which have an uncertainty of 30\%. As no significant excess of data over the predicted background is observed, a combined fit of the \(\ell\tau_\ell \) and \(\ell\tau_{\text{had}} \) channels is used to set upper limits on \(B(Z \to \ell\tau) \). The analysis of the \(\ell\tau_{\text{had}} \) channel with Run 2 data [9] uses a similar scheme of regions and unconstrained parameters. In the statistical combination, the parameters of interest are correlated among the different SRs and CRs. The other unconstrained parameters are uncorrelated as these account either for backgrounds specific to each channel or for different acceptances of the \(\ell\tau_\ell \) or \(\ell\tau_{\text{had}} \) final states. Common systematic uncertainties are correlated, besides those related to the jet energy calibrations, which are uncorrelated.
The yields compatible combined upper limits. The analysis of the fit with correlated jet energy calibration uncertainties include underflow and overflow events, respectively. The first and last bins in each plot for visualization purposes, is shown as a dashed histogram in each plot. In the panel below each plot, the ratios of the observed yield (dots) and the best-fit background-plus-signal yield (solid line) to the best-fit background yield are shown. The hatched uncertainty bands represent one standard deviation of the combined statistical and systematic uncertainties. The first and last bins in each plot include underflow and overflow events, respectively.

FIG. 1. Observed and best-fit predicted distributions in the SRs. Distributions of the combined NN output are shown in (a) for the low- \(p_T \) SR of the \(e\tau \) channel, and in (b) for the high- \(p_T \) SR of the \(\mu\tau \) channel. Distributions of the collinear mass in the high- \(p_T \) SR are shown in (c) and (d) for the \(e\tau \) and \(\mu\tau \) channels, respectively. The expected signal, normalized to an arbitrary \(B(Z \rightarrow \ell\ell) = 3 \times 10^{-4} \) for visualization purposes, is shown as a dashed histogram in each plot. In the panel below each plot, the ratios of the observed yield (dots) and the best-fit background-plus-signal yield (solid line) to the best-fit background yield are shown. The hatched uncertainty bands represent one standard deviation of the combined statistical and systematic uncertainties. The first and last bins in each plot include underflow and overflow events, respectively.

This conservative correlation scheme was chosen because of different best-fit values for the parameters associated with these uncertainties in the two channels. However, the fit with correlated jet energy calibration uncertainties yields compatible combined upper limits. The analysis of the \(\ell\tau_{\text{had}} \) channel with Run 1 data is combined using the same correlation scheme as in Ref. [9]. The combined best-fit amount of \(Z \rightarrow \ell\ell \) signal corresponds to the branching fractions \(B(Z \rightarrow \ell\ell) = [−1.4 \pm 2.5\,(\text{stat}) \pm 1.8\,(\text{syst})] \times 10^{-6} \) and \(B(Z \rightarrow \mu\tau) = [1.7 \pm 2.2\,(\text{stat}) \pm 1.6\,(\text{syst})] \times 10^{-6} \).

Since no significant deviation from the SM background hypothesis is observed, exclusion limits are set using the CLs method [45]. The upper limits are shown in Table III for LFV
TABLE III. Observed and expected (median) upper limits on the signal branching fraction at 95% C.L., in different \(\tau \)-polarization scenarios.

<table>
<thead>
<tr>
<th>Final state, polarization assumption</th>
<th>(\ell \tau) had Run 1 + Run 2, unpolarized (\tau) [9]</th>
<th>(\ell \tau) had Run 2, left-handed (\tau) [9]</th>
<th>(\ell \tau) had Run 2, right-handed (\tau) [9]</th>
<th>(\ell \tau) Run 2, unpolarized (\tau)</th>
<th>(\ell \tau) Run 2, left-handed (\tau)</th>
<th>(\ell \tau) Run 2, right-handed (\tau)</th>
<th>Combined (\ell \tau) Run 1 + Run 2, unpolarized (\tau)</th>
<th>Combined (\ell \tau) Run 2, left-handed (\tau)</th>
<th>Combined (\ell \tau) Run 2, right-handed (\tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(8.1\times10^{-6})</td>
<td>(8.2\times10^{-6})</td>
<td>(7.8\times10^{-6})</td>
<td>(7.0\times10^{-6})</td>
<td>(5.9\times10^{-6})</td>
<td>(8.4\times10^{-6})</td>
<td>(5.0\times10^{-6})</td>
<td>(4.5\times10^{-6})</td>
<td>(5.4\times10^{-6})</td>
</tr>
<tr>
<td></td>
<td>(8.1\times10^{-6})</td>
<td>(8.6\times10^{-6})</td>
<td>(7.6\times10^{-6})</td>
<td>(8.9\times10^{-6})</td>
<td>(7.5\times10^{-6})</td>
<td>(11\times10^{-6})</td>
<td>(6.0\times10^{-6})</td>
<td>(5.7\times10^{-6})</td>
<td>(6.2\times10^{-6})</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

decays with different assumptions about the \(\tau \)-polarization state. The polarization of the \(\tau \) lepton affects the energy of its visible decay products and thus the acceptance for signal events. In the scenario where the \(\tau \) leptons are unpolarized, the observed upper limits at 95% C.L. on \(B(\tau \rightarrow \ell \tau) \) and \(B(\tau \rightarrow \mu \tau) \) are \(5.0 \times 10^{-6} \) and \(6.5 \times 10^{-6} \), respectively.

In conclusion, this Letter reports the first analysis of the \(\ell \tau \rightarrow Z \ell \) channel in the search for LFV \(\tau \)-lepton decays at the LHC. This channel yields a sensitivity similar to the \(\ell \tau \) had channel. With the combined results of the two channels, the ATLAS experiment sets the most stringent constraints on LFV Z-boson decays involving \(\tau \) leptons to date. The precision of these results is mainly limited by statistical uncertainties.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; ANID, Chile; CAS, MOST and NSFC, China; Minciencias, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and Danish Natural Science Research Council, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; Shota Rustaveli National Science Foundation of Georgia, Georgia; BMBF, HGF and MPG, Germany; General Secretariat for Research and Innovation, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; Research Council of Norway, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; JINR; Ministry of Education and Science of the Russian Federation and NRC KI, Russian Federation; Ministry of Education, Science and Technological Development, Serbia; Ministry of Education, Science, Research and Sport, Slovakia; ARRS and Ministry of Education, Science and Sport, Slovenia; DSI/NRF, South Africa; MICINN, Spain; Swedish Research Council and Wallenberg Foundation, Sweden; Secretariat for Education and Research, Switzerland, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, USA In addition, individual groups and members have received support from BKDF, CANARIE, Compute Canada and CRC, Canada; COST, ERC, ERDF, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; Norwegian Financial Mechanism 2014-2021, Norway; La Caixa Banking Foundation, CERCA Programme Generalitat de Catalunya and PROMETEO and GenT Programmes Generalitat Valenciana, Spain; Göran Gustafsson Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [46].

[42] ATLAS Collaboration, Measurement of the transverse momentum distribution of Drell-Yan lepton pairs in

School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Department of Physics, Carleton University, Ottawa ON, Canada
Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Énergies—Université Hassan II, Casablanca, Morocco
Department of Physics, Semlalia, Faculté des Sciences, Université Cadi Ayyad, Marrakech, Morocco
Mohammed VI Polytechnic University, Ben Guerir, Morocco
CERN, Geneva, Switzerland
Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France
Nevis Laboratory, Columbia University, Irvington, New York, USA
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
Dipartimento di Fisica, Università della Calabria, Rende, Italy
INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
Physics Department, Southern Methodist University, Dallas, Texas, USA
Physics Department, University of Texas at Dallas, Richardson, Texas, USA
National Centre for Scientific Research “Demokritos”, Agia Paraskevi, Greece
Department of Physics, Stockholm University, Sweden
Oskar Klein Centre, Stockholm, Stockholm, Sweden
Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany
Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany
Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany
Department of Physics, Duke University, Durham, North Carolina, USA
SUPA—School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
INFN e Laboratori Nazionali di Frascati, Frascati, Italy
Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
Dipartimento di Fisica, Università di Genova, Genova, Italy
INFN Sezione di Genova, Genova, Italy
II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany
SUPA—School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France
Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts, USA
Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China
Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China
School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MOE), SKLPPC, Shanghai, China
Tsung-Dao Lee Institute, Shanghai, China
Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
Department of Physics, University of Hong Kong, Hong Kong, China
Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
JICLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France
Department of Physics, Indiana University, Bloomington, Indiana, USA
INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy
ICTP, Trieste, Italy
Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Udine, Italy
INFN Sezione di Lecce, Lecce, Italy
Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
INFN Sezione di Milano, Milano, Italy
Dipartimento di Fisica, Università di Milano, Milano, Italy
INFN Sezione di Napoli, Napoli, Italy
PHYSICAL REVIEW LETTERS 127, 271801 (2021)

117 Department of Physics, Northern Illinois University, DeKalb, Illinois, USA
118 Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia
119 Novosibirsk State University Novosibirsk, Novosibirsk, Russia
120 Institute for High Energy Physics of the National Research Centre "Kurchatov Institute", Moscow, Russia
121 Department of Physics, New York University, New York, New York, USA
122 Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan
123 Ohio State University, Columbus, Ohio, USA
124 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma, USA
125 Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
126 Palacky University, Joint Laboratory of Optics, Olomouc, Czech Republic
127 Institute for Fundamental Science, University of Oregon, Eugene, Oregon, USA
128 Graduate School of Science, Osaka University, Osaka, Japan
129 Department of Physics, University of Oslo, Oslo, Norway
130 Department of Physics, Oxford University, Oxford, United Kingdom
131 LPNHE, Sorbonne Universit´e, Universit´e de Paris, CNRS/IN2P3, Paris, France
132 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
133 Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, RNPI, St. Petersburg, Russia
134 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
135 Laborat´orio de Instrumenta¸c˜ao e Fisica Experimental de Partˆiculas—LIP, Lisboa, Portugal
136 Departamento de Fisica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
137 Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
138 Department of Physics, Oklahoma State University, Stillwater, Oklahoma, USA
139 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
140 IRFU, CEA, Universit´e Paris-Saclay, Gif-sur-Yvette, France
141 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
142 Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
143 Universidade Andres Bello, Department of Physics, Santiago, Chile
144 Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
145 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
146 Department of Physics, Shinshu University, Nagano, Japan
147 Department Physik, Universität Siegen, Siegen, Germany
148 Department of Physics, Simon Fraser University, Burnaby BC, Canada
149 SLAC National Accelerator Laboratory, Stanford, California, USA
150 Department of Physics, Royal Institute of Technology, Stockholm, Sweden
151 Departments of Physics and Astronomy, Stony Brook University, Stony Brook, New York, USA
152 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
153 School of Physics, University of Sydney, Sydney, Australia
154 Institute of Physics, Academia Sinica, Taipei, Taiwan
155 E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
156 High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia
157 Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel
158 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
159 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan
160 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
161 Tomsk State University, Tomsk, Russia
162 Department of Physics, University of Toronto, Toronto ON, Canada

271801-19
TRIUMF, Vancouver BC, Canada

Department of Physics and Astronomy, York University, Toronto ON, Canada

Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA

Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Department of Physics, University of Illinois, Urbana, Illinois, USA

Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

University of Tsukuba, Tsukuba, Japan

Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA

Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA

Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden

Department of Physics, University of Illinois, Urbana, Illinois, USA

Department of Physics, University of British Columbia, Vancouver BC, Canada

Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada

Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

Department of Physics, University of Warwick, Coventry, United Kingdom

Waseda University, Tokyo, Japan

Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, Israel

Department of Physics, University of Wisconsin, Madison, Wisconsin, USA

Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany

Department of Physics, Yale University, New Haven, Connecticut, USA

\(^{a}\)Deceased.

\(^{b}\)Also at Department of Physics, King’s College London, London, United Kingdom.

\(^{c}\)Also at Istanbul University, Dept. of Physics, Istanbul, Turkey.

\(^{d}\)Also at Instituto de Física Teórica, IFT-UAM/CSIC, Madrid, Spain.

\(^{e}\)Also at TRIUMF, Vancouver BC, Canada.

\(^{f}\)Also at Department of Physics, University of Fribourg, Fribourg, Switzerland.

\(^{g}\)Also at Department of Physics and Astronomy, University of Louisville, Louisville, Kentucky, USA.

\(^{h}\)Also at Departament de Física de la Universitat Autonoma de Barcelona, Barcelona, Spain.

\(^{i}\)Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia.

\(^{j}\)Also at Faculty of Physics, Sofia University, 'St. Kliment Ohridski’, Sofia, Bulgaria.

\(^{k}\)Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel.

\(^{l}\)Also at Universita di Napoli Parthenope, Napoli, Italy.

\(^{m}\)Also at Institute of Particle Physics (IPP), Victoria, Canada.

\(^{n}\)Also at Bruno Kessler Foundation, Trento, Italy.

\(^{o}\)Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia.

\(^{p}\)Also at Borough of Manhattan Community College, City University of New York, New York, New York, USA.

\(^{q}\)Also at Department of Physics, California State University, Fresno, USA.

\(^{r}\)Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece.

\(^{s}\)Also at Centro Studi e Ricerche Enrico Fermi, Rome, Italy.

\(^{t}\)Also at Department of Physics, California State University, East Bay, USA.

\(^{u}\)Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.

\(^{v}\)Also at Graduate School of Science, Osaka University, Osaka, Japan.

\(^{w}\)Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.

\(^{x}\)Also at University of Chinese Academy of Sciences (UCAS), Beijing, China.

\(^{y}\)Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan.

\(^{z}\)Also at Yeditepe University, Physics Department, Istanbul, Turkey.

\(^{aa}\)Also at CERN, Geneva, Switzerland.

\(^{ab}\)Also at Joint Institute for Nuclear Research, Dubna, Russia.

\(^{ac}\)Also at Hellenic Open University, Patras, Greece.

\(^{ad}\)Also at Center for High Energy Physics, Peking University, China.

\(^{ae}\)Also at The City College of New York, New York, New York, USA.

\(^{af}\)Also at Department of Physics, California State University, Sacramento, USA.

\(^{ag}\)Also at Département de Physique Nucléaire et Corpusculaire, Université de Genève, Genève, Switzerland.

\(^{ah}\)Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia.

\(^{ai}\)Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany.

\(^{aj}\)Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France.

\(^{ak}\)Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary.

\(^{al}\)Also at Giresun University, Faculty of Engineering, Giresun, Turkey.

\(^{am}\)Also at Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan, USA.

\(^{an}\)Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia.