Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

Abbott, R.; LIGO Scientific Collaboration; Virgo Collaboration; KAGRA Collaboration

DOI
10.1103/PhysRevD.105.022002

Publication date
2022

Document Version
Final published version

Published in
Physical Review D. Particles, Fields, Gravitation, and Cosmology

Citation for published version (APA):
Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

R. Abbott et al.*

(LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration)

(Received 19 September 2021; accepted 16 December 2021; published 19 January 2022)

Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the $J$-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow subbands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per subband and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4−3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed nonastrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, $h_0^{95\%}$. The strictest constraint is $h_0^{95\%} = 4.7 \times 10^{-26}$ from IGR J17062 − 6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and $r$-mode amplitude, the strictest of which are $e^{95\%} = 3.1 \times 10^{-7}$ and $a^{95\%} = 1.8 \times 10^{-5}$ respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond x-ray pulsars to date.

DOI: 10.1103/PhysRevD.105.022002

I. INTRODUCTION

Second generation, ground-based gravitational wave detectors, specifically the Advanced Laser Interferometer Gravitational wave Observatory (Advanced LIGO) [1] and Advanced Virgo [2], have detected more than 50 compact binary coalescence events in recent years [3–5]. Continuous gravitational waves from rapidly rotating neutron stars are also potential sources, e.g., a nonaxisymmetry due to mountains on the surface, or stellar oscillation modes in the interior [6–8]. There are no reported detections of continuous gravitational waves to date, despite a number of searches in Advanced LIGO and Advanced Virgo data [9–30].

Low-mass x-ray binaries (LMXBs) are a high-priority target for continuous gravitational wave searches. LMXBs are composed of a compact object, such as a neutron star, which accretes matter from a stellar-mass ($\lesssim 1 M_\odot$) companion [31]. The accretion exerts a torque that may spin up the compact object. Electromagnetic (EM) observations show that even the pulsar with the highest known frequency, PSR J1748 – 2446a, at 716 Hz [32], rotates well below the centrifugal break-up frequency, estimated at $\sim 1400$ Hz [33]. Gravitational wave emission may provide the balancing torque in binary systems such as these, stopping the neutron star from spinning up to the break-up frequency [34,35]. If so, there should thus be a correlation between accretion rate (which is inferred via x-ray flux) and the strength of the continuous gravitational wave emission [34–37]. The LMXB Scorpius X-1 is the brightest extra-Solar x-ray source in the sky, making it a prime target for searches for continuous gravitational waves [11,18,38,39].

Some LMXBs have EM observations of pulsations during “outburst” events lasting days to months, which allow for measurement of their rotational frequency, $f_\star$, to an accuracy of $\sim 10^{-8}$ Hz, and measurement of their binary ephemerides [31,40]. LMXBs that are observed to go into outburst and have measurable pulsations with millisecond periods are sometimes called accreting millisecond x-ray pulsars (AMXPs). If the rotational frequency is known, computationally cheap narrowband searches are possible. Six AMXPs were previously searched for continuous gravitational waves, one in Science Run 6 (S6) using the TwoSpect algorithm [41,42], and five in Observing Run 2 (O2) using the same Hidden Markov Model (HMM)

*Full author list given at the end of the article.

1LMXBs in which the compact object is a stellar-mass black hole are not expected to function as continuous gravitational wave sources and are not discussed in this paper.
we describe the targets and the parameter space respectively. We discuss the data used in Sec. V. In Sec. VI we describe the vetoes applied to discriminate between terrestrial and astrophysical candidates. In Sec. VII we present the results of the search. In Sec. VIII we describe an additional target-of-opportunity search performed for one of the targets that was in outburst during O3a. We provide upper limits for the detectable wave-strain, and astrophysical implications thereof, in Sec. IX. We conclude in Sec. X.

II. SEARCH ALGORITHM

The search in this paper follows the same prescription as the O2 searches for Scorpius X-1 [11] and LMXBs with known rotational frequency [12]. It is composed of two parts: a HMM which uses the Viterbi algorithm to efficiently track the most likely spin history, and the \( J \)-statistic, which calculates the likelihood a gravitational wave is present given the detector data, and the orbital parameters of both the Earth and the LMXB. The HMM formalism is identical to that used in Refs. [11,12,38,43,45], and the \( J \)-statistic was first introduced in Ref. [43]. Below, we provide a brief review of both the HMM and the \( J \)-statistic.

A. HMM

In a Markov process, the probability of finding the system in the current state depends only on the previous state. In a hidden Markov process the states are not directly observable and must be inferred from noisy data. In this paper, the hidden state of interest is the gravitational wave frequency \( f(t) \). Although the rotation frequency \( f_\ast(t) \) of every target in this search is measured accurately from EM pulsations, we allow \( f(t) \neq f_\ast(t) \) in general for three reasons: (i) different emission mechanisms emit at different multiples of \( f_\ast \) [46]; (ii) a small, fluctuating drift may arise between \( f(t) \) and \( f_\ast(t) \), if the star’s core (where the gravitational-wave-emitting mass or current quadrupole may reside) decouples partially from the crust (to which EM pulsations are locked) [45,47]; and, (iii) the rotational frequency of the crust may also drift stochastically due to a fluctuating accretion torque [31,44]. The gravitational-wave frequency is therefore hidden even though the EM measurement of \( f_\ast \) helps restrict the searched frequency space, as described in Sec. IV.

Following the notation of Refs. [11,12] we label the hidden state variable as \( q(t) \). In our model, it transitions between a discrete set of allowed values \( \{q_1,\ldots,q_{N_q}\} \) at discrete times \( \{t_0,\ldots,t_{N_T}\} \). The probability of the state transitioning from \( q_j \) at time \( t_n \) to \( q_j \) at time \( t_{n+1} \) is determined by the transition matrix \( A_{q_j,q_j} \). In this search, as in previous searches of LMXBs [11,12,38], the transition matrix is

\[
A_{q_j,q_j} = \frac{1}{3} (\delta_{q_j,q_j} + \delta_{q_j,q_{j+1}} + \delta_{q_j,q_{j-1}}),
\]

where \( \delta_j \) is the Kronecker delta. Equation (1) corresponds to allowing \( f(t) \) to move 0, or \( \pm 1 \) frequency bins, with equal probability, at each discrete transition. It implicitly defines the signal model for \( f(t) \) to be a piece-wise constant function, with jumps in frequency allowed at the discrete times \( \{t_0,\ldots,t_{N_T}\} \). This is a well-tested approximation for an unbiased random walk [43,45].

The total duration of the search is \( T_{\text{obs}} \), which we split into \( N_T \) coherent equal chunks of length \( T_{\text{drift}} \), where \( N_T = [T_{\text{obs}} / T_{\text{drift}}] \), and \([\ldots]\) indicates rounding down to the nearest integer. We justify our choice of \( T_{\text{drift}} \) in Sec. IV. In essence, it needs to be short enough to ensure that \( f_\ast(t) \) does not wander by more than one frequency bin during each time segment, but ideally no shorter in order to maximize the signal-to-noise ratio in each segment. For each time segment the likelihood that the observation \( o_j \) is related to the hidden state \( q_j \), is given by the emission matrix \( L_{o_j,q_j} \). We calculate \( L_{o_j,q_j} \) from the data via a frequency domain estimator, e.g., the \( J \)-statistic, as discussed in Sec. II B.

The probability that the hidden path is \( Q = \{q(t_0),\ldots,q(t_{N_T})\} \) given a set of observations \( O = \{o(t_0),\ldots,o(t_{N_T})\} \) is

\[
P(Q|O) = \Pi_{t_0} A_{q(t_1)q(t_0)} L_{o(t_1)q(t_1)} \cdots \times A_{q(t_{N_T})q(t_{N_T-1})} L_{o(t_{N_T})q(t_{N_T})},
\]

where \( \Pi_{q(t_0)} \) is the prior probability of starting in the state \( q(t_0) \), and is taken to be uniform within a certain range guided by EM measurements of \( f_\ast \). The Viterbi algorithm is a computationally efficient way to find the path \( Q^* \) that maximizes Eq. (2) [48].
The detection statistic we use in this work is \( \mathcal{L} = \ln P(Q | O) \), i.e., the log-likelihood of the most likely path given the data. The search outputs one \( P(Q | O) \) value per frequency bin, corresponding to the optimal path \( Q^* \) terminating in that frequency bin.

**B. \( J \)-statistic**

Any long-lived gravitational wave signal from an LMXB observed by the detectors is Doppler modulated by the orbital motion of the detectors around the Solar System observed by the detectors is Doppler modulated by the projected semimajor axis requires three binary orbital parameters: the period \( P \), the frequency \( f \), and the longitude of the ascending node \( T_{\text{asc}} \). We use the \( J \)-statistic as the frequency domain estimator \( L_{\text{asc}} \) in this paper, as in Refs. [11,12]. The \( J \)-statistic is a computationally efficient algorithm, as it reuses \( J \)-statistic atoms when searching over a template bank of binary orbital parameters.

**III. TARGETS**

The AMXPs chosen as targets for this search, along with their positions, orbital elements, and pulsation frequencies are listed in Table I. These 20 targets constitute all known AMXPs with observed coherent pulsations and precisely measured orbital elements as of April 2021.3 For details on the relevant EM observations, principally in the x-ray band, see Refs. [31,40,53,54].

Most AMXPs are transient, with “active” (outburst) and “quiescent” phases. Pulsations, and therefore \( f_* \), are only observed during the active phase. Active phases are typically associated with accretion onto the neutron star, however accretion can also happen during quiescence [92].

The frequency derivatives, \( \dot{f}_* \), in the active phase and in the quiescent phase are set by the accretion torque and magnetic dipole braking respectively [92,93]. The value of \( \dot{f}_* \) has implications for the continuous gravitational wave signal strength (see Sec. IX C), as well as the choice of \( \tau_{\text{diff}} \) (see Sec. IV A).

One target, SAX J1808.4−3658, went into outburst during O3a [84,94,95]. It may be the case that continuous gravitational waves are only emitted when an AMXP is in outburst [96]. If so, we increase our signal-to-noise ratio by searching only data from the times that it was in outburst, compared to searching the entirety of O3 data. To investigate this possibility, we perform in Sec. VIII an additional target-of-opportunity search for continuous gravitational waves from SAX J1808.4−3658 while it is in outburst.

**IV. SEARCH PARAMETERS**

The \( J \)-statistic matched filter requires specification of the source sky position [right ascension (RA) and declination (Dec)], the orbital period \( P \), the projected semimajor axis \( a_0 \), and the orbital phase \( \phi_a \), at the start of the search. The orbital phase can be equivalently specified via a time of passage through the ascending node, \( T_{\text{asc}} \). EM observations constrain all of these parameters, as well as the spin frequency \( f_* \). These measurements, along with their associated uncertainties, are listed in Table I.

There are several mechanisms that could lead to continuous gravitational wave emission from an AMXP, in its active or quiescent phase. “Mountains” on the neutron star surface, be they magnetically or elastically supported, emit at \( 2f_* \) and potentially \( f_* \) [97]. The dominant continuous gravitational wave emission from \( r \)-mode oscillations (Rossby waves excited by radiation-reaction instabilities) is predicted to be at \( \sim 4f_*/3 \) [98–101]. Thus, we search frequency subbands centered on \( \{1,4/3,2\}f_* \) for each target. As in Refs. [11,12] we choose a subband width of \( \sim 0.61 \text{ Hz} \).^4

Recent work indicates that the continuous gravitational wave signal from \( r \)-modes could emit at a frequency far from \( 4f_*/3 \) due to equation-of-state-dependent relativistic corrections, and so comprehensive searches for \( r \)-modes may need to cover hundreds of Hz for the targets listed in Table I [103,104]. The exact range of frequencies to search is a nonlinear function of \( f_* \), and does not necessarily include \( 4f_*/3 \) (see Eq. (17) of Ref. [104]). However, these estimates are still uncertain. We deliberately search \( \sim 0.61 \text{ Hz subbands centered on 4}f_*/3 \), as an exhaustive

---

2This assumption is justified as none of the targets described in Sec. III have measurable eccentricity with sufficient precision [31,40].

3We do not include the AMXP Aquila X-1 [51,52] in our target list as there is a large uncertainty on all three binary orbital elements, compared to the other 20 AMXPs. One would need to search \( >10^{10} \) binary orbital templates, an order of magnitude more than the rest of the targets combined. The number of binary orbital templates is calculated as a function of the uncertainty in orbital elements in Sec. IV B.

4Other narrowband searches, such as Refs. [10,102], search subbands whose width, \( \sim 10^{-3}f_* \), scales with frequency. We note that 0.61 Hz is comparable to \( 10^{-3}f_* \) for the harmonics of \( f_* \) that we search in this paper, but is \( 2^{20}\Delta f \), where \( \Delta f \) is the frequency bin size defined in Sec. IVA. Having the number of frequency bins in the subband equal a power of two speeds up the Fourier transform [11].
TABLE I  Target list: position (RA and Dec), orbital period (P), projected semimajor axis in light-seconds (a_0), time of passage through the ascending node as propagated to the start of O3 (T_{asc,03}), as described in Sec. IV B, and frequency of observed pulsations (f_s). Numbers in parentheses indicate reported 1σ confidence level, unless otherwise noted. All objects have positional uncertainty ≤ 1 s in RA and ≤0.5⁰ in Dec.

<table>
<thead>
<tr>
<th>Target</th>
<th>RA</th>
<th>Dec</th>
<th>P/s</th>
<th>a_0/1-l-s</th>
<th>T_{asc}/GPS time</th>
<th>T_{asc,03}/GPS time</th>
<th>f_s/Hz</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGR J00291 + 5934</td>
<td>00h29m03.05s</td>
<td>+59°34'18.93&quot;</td>
<td>8844.07673(9)</td>
<td>0.064993(2)</td>
<td>112149932.93(5)</td>
<td>1238157687(1)</td>
<td>598.89213099(6)</td>
<td>[55,56]</td>
</tr>
<tr>
<td>MAXI J0911−655</td>
<td>09h12m02.46s</td>
<td>−64°52'06.37&quot;</td>
<td>2659.93312(47)</td>
<td>0.017595(9)</td>
<td>114550148.0(9)</td>
<td>123816518(16)</td>
<td>339.9750123(13)</td>
<td>[57,58]</td>
</tr>
<tr>
<td>XTE J0929−314</td>
<td>09h29m20.19s</td>
<td>−31°23'03.2&quot;</td>
<td>2614.746(3)</td>
<td>0.006290(9)</td>
<td>705152406.1(9)</td>
<td>1238167563(612)</td>
<td>180.105254297(9)</td>
<td>[59,60]</td>
</tr>
<tr>
<td>IGR J16597−3704</td>
<td>16h59m32.902s</td>
<td>−37°07'14.3&quot;</td>
<td>2758.42(2)</td>
<td>0.003963(6)</td>
<td>123938342(4)</td>
<td>1238155942(4)</td>
<td>163.595210(3)</td>
<td>[61,62]</td>
</tr>
<tr>
<td>IGR J17062−6143</td>
<td>17h06m16.29s</td>
<td>−61°42'40.6&quot;</td>
<td>2278.21124(2)</td>
<td>0.003963(6)</td>
<td>123938342(4)</td>
<td>1238155942(4)</td>
<td>163.595210(3)</td>
<td>[61,62]</td>
</tr>
<tr>
<td>IGR J17379−3747</td>
<td>17h37m58.836s</td>
<td>−37°46'18.3&quot;</td>
<td>2675.838(17)</td>
<td>0.079797(14)</td>
<td>1206573046.6(3)</td>
<td>1238162748(8)</td>
<td>468.083266605(7)</td>
<td>[64,65]</td>
</tr>
<tr>
<td>SAX J1748.9−2021</td>
<td>17h48m52.161s</td>
<td>−20°21'32.406&quot;</td>
<td>31555.300(3)</td>
<td>0.38757(2)</td>
<td>956797704(2)</td>
<td>1238166449(57)</td>
<td>205.89221(2)</td>
<td>[67,68]</td>
</tr>
<tr>
<td>NGC 6440 X-2</td>
<td>17h48m52.76s</td>
<td>−20°21'24.0&quot;</td>
<td>3457.8929(7)</td>
<td>0.00614(1)</td>
<td>956797704(2)</td>
<td>1238166449(57)</td>
<td>205.89221(2)</td>
<td>[67,68]</td>
</tr>
<tr>
<td>IGR J17494−3030</td>
<td>17h49m23.62s</td>
<td>−30°29'58.999&quot;</td>
<td>4496.67(3)</td>
<td>0.015186(12)</td>
<td>1287797911(1)</td>
<td>1238163668(331)</td>
<td>376.05017022(4)</td>
<td>[69]</td>
</tr>
<tr>
<td>Swift J1749.4−2807</td>
<td>17h49m31.728s</td>
<td>−28°08'05.064&quot;</td>
<td>31740.8417(27)</td>
<td>1.899568(11)</td>
<td>1298634645.81(2)</td>
<td>1238136602(5)</td>
<td>517.92001385(6)</td>
<td>[70,72]</td>
</tr>
<tr>
<td>IGR J1748−2921</td>
<td>17h49m56.02s</td>
<td>−29°19'20.7&quot;</td>
<td>13835.619(1)</td>
<td>0.365165(5)</td>
<td>997147537.43(7)</td>
<td>1238164020(6)</td>
<td>400.99018734(9)</td>
<td>[73,74]</td>
</tr>
<tr>
<td>IGR J17511−3057</td>
<td>17h51m08.66s</td>
<td>−30°57'41.0&quot;</td>
<td>12487.51214(4)</td>
<td>0.2751952(18)</td>
<td>937892316.03(3)</td>
<td>1238164057(10)</td>
<td>443.3195145(9)</td>
<td>[75,76]</td>
</tr>
<tr>
<td>XTE J1751−305</td>
<td>17h51m13.49s</td>
<td>−30°37'23.4&quot;</td>
<td>2545.3414(38)</td>
<td>0.010125(5)</td>
<td>701914663.57(3)</td>
<td>1238164644(487)</td>
<td>435.3179957(3)</td>
<td>[77,78]</td>
</tr>
<tr>
<td>Swift J17S6.9−2508</td>
<td>17h56m57.43s</td>
<td>−25°06'27.4&quot;</td>
<td>3282.40(4)</td>
<td>0.00596(2)</td>
<td>1207196675(9)</td>
<td>1238166119(378)</td>
<td>182.06580377(11)</td>
<td>[79]</td>
</tr>
<tr>
<td>IGR J17521−2342</td>
<td>17h59m02.86s</td>
<td>−23°43'08.3&quot;</td>
<td>31684.7503(5)</td>
<td>1.227714(4)</td>
<td>1218341207.7(2)</td>
<td>1238144176.7(3)</td>
<td>527.425700579(8)</td>
<td>[80,81]</td>
</tr>
<tr>
<td>XTE J1807−294</td>
<td>18h06m59.8s</td>
<td>−29°24'30&quot;</td>
<td>2403.4163(5)</td>
<td>0.004830(3)</td>
<td>732334272(3)</td>
<td>1238165711(63)</td>
<td>190.6250702(4)</td>
<td>[82,83]</td>
</tr>
<tr>
<td>SAX J1808.4−3658</td>
<td>18h08m27.647s</td>
<td>−36°58'43.90&quot;</td>
<td>7249.155(3)</td>
<td>0.092080(7)</td>
<td>1250296258.5(2)</td>
<td>1238161173(5)</td>
<td>400.97521037(1)</td>
<td>[84]</td>
</tr>
<tr>
<td>XTE J1814−338</td>
<td>18h13m39.02s</td>
<td>−33°46'22.3&quot;</td>
<td>15388.7229(2)</td>
<td>0.390633(9)</td>
<td>739049147.41(8)</td>
<td>1238151597(4)</td>
<td>314.35610879(4)</td>
<td>[85,86]</td>
</tr>
<tr>
<td>IGR J18245−2452</td>
<td>18h24m32.51s</td>
<td>−24°52'07.9&quot;</td>
<td>39692.812(7)</td>
<td>0.76591(1)</td>
<td>1049865088.37(9)</td>
<td>1238128096(33)</td>
<td>254.3330310(1)</td>
<td>[87,88]</td>
</tr>
<tr>
<td>HETE J1900.1−2455</td>
<td>19h00m08.65s</td>
<td>−24°55'13.7&quot;</td>
<td>4995.2630(5)</td>
<td>0.01844(2)</td>
<td>803963262.3(8)</td>
<td>1238165153(43)</td>
<td>377.296171971(5)</td>
<td>[89,91]</td>
</tr>
</tbody>
</table>

*90% confidence level.
**3σ error.
broadband search lies outside the scope of this paper, which aims to conduct fast, narrowband searches at astrophysically motivated harmonics of $f_*$ while accommodating frequency wandering within those subbands, a challenge in its own right.

A. $T_{\text{drift}}$ and frequency binning

Another key parameter for the search algorithm described in Sec. II is the coherence time $T_{\text{drift}}$. As in Refs. [11,12] we fix $T_{\text{drift}} = 10$ d for each target. This choice of $T_{\text{drift}}$ is guided by observations of Scorpius X-1 [44]. Quantitative studies of how x-ray flux variability in AMXPs impacts searches for continuous gravitational waves are absent from the literature. The choice to use $T_{\text{drift}} = 10$ d balances the increased sensitivity achieved via longer coherence times with the knowledge that the gravitational wave frequency may wander stochastically, e.g., due to fluctuations in the mass accretion rate. The particular value $T_{\text{drift}} = 10$ d has been adopted in all previous Viterbi LMXB searches [11,12,38] and is justified approximately with reference to a simple random-walk interpretation of fluctuations in the x-ray flux of Scorpius X-1 [44,105,106], but other values are reasonable too.

We remind the reader that the choice of $T_{\text{drift}}$ implicitly fixes the proposed signal model as one in which the frequency may wander step-wise zero, plus or minus one frequency bin every $T_{\text{drift}} = 10$ d. The size of the frequency bins, $\Delta f$, is fixed by the resolution implied by the coherence time, i.e., $\Delta f = 1/(2T_{\text{drift}}) = 5.787037 \times 10^{-7}$ Hz, for $T_{\text{drift}} = 10$ d. As $\Delta f$ depends on $T_{\text{drift}}$, changing the coherence time explicitly changes the signal model, e.g., if $T_{\text{drift}}$ is halved and $T_{\text{obs}}$ is kept constant, then both $N_T$ and $\Delta f$ double; thus the signal can move up to a factor of four more in frequency in the same $T_{\text{obs}}$. The connection between the coherence time and signal model features in all semicoherent search methods. However, for a HMM-based search such as this, the choice of coherence time is not limited by computational cost, as it is in all-sky searches or searches based on the $F$-statistic [17,107].

This analysis does not search over any frequency derivatives. The maximum absolute frequency derivative, $|\dot{f}|_{\text{max}}$, that does not change the frequency more than one frequency bin over the course of one coherent chunk is

$$|\dot{f}|_{\text{max}} = \frac{\Delta f}{T_{\text{drift}}} \approx 6.7 \times 10^{-13} \text{ Hz s}^{-1}. \quad (3)$$

When measured, the long-term secular frequency derivative is well below this value for all of our targets, see Sec. IX C for details.

B. Number of orbital templates

The orbital elements are known to high precision, with the uncertainty in $P$ satisfying $\sigma_P \lesssim 10^{-3}$ s, the uncertainty in $a_0$ satisfying $\sigma_{a_0} \lesssim 10^{-4}$ light-seconds (lt-s), and the uncertainty in $T_{\text{asc}}$ satisfying $\sigma_{T_{\text{asc}}} \lesssim 1$ s. However, $T_{\text{asc}}$ is measured relative to the target’s most recent outburst, which is often years before the start of O3 ($T_{\text{O3, start}} = 1238166483$ GPS time). We need to propagate it forward in time. This propagation compounds the uncertainty in $T_{\text{asc, O3}}$, viz.

$$\sigma_{T_{\text{asc, O3}}} = \sqrt{\sigma_{T_{\text{asc}}}^2 + (N_{\text{orb}}\sigma_P)^2}^{1/2}, \quad (4)$$

where $N_{\text{orb}}$ is the number of orbits between the observed $T_{\text{asc}}$ and $T_{\text{asc, O3}}$. Henceforth $T_{\text{asc}}$ and $\sigma_{T_{\text{asc}}}$ symbolize their values when propagated to $T_{\text{O3, start}}$.

To conduct the search over the orbital elements for each target and subband we construct a rectangular grid in the parameter space defined by $(P \pm 3\sigma_P, a_0 \pm 3\sigma_{a_0}, T_{\text{asc}} \pm 3\sigma_{T_{\text{asc}}})$. For three targets, XTE J0929–314, IGR J16597–3704, and IGR J17494–3030, the range $(T_{\text{asc}} \pm P/2)$ is smaller than $(T_{\text{asc}} \pm 3\sigma_{T_{\text{asc}}})$ and we use the former. We assume that $P$ and $a_0$ remain within the same bin for the entire search. While some targets have a nonzero measurement of $PT_{\text{obs}} (\hat{\sigma}_0 T_{\text{obs}})$, in all cases it is much smaller than the template spacing in $P (a_0)$ [56,63,108].

It is unlikely that the true source parameters lie exactly on a grid point in the parameter space. Thus the grid is spaced such that the maximum mismatch, $\mu_{\text{max}}$, is never more than an acceptable level. The mismatch is defined as the fractional loss in signal-to-noise ratio between the search executed at the true parameters and at the nearest grid point [109]. We calculate the number of grid points required for $P, a_0$ and $T_{\text{asc}}$ using Eq. (71) of Ref. [109], i.e.,

$$N_P = \pi^2 N_{\text{max}} / 2 \frac{\dot{f} |^2}{P^2} \sigma_P, \quad (5)$$

$$N_{a_0} = 3\pi \mu_{\text{max}}^{-1/2} \sigma_{a_0}, \quad (6)$$

$$N_{T_{\text{asc}}} = 6\pi^2 \mu_{\text{max}}^{-1/2} a_0 \sigma_{T_{\text{asc}}}^{-1}, \quad (7)$$

where $\gamma$ is a refinement factor defined in general in Eq. (67) of Ref. [109]. In the case of O3, the semicoherent segments are contiguous so we have $\gamma = N_T = 36$. We fix $\mu_{\text{max}} = 0.1$. A set of software injections into O3 data verifies that a template grid constructed with $\mu_{\text{max}} = 0.1$ results in a maximum fractional loss in signal-to-noise ratio of 10%. We make the conservative choice of rounding $N_P, N_{a_0}$, and $N_{T_{\text{asc}}}$ up to the nearest integer, after setting $f$ to the highest frequency in each 0.61 Hz subband. As in Ref. [12] we find $N_{a_0} = 1$ for each target and subband, and so hold $a_0$ constant at its central value while searching over $P$ and $T_{\text{asc}}$. 

---

5 We consider additional $T_{\text{drift}}$ durations for the target-of-opportunity search for continuous gravitational waves from SAX J1808.4 – 3658 during its O3a outburst in Sec. VIII.
Table II shows $N_P$, $N_{T_{asc}}$, and $N_{tot} = N_P N_{T_{asc}}$ for each target and subband. When Eq. (5) or (7) predicts only two templates for a given subband we round up to three, ensuring that the central value of $P$ or $T_{asc}$ from EM observations is included in the template bank. Note that the EM observations are sufficiently precise that $<5 \times 10^4$ templates are required across all targets and subbands. This is in contrast to the O2 search for continuous gravitational waves from Scorpius X-1, for which $\sim 10^6$ templates were needed, mainly due to the large uncertainty in $a_0$, and the unknown rotation frequency [11].

C. Thresholds

The output of the search algorithm outlined in Sec. II is a $\mathcal{L}$ value corresponding to the most likely path through each subband for each orbital template $(P, a_0, T_{asc})$. We flag a template for further follow-up if $\mathcal{L}$ exceeds a threshold, $\mathcal{L}_{th}$, given an acceptable probability of false alarm. To determine $\mathcal{L}_{th}$ we need to know how often pure noise yields $\mathcal{L} > \mathcal{L}_{th}$. The distribution of $\mathcal{L}$ in noise-only data is unknown analytically, but depends on $P$, $a_0$, and the frequency, so Monte Carlo simulations are used to determine $\mathcal{L}_{th}$ in each subband for each target.

We estimate the distribution of $\mathcal{L}$ in noise via two methods: (i) using realizations of synthetic Gaussian noise generated using the lalapps_Makefakedata_v5 program in the LIGO Scientific Collaboration Algorithm Library (LALSuite) [50], and (ii) searching O3 data in off-target locations to simulate different realizations of true detector noise. As in Refs. [11,12] we generate realizations from the noise-only distribution of $\mathcal{L}$, described in Sec. II to each realization to recover samples from the noise-only distribution of $\mathcal{L}$. Details on how we use these samples to find $\mathcal{L}_{th}$ for each subband are given in the Appendix A. Unless otherwise noted, $\mathcal{L}_{th}$ refers to the lower of the two thresholds derived from the methods listed above to minimize false dismissals.

To define $\mathcal{L}_{th}$ we must also account for a “trials factor” due to the number of templates searched in each subband. We assume that in noise-only data the spacing between templates is sufficiently large such that each template

---

**Table II. Starting frequencies, $f_s$, for each ∼0.61 Hz-wide subband, number of templates needed to cover the $P$ and $T_{asc}$ domains in that subband, $N_P$ and $N_{T_{asc}}$ respectively, and the total number of templates for each subband, $N_{tot} = N_P N_{T_{asc}}$. The projected semimajor axis $a_0$ is known precisely enough that we have $N_{a_0} = 1$ for each subband.**

<table>
<thead>
<tr>
<th>Target</th>
<th>$f_s$ (Hz)</th>
<th>$N_P$</th>
<th>$N_{T_{asc}}$</th>
<th>$N_{tot}$</th>
<th>Target</th>
<th>$f_s$ (Hz)</th>
<th>$N_P$</th>
<th>$N_{T_{asc}}$</th>
<th>$N_{tot}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGR J00291 + 5934</td>
<td>598.6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>IGR J17498−2921</td>
<td>400.7</td>
<td>1</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>798.5</td>
<td>1</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>534.7</td>
<td>1</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>1197.8</td>
<td>1</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
<td>802.0</td>
<td>3</td>
<td>33</td>
<td>99</td>
</tr>
<tr>
<td>MAXI J0911−655</td>
<td>339.7</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>IGR J17511−3057</td>
<td>244.5</td>
<td>1</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>453.3</td>
<td>3</td>
<td>14</td>
<td></td>
<td>42</td>
<td></td>
<td>326.4</td>
<td>1</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>679.9</td>
<td>3</td>
<td>20</td>
<td></td>
<td>60</td>
<td></td>
<td>489.7</td>
<td>1</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>XTE J0929−314</td>
<td>184.8</td>
<td>3</td>
<td>52</td>
<td>156</td>
<td>XTE J1751−305</td>
<td>435.0</td>
<td>4</td>
<td>195</td>
<td>780</td>
</tr>
<tr>
<td>246.8</td>
<td>3</td>
<td>69</td>
<td></td>
<td>207</td>
<td></td>
<td>580.4</td>
<td>5</td>
<td>260</td>
<td>1300</td>
</tr>
<tr>
<td>370.2</td>
<td>3</td>
<td>104</td>
<td></td>
<td>312</td>
<td></td>
<td>870.6</td>
<td>8</td>
<td>390</td>
<td>3120</td>
</tr>
<tr>
<td>IGR J16597−3704</td>
<td>104.9</td>
<td>49</td>
<td>23</td>
<td>1127</td>
<td>Swift J1756.9−2508</td>
<td>181.8</td>
<td>10</td>
<td>34</td>
<td>340</td>
</tr>
<tr>
<td>140.2</td>
<td>65</td>
<td>31</td>
<td></td>
<td>2015</td>
<td></td>
<td>242.8</td>
<td>13</td>
<td>45</td>
<td>585</td>
</tr>
<tr>
<td>210.4</td>
<td>97</td>
<td>46</td>
<td></td>
<td>4462</td>
<td></td>
<td>364.1</td>
<td>20</td>
<td>67</td>
<td>1340</td>
</tr>
<tr>
<td>IGR J17062−6143</td>
<td>163.4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>IGR J17591−2342</td>
<td>527.1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>218.2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>703.2</td>
<td>3</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>327.3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td>1054.9</td>
<td>3</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>IGR J17379−3747</td>
<td>467.8</td>
<td>4</td>
<td>12</td>
<td>48</td>
<td>XTE J1807−294</td>
<td>190.3</td>
<td>1</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>624.1</td>
<td>5</td>
<td>15</td>
<td></td>
<td>75</td>
<td></td>
<td>254.2</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>936.2</td>
<td>7</td>
<td>23</td>
<td></td>
<td>161</td>
<td></td>
<td>381.2</td>
<td>1</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>SAX J1748.9−2021</td>
<td>442.1</td>
<td>3</td>
<td>18</td>
<td>54</td>
<td>SAX J1808.4−3658</td>
<td>400.7</td>
<td>4</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>589.3</td>
<td>3</td>
<td>24</td>
<td></td>
<td>72</td>
<td></td>
<td>534.6</td>
<td>5</td>
<td>7</td>
<td>35</td>
</tr>
<tr>
<td>884.7</td>
<td>3</td>
<td>36</td>
<td></td>
<td>108</td>
<td></td>
<td>802.0</td>
<td>7</td>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>NGC 6440 X-2</td>
<td>205.6</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>XTE J1814−338</td>
<td>314.1</td>
<td>1</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>274.5</td>
<td>1</td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
<td>419.1</td>
<td>1</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>411.8</td>
<td>1</td>
<td>12</td>
<td></td>
<td>12</td>
<td></td>
<td>628.7</td>
<td>1</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>IGR J17494−3030</td>
<td>375.7</td>
<td>21</td>
<td>112</td>
<td>2352</td>
<td>IGR J18245−2452</td>
<td>254.0</td>
<td>3</td>
<td>44</td>
<td>132</td>
</tr>
<tr>
<td>501.4</td>
<td>27</td>
<td>150</td>
<td></td>
<td>4050</td>
<td></td>
<td>339.1</td>
<td>3</td>
<td>58</td>
<td>174</td>
</tr>
<tr>
<td>752.1</td>
<td>41</td>
<td>224</td>
<td></td>
<td>9184</td>
<td></td>
<td>508.7</td>
<td>5</td>
<td>87</td>
<td>435</td>
</tr>
<tr>
<td>Swift J1749.4−2807</td>
<td>517.6</td>
<td>7</td>
<td>43</td>
<td>301</td>
<td>HETE J1900.1−2455</td>
<td>377.0</td>
<td>1</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>690.6</td>
<td>9</td>
<td>57</td>
<td></td>
<td>513</td>
<td></td>
<td>503.1</td>
<td>1</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>1035.8</td>
<td>13</td>
<td>85</td>
<td></td>
<td>1105</td>
<td></td>
<td>754.6</td>
<td>1</td>
<td>33</td>
<td>33</td>
</tr>
</tbody>
</table>
returns a statistically independent $\mathcal{L}$. We can therefore relate the false alarm probability for a search of a subband with $N_{\text{tot}}$ templates, $\alpha_{N_{\text{tot}}}$, to the probability of a false alarm for a single template, $\alpha$, viz.

$$\alpha_{N_{\text{tot}}} = 1 - (1 - \alpha)^{N_{\text{tot}}}.$$  

(8)

Previous comparable searches have set $\alpha_{N_{\text{tot}}}$ between 0.01 and 0.3 [11,12,38,39]. In this search, we fix $\alpha_{N_{\text{tot}}} = 0.3$, i.e., set the acceptable probability of false alarm at 30% per subband. As we search a total of $20 \times 3 = 60$ subbands, we expect $\sim 18$ candidates above $\mathcal{L}_{\text{th}}$ due to noise alone (i.e., false alarms), a reasonable number on which to perform more exhaustive follow-up. Looking ahead to the results in Sec. VII we recover 4611 candidates above $\mathcal{L}_{\text{th}}$. While this number is much higher than the $\sim 18$ false alarms expected, almost all of these candidates are non-Gaussian noise artifacts in one (or both) of the detectors. All but 16 of the 4611 candidates are eliminated by the vetoes outlined in Sec. VI. We reiterate that $\mathcal{L}_{\text{th}}$ in each subband is the lower of the two thresholds described in Appendix A, lowering conservatively the probability of false dismissal.

D. Computing resources

A mix of central processing unit (CPU) and graphical processing unit (GPU) resources are used. The GPU implementation of the $J$-statistic is identical to that used in Refs. [11,12]. The entire search across all targets and subbands takes $\sim 30$ CPU-hours and $\sim 40$ GPU-hours when using compute nodes equipped with Xeon Gold 6140 CPUs and NVIDIA P100 12 GB PCIe GPUs. Producing $\mathcal{L}_{\text{th}}$ for each subband, as described in Sec. IV C, takes an additional $\sim 5 \times 10^2$ CPU-hours and $\sim 4 \times 10^3$ GPU-hours to perform the search on different noise realizations. The additional follow-up in Appendix B 1 requires an additional $\sim 10^5$ CPU-hours and $\sim 10^2$ GPU-hours.

V. O3 DATA

We use the full dataset from O3, spanning from April 1, 2019, 15:00 UTC to March 27, 2020, 17:00 UTC, from the LIGO Livingston and Hanford observatories. We do not use any data from the Virgo interferometer in this analysis, due to its lower sensitivity compared to the two LIGO observatories in the frequency subbands over which we search [110]. The data products ingested by the search algorithm described in Sec. II are short Fourier transforms (SFTs) lasting 1800s. Times when the detectors were offline, poorly calibrated, or were impacted by egregious noise, are excluded from analysis by using “Category 1” vetoes as defined in section V. 2 of Ref. [110]. The SFTs are generated from the “C01 calibrated self-gated” dataset, which is the calibrated strain data with loud transient glitches removed [111]. Transient glitches otherwise impact the noise floor, as described in section VI.1 of Ref. [110]. The median systematic error of the strain magnitude across O3 is $< 2\%$ [112,113].

The coherence time $T_{\text{coh}} = 10$ d splits the data into $N_T = 36$ segments. However, due to the month-long commissioning break between O3a and O3b there are two segments without any SFTs. These two segments, starting at October 8, 2019, 15:00 UTC and October 15, 2019, 15:00 UTC, are replaced with a uniform log-likelihood for all frequency bins, which allows the HMM to effectively skip over them while still allowing spin wandering. When generating synthetic data in Secs. IV C and IX the same two data segments are also replaced with uniform log-likelihoods to emulate the real search.

VI. VETOES

When a candidate is returned with $\mathcal{L} > \mathcal{L}_{\text{th}}$ we must decide whether there are reasonable grounds to veto the candidate as nonastrophysical. We use three of the vetoes from Ref. [12]: the known line veto, detailed in Sec. VI A, the single interferometer veto, detailed in Sec. VI B, and the off-target veto, detailed in Sec. VII. The false dismissal rate of these vetoes is less than 5% (see detailed safety investigations in Sec. IV B of Ref. [38] and Sec. IV B of Ref. [11]).

A. Known line veto

As part of the detector characterization process many harmonic features are identified as instrumental “known lines” [110,114]. However, the exact source of these harmonic features is sometimes unidentified, and their impact cannot always be mitigated through isolating hardware components or post-processing the data [110,114]. We use the vetted known lines list in Ref. [115]. Any candidate close to a known line at frequency $f_{\text{line}}$ is vetoed. Precisely, if for any time $0 \leq t \leq T_{\text{obs}}$ the candidate’s frequency path $f(t)$ satisfies

$$|f(t) - f_{\text{line}}| < 2\pi a_0 f_{\text{line}}/P,$$

then the candidate is vetoed.\footnote{One might consider an additional Doppler broadening factor of $2\pi a_{\odot}/1$ yr, where $a_{\odot}$ is the mean Earth-Sun distance, as stationary lines in the detector frame get Doppler shifted when transforming the data to the frame of reference of the source. We opt not to apply this factor for simplicity in this search, as the exact pattern of Doppler modulation depends strongly on the sky location of the target. Looking ahead to the results in Sec. VII, we note that none of the 16 surviving candidates is within $2\pi f a_{\odot}/1$ yr of any known line.}

B. Single interferometer veto

An instrumental artifact is unlikely to be coincident in both detectors, so the candidate’s $\mathcal{L}$ should be dominated by only one of the detectors if the signal is nonastrophysical. On the
other hand, an astrophysical signal may need data from both detectors to be detected, or if it is particularly strong may be seen in both detectors individually.

We label the original log-likelihood as $L_u$, and we also calculate the two single interferometer log-likelihoods $L_a$ and $L_b$ (where the higher $L$ is labeled with $b$ for definiteness). There are four possible outcomes for this veto:

1. If the $L$ value in one detector is subthreshold, while the other is above the two-detector $L$ value, i.e., one has $L_a < L_{th}$ and $L_b > L_u$, and $f_b(t)$, the frequency path associated with $L_b$, is close to the frequency path of the candidate when using data from both detectors, $f_u(t)$, i.e.,

$$|f_u(t) - f_b(t)| < 2\pi a_0 f_u / P,$$

then the candidate is likely to be a noise artifact in detector $b$, and is vetoed.

2. If one has $L_a < L_{th}$ and $L_b > L_u$, but Eq. (10) does not hold then the candidate signal cannot be vetoed, as the single-interferometer searches did not find the same candidate. This could indicate that the candidate is a weak astrophysical signal that needs data from both detectors to be detectable.

3. If one has $L_a > L_{th}$ and $L_b > L_u$, the candidate could represent a strong astrophysical signal that is visible in data from both detectors independently, or it could represent a common noise source. Candidates in this category cannot be vetoed.

4. If one has $L_a < L_{th}$ and $L_b < L_u$, data from both detectors is needed for the candidate to be above threshold, possible indicating a weak astrophysical signal. Candidates in this category cannot be vetoed.

C. Off-target veto

The third veto we apply to a candidate is to search an off-target sky position with the same orbital template. If the off-target search returns $L > L_{th}$ then the candidate is likely instrumental rather than astrophysical. For this veto, off-target corresponds to shifting the target sky position $+40$ m in RA and $+10^\circ$ in Dec.

VII. O3 SEARCH RESULTS

The results of the search of all 20 targets are summarized in Fig. 1, with $\alpha_{N_{tot}} = 0.3$, i.e., a nominal probability of false alarm per subband of 30%. Each symbol indicates, for all templates with $L > L_{th}$, the terminating frequency bin and $p_{noise}$, the probability that a search of that candidate’s subband in pure noise would return at least one candidate at least as loud as the one seen. Equation (A6) in Appendix A5 defines $p_{noise}$ explicitly. Each candidate is colored according to $L$. We note that high $L$ does not always correspond to low $p_{noise}$ due to the

![Graph](image.png)
differing “trials factors” in each subband, as accounted for when calculating $\mathcal{L}_{\text{th}}$ via Eq. (8). A low value of $P_{\text{noise}}$ corresponds to a higher probability that the candidate is a true astrophysical signal. Targets not listed in the legend return zero candidates above threshold. We do not display in Fig. 1 candidates that are eliminated by any of the vetoes described in Sec. VI for clarity.

In total, across all targets and subbands, there are 4611 candidates with $\mathcal{L} > \mathcal{L}_{\text{th}}$, before the vetoes are applied. All but 100 are eliminated by veto A (known line veto). A further 84 candidates are eliminated by veto B (single interferometer veto). None of the remaining candidates are eliminated by veto C (off-target veto), leaving 16 candidates passing all of the vetoes outlined in Sec. VI. None of the surviving candidates from the O3 search coincide in their orbital template and terminating frequency bin with the seven above- or subthreshold candidates from the O2 search (c.f. Table VI of Ref. [12]). If we set $\alpha_{N_{\text{tot}}} = 0.01$, i.e., set the probability of false alarm per subband to 1%, the search does not return any candidates with $\mathcal{L} > \mathcal{L}_{\text{th}}$ for any target or subband, after vetoes are applied.

In Secs. VII A–VII T we summarize the search results for each of the 20 targets. To guide the reader, and not clutter the main body of the paper, the full search results for one target, IGR J18245 − 2452, are shown in Fig. 2, while the full search results for the other 19 targets are shown in Figs. 4a–4s in Appendix B. The orbital template, terminating frequency bin, $\mathcal{L}$, and $P_{\text{noise}}$ for all 16 candidates with $\mathcal{L} > \mathcal{L}_{\text{th}}$ are collated in Table VI in Appendix B. We present further follow-up of the 16 candidates in Appendix B 1. We find no convincing evidence that any are a true astrophysical signal.

A. IGR J18245−2452

The search results for IGR J18245−2452 are presented in Fig. 2. Each marker in Fig. 2 shows the terminating frequency and associated $\mathcal{L}$ of the most likely path through the subband for a given template, i.e., choice of $P$ and $T_{\text{asc}}$. The vertical blue dashed (green dot-dashed) lines correspond to the threshold set via Gaussian (off-target) noise realizations, $\mathcal{L}_{\text{th,G}} (\mathcal{L}_{\text{th,OT}})$, in each subband, with $\alpha_{N_{\text{tot}}} = 0.3$. See Appendix A for details on how we set thresholds in each subband. The horizontal red lines indicate known instrumental lines in the detector with bandwidth indicated by the shading. There are zero above-threshold candidates in the $f_*$, and $4f_*/3$ subbands. There are 435 above-threshold candidates in the $2f_*$ subband, which are all coincident with known noise lines in both the Livingston and Hanford detectors, and are therefore eliminated by veto A. The subband around 508 Hz is especially noisy due to violin mode resonances [110].

B. IGR J00291+5934

The search results for IGR J00291+5934 are shown in Fig. 4(a), which is laid out identically to Fig. 2. There are zero above-threshold candidates in the $4f_*/3$ and $2f_*$ subbands. There are three above-threshold candidates in the $f_*$ subband, however all three of these candidates are coincident with known noise lines in the Hanford detector, and are therefore eliminated with veto A.

C. MAXI J0911−655

The search results for MAXI J0911−655 are shown in Fig. 4(b), which is laid out identically to Fig. 2. There are zero above-threshold candidates in the $f_*$ and $2f_*$ subbands. There is one above-threshold candidate in the $4f_*/3$ subband which survives all of the vetoes and has $P_{\text{noise}} = 0.26$. Additional follow-up, presented in Appendix B 1, does not provide any evidence that this candidate is a true astrophysical signal.

D. XTE J0929−314

The search results for XTE J0929−314 are shown in Fig. 4(c), which is laid out identically to Fig. 2. There are zero above-threshold candidates across all three subbands.
E. IGR J16597–3704

The search results for IGR J16597–3704 are shown in Fig. 4(d), which is laid out identically to Fig. 2. Each subband for this target is contaminated with known noise lines. There are 84 above-threshold candidates in the $4f_*/3$ subband, however they are all eliminated by veto B. One above-threshold candidate is returned in each of the $f_*$ and $2f_*$ subbands. Both of these candidates survive all of the vetoes, and have $p_{\text{noise}} = 0.30$ and $p_{\text{noise}} = 0.09$ respectively. Further follow-up, including the frequency path and cumulative log-likelihood for the candidate with $p_{\text{noise}} = 0.05$, is presented in Appendix B1. This follow-up does not provide any evidence that either candidate is a true astrophysical signal.

F. IGR J17062–6143

The search results for IGR J17062–6143 are shown in Fig. 4(e), which is laid out identically to Fig. 2. Given the long-term timing presented in Ref. [63] there is only one template needed in each of the three subbands for this target. The template returns $\mathcal{L} > \mathcal{L}_{\text{th}}$ in all three of the $f_*$, $4f_*/3$, and $2f_*$ subbands. All of these candidates survive all of the vetoes, and have $p_{\text{noise}} = 0.24$, $p_{\text{noise}} = 0.19$, and $p_{\text{noise}} = 0.05$ respectively. Further follow-up, including the frequency path and cumulative log-likelihood for the candidate with $p_{\text{noise}} = 0.05$, is presented in Appendix B1. This follow-up does not provide any evidence that any of the three candidates are a true astrophysical signal.

G. IGR J17379–3747

The search results for IGR J17379–3747 are shown in Fig. 4(f), which is laid out identically to Fig. 2. There are zero above-threshold candidates in the $f_*$ and $2f_*$ subbands. There is one above-threshold candidate in the $4f_*/3$ subband which survives all of the vetoes and has $p_{\text{noise}} = 0.08$. Further follow-up, including the frequency path and cumulative log-likelihood, for this candidate is presented in Appendix B1. This follow-up does not provide any evidence that the candidate is a true astrophysical signal.

H. SAX J1748.9–2021

The search results for SAX J1748.9–2021 are shown in Fig. 4(g), which is laid out identically to Fig. 2. There are zero above-threshold candidates in the $f_*$ subband. There are two above-threshold candidates in the $4f_*/3$ subband which survive all of the vetoes and have $p_{\text{noise}} = 0.12$ and $p_{\text{noise}} = 0.27$. There is one above-threshold candidate in the $2f_*$ subband which survives all of the vetoes and has $p_{\text{noise}} = 0.22$. Additional follow-up, presented in Appendix B1, does not provide any evidence that any of the three candidates are a true astrophysical signal.

I. NGC 6440 X-2

The search results for NGC 6440 X-2 are shown in Fig. 4(h), which is laid out identically to Fig. 2. There are zero above-threshold candidates across all three subbands.

J. IGR J17494–3030

The search results for IGR J17494–3030 are shown in Fig. 4(i), which is laid out identically to Fig. 2. There are zero above-threshold candidates in the $f_*$ and $4f_*/3$ subbands. All 4050 candidates in the $4f_*/3$ subband are above threshold, however all of them are coincident with a known noise line in the Hanford detector, and are therefore eliminated with veto A. The subband around 501.7 Hz is especially noisy due to violin mode resonances [110].

K. Swift J1749.4–2807

The search results for Swift J1749.4–2807 are shown in Fig. 4(j), which is laid out identically to Fig. 2. There are zero above-threshold candidates in the $f_*$ and $4f_*/3$ subbands. There is one above-threshold candidate in the $2f_*$ subband. However it is coincident with a known noise line in the Hanford detector, and is therefore eliminated by veto A.

L. IGR J17498–2921

The search results for IGR J17498–2921 are shown in Fig. 4(k), which is laid out identically to Fig. 2. There are zero above-threshold candidates in the $f_*$ and $4f_*/3$ subbands. There is one above-threshold candidate in the $2f_*$ subband which survives all of the vetoes and has $p_{\text{noise}} = 0.22$. Additional follow-up, presented in Appendix B1, does not provide any evidence that this candidate is a true astrophysical signal.

M. IGR J17511–3057

The search results for IGR J17511–3057 are shown in Fig. 4(l), which is laid out identically to Fig. 2. There are zero above-threshold candidates across all three subbands.

N. XTE J1751–305

The search results for XTE J1751–305 are shown in Fig. 4(m), which is laid out identically to Fig. 2. There are zero above-threshold candidates across all three subbands.

O. Swift J1756.9–2508

The search results for Swift J1756.9–2508 are shown in Fig. 4(n), which is laid out identically to Fig. 2. There are zero above-threshold candidates across all three subbands.

P. IGR J17591–2342

The search results for IGR J17591–2342 are shown in Fig. 4(o), which is laid out identically to Fig. 2. There
are zero above-threshold candidates across all three subbands.

Q. XTE J1807–294

The search results for XTE J1807 – 294 are shown in Fig. 4(p), which is laid out identically to Fig. 2. There are zero above-threshold candidates in the \( f_* \) and \( 4f_*/3 \) subbands. There is one above-threshold candidate in the \( 2f_*/3 \) subband which survives all of the vetoes and has \( p_{\text{noise}} = 0.10 \). Further follow-up, including the frequency path and cumulative log-likelihood, for this candidate is presented in Appendix B 1 . This follow-up does not provide any evidence that the candidate is a true astrophysical signal.

R. SAX J1808.4 – 3658

The search results for SAX J1808.4 – 3658 are shown in Fig. 4(q), which is laid out identically to Fig. 2. There are zero above-threshold candidates in the \( f_* \) and \( 2f_*/3 \) subbands. There are two above-threshold candidates in the \( 4f_*/3 \) subband which survive all of the vetoes and have \( p_{\text{noise}} = 0.16 \) and \( p_{\text{noise}} = 0.30 \). Additional follow-up, presented in Appendix B 1 , does not provide any evidence that either candidate is a true astrophysical signal.

S. XTE J1814 – 338

The search results for XTE J1814 – 338 are shown in Fig. 4(r), which is laid out identically to Fig. 2. There are zero above-threshold candidates in the \( 4f_*/3 \) and \( 2f_*/3 \) subbands. There is one above-threshold candidate in the \( f_* \) subband which survives all of the vetoes and has \( p_{\text{noise}} = 0.08 \). Further follow-up, including the frequency path and cumulative log-likelihood, for this candidate is presented in Appendix B 1 . This follow-up does not provide any evidence that the candidate is a true astrophysical signal.

T. HETE J1900.1 – 2455

The search results for HETE J1900.1 – 2455 are shown in Fig. 4(s), which is laid out identically to Fig. 2. There are zero above-threshold candidates in the \( f_* \) subband. All 22 templates in the \( 4f_*/3 \) subband return candidates above \( \mathcal{L}_\text{th} \), however these candidates are all coincident with known noise lines in the Hanford detector, and are summarily eliminated with veto A. The subband around 503 Hz is especially noisy due to violin mode resonances [110]. There is one above-threshold candidate in the \( 2f_*/3 \) subband which survives all of the vetoes and has \( p_{\text{noise}} = 0.25 \). Additional follow-up, presented in Appendix B 1 , does not provide any evidence that this candidate is a true astrophysical signal.

VIII. TARGET-OF-OPPORTUNITY SEARCH: SAX J1808.4 – 3658 IN OUTBURST

On August 7 2019 SAX J1808.4 – 3658 went into outburst [94]. The Neutron star Interior Composition Explorer (NICER) team undertook a high-cadence monitoring campaign, and performed a timing analysis of the pulsations [84]. The outburst lasted for roughly 24 days, with enhanced x-ray flux observed between August 7 2019 and August 31 2019 (see Fig. 1 of Ref. [84]). We note that the Swift X-ray Telescope observed increased x-ray activity from August 6 2019, and observations in the optical \( i' \)-band with the Las Cumbres Observatory network detected an increased flux from July 25 2019 [95].

Outburst events are attributed to in-falling plasma that is channeled by the magnetosphere onto a localized region on the neutron star surface, creating a hot spot that rotates with the star [116]. As the observed x-ray flux is assumed to be linearly proportional to the mass accretion rate, an outburst could result in a larger mountain on the neutron star surface (or excite \( r \)-modes in the interior), compared to when the AMXP is in quiescence [96,117].

If continuous gravitational waves are only emitted from SAX J1808.4 – 3658 when it is in outburst, searching all of the O3 data decreases the signal-to-noise ratio, as compared to only searching data from the outburst. To protect against this possibility, we do an additional search for continuous gravitational waves from SAX J1808.4 – 3658 using data from both LIGO observatories between 1249171218 GPS time (August 7 2019) and 1251244818 GPS time (August 31 2019), rather than data from the entirety of O3, as in Sec. VII R.

A. Search parameters

The search algorithm is laid out in Sec. II. We run the search using three different coherence times, setting \( T_{\text{drift}} = 1 \, \text{d}, T_{\text{drift}} = 8 \, \text{d}, \) and \( T_{\text{drift}} = 24 \, \text{d} \). We search three subbands centered on \( \{1, 4/3, 2\} f_* \), for each \( T_{\text{drift}} \). The width of the subband depends on \( T_{\text{drift}} \). It is \( \sim 0.76 \) Hz for the searches with \( T_{\text{drift}} = 1 \, \text{d} \) and \( 8 \, \text{d} \), and \( \sim 1.01 \) Hz for...
The search with $T_{\text{drift}} = 24$ d. Given the precise timing achieved during the outburst in 2019 [84], and the shorter search duration, only one $\{P, T_{\text{asc}}, a_0\}$ template is required for each subband, according to Eqs. (5)–(7). Due to the different values of $T_{\text{drift}}$, shorter total duration, and different number of templates, we re-calculate $L_{\text{th}}$ for each subband and value of $T_{\text{drift}}$, using the procedure outlined in Sec. IV C and Appendix A. As in the full O3 search, we set the probability of false alarm in each subband at $\sigma_{N_{\text{inj}}} = 0.3$. For all candidates that have $L > L_{\text{th}}$ we apply the three vetoes described in VI.

B. Search results

For $T_{\text{drift}} = 1$ d, the search in the $f_*$ subband returns one candidate above $L_{\text{th}}$. The candidate survives both veto A (known line) and veto B (single interferometer), but fails veto C (off-target). The searches in the $4/3 f_*$ and $2 f_*$ subbands do not return any candidates above $L_{\text{th}}$. For $T_{\text{drift}} = 8$ d, there are no candidates above $L_{\text{th}}$ in any of the three subbands.

For $T_{\text{drift}} = 24$ d, the searches in the $4 f_*/3$ and $2 f_*$ subbands do not return any candidates above $L_{\text{th}}$. The search in the $f_*$ subband does return one candidate above $L_{\text{th}}$. This candidate survives all of the vetoes outlined in Sec. VI. We remind the reader that with $\alpha_{N_{\text{inj}}} = 0.3$ and nine subbands searched (three for each of the three choices of $T_{\text{drift}}$), we should expect $\sim 3$ candidates above threshold purely due to noise. The probability that we would see a value of $L$ at least this large if this subband is pure noise, $p_{\text{noise}}$, is 0.02. The template and frequency of the candidate are not coincident with any candidate from the full O3 search (see Table VI) or the subthreshold candidate found in the search of this subband in O2 data [12]. By setting $T_{\text{drift}} = T_{\text{obs}} = 24$ d we perform a fully coherent search across this time period, with a frequency bin size of $\Delta f = 2.4 \times 10^{-7}$ Hz. We describe in Appendix C further follow-up of this candidate. In summary, we find no significant evidence that it is an astrophysical signal rather than a noise fluctuation.

IX. FREQUENTIST UPPER LIMITS

If we assume that the remaining candidates reported in Sec. VII and Appendix B are false alarms, we can place an upper limit on the wave strain that is detectable at a confidence level of 95%, $h_{0.95}^\text{upper}$, in a subband. The value of $h_{0.95}^\text{upper}$ is a function of our algorithm, the detector configuration during O3, and our assumptions about the signal model. We describe the method used to estimate $h_{0.95}^\text{upper}$ in Sec. IX A, present the upper limits in each subband in Sec. IX B, and compare the results to indirect methods that calculate the expected strain in the $2 f_*$ subband in Sec. IX C. The astrophysical implications are discussed in Sec. IX D.

A. Upper limit procedure in a subband

We set empirical frequentist upper limits in each subband using a sequence of injections into O3 SFTs. For each subband we inject $N_{\text{inj}} = 100$ simulated binary signals at 12–15 fixed values of $h_0$ using lalapps_makefakedata_v5 [50]. For each of the $N_{\text{inj}}$ injections at a fixed $h_0$ we select a constant injection frequency, $f_{\text{inj}}$, uniformly from the subband. While the injected signal has zero spin-wandering, we still use $T_{\text{drift}} = 10$ d in the search algorithm outlined in Sec. II to mimic the real search. The injected period, $P_{\text{inj}}$, and time of ascension, $T_{\text{asc, inj}}$ are chosen uniformly from the ranges $[P - 3\sigma_p, P + 3\sigma_p]$ and $[T_{\text{asc}} - 3\sigma_{T_{\text{asc}}}, T_{\text{asc}} + 3\sigma_{T_{\text{asc}}}]$ respectively. We keep $a_0$ fixed at the precisely known value for each target. The polarization, $\psi$, is chosen uniformly from the range $[0, 2\pi]$. The cosine of the projected inclination angle of the neutron star spin axis with our line of sight, $\cos i$, is chosen uniformly from the range $[-1, 1]$.

We then search for the injected signal with the template in this subband’s template grid that is nearest to $\{P_{\text{inj}}, T_{\text{asc, inj}}\}$. We re-calculate $L_{\text{th}}$ such that the probability of false alarm in each subband is $\sigma_{N_{\text{inj}}} = 0.01$. This allows us to set conservative upper limits, even in subbands where we have marginal candidates above a threshold corresponding to a probability of false alarm of 30% per subband. By recording the fraction of injected signals we recover at each $h_0$ with $L > L_{\text{th}}$ we estimate the efficiency, $\epsilon$, as a function of $h_0$. We then perform a logistic regression [118] to obtain a sigmoid fit to $\epsilon(h_0)$, and solve

$$\epsilon(h_0^{95\%}) = 0.95,$$

(11)

to find an estimate of $h_0^{95\%}$ in the given subband.

One might reasonably ask, how precise is this estimate of $h_0^{95\%}$? The main factors impacting the precision are: (i) the precision of the most likely parameters of the sigmoid, as estimated via logistic regression, when solving Eq. (11) for $h_0^{95\%}$, given the $N_{\text{inj}}$ injections done at 12–15 values of $h_0$; and (ii) the assumption that the strain data (and hence the SFTs) are perfectly calibrated. We investigate the impact of (i) by drawing alternative sigmoid fits of $\epsilon(h_0)$ using the covariance matrix of the parameters returned by the logistic regression. We find that inverting these alternative fits through Eq. (11) results in a value of $h_0^{95\%}$ that varies by less than 5% from the value calculated via the most likely parameters (at the 95% confidence level). The impact of (ii) is trickier to quantify. As described in Refs. [112,113] the median systematic error in the magnitude of the strain is

7While the inclination angle of the binary with respect to our line of sight is restricted via EM observations for some of our targets, we opt to marginalize over $\cos i$ as the neutron star spin axis may not necessarily align with the orbital axis of the binary. It is possible to scale our results via equation (19) of Ref. [106], if one wishes to fix $\cos i$. 

022002-12
less than 2% in the 20–2000 Hz frequency band across O3a. The statistical uncertainty around the measurement of calibration bias means that in the worst case the true magnitude of the calibration bias may be as large as 7%. However, the calibration bias at a given frequency is not correlated between the detectors (see Figs. 16 and 17 in Ref. [112]), and so the impact on a continuous gravitational wave search that combines data from both detectors is likely to be less than 7%.

In light of the above considerations we quote $h_{0}^{95\%}$ to a precision of two significant figures, but we emphasize that estimating $h_{0}^{95\%}$ involves many (potentially compounding) uncertainties. Subsequent conclusions about the physical system that are drawn from estimates of $h_{0}^{95\%}$ cannot be more precise than the estimate of $h_{0}^{95\%}$ itself.

B. Upper limits

The estimates of $h_{0}^{95\%}$ for each target and subband are listed in Table III. Ellipses correspond to subbands that are highly contaminated with noise lines, which preclude the procedure described in Sec. IX A, as one always finds $\mathcal{L} > \mathcal{L}_{\text{th}}$, regardless of $h_0$. The most sensitive subbands are for IGR J17062 − 6143 with $h_{0}^{95\%} = 4.7 \times 10^{-26}$ in both the $4f_{\star}/3$ and $2f_{\star}$ subbands (centered around 218.2 Hz and 327.6 Hz respectively). These subbands lie in the most sensitive band of the detector, and the binary elements are known to high precision [63], so only one template is needed in each subband, corresponding to a relatively lower $\mathcal{L}_{\text{th}}$ at fixed probability of false alarm.

No estimates of $h_{0}^{95\%}$ were established in Ref. [12] for the five targets therein. The search of XTE J1751 − 305 in S6 data estimated $h_{0}^{95\%} \approx 3.3 \times 10^{-24}$, $4.7 \times 10^{-24}$, and $7.8 \times 10^{-24}$ in three subbands corresponding to $f_{\star}$, an r-mode frequency, and $2f_{\star}$ respectively [42]. Our estimates of $h_{0}^{95\%}$ for XTE J1751 − 305 improve these results by two orders of magnitude, because the detector is more sensitive, and $T_{\text{drit}}$ is longer.

C. Comparison to expected strain from AMXPs

It is valuable to consider how strong the signal from our targets could be, given EM observations. If we assume that all rotational energy losses, as observed in the frequency derivative $\dot{f}_{\star}$, are converted into gravitational radiation, the indirect spin-down limit on the maximum strain, $h_{0,\text{sd}}$, is [46]

$$ h_{0,\text{sd}} = 4.0 \times 10^{-28} \left( \frac{8 \text{ kpc}}{D} \right) \times \left( \frac{600 \text{ Hz}}{f_{\text{GW}}} \right)^{1/2} \left( \frac{\dot{f}_{\text{GW}}}{10^{-14} \text{ Hz s}^{-1}} \right)^{1/2} , $$ (12)

where $D$ is the distance to the target, $f_{\text{GW}}$ is the gravitational wave frequency, and $\dot{f}_{\text{GW}}$ is its derivative. In Eq. (12) we assume $I_{zz}/I_0 \approx 1$, i.e., the $zz$ component of the moment-of-inertia tensor ($I_{zz}$) is very close to the moment-of-inertia of an undeformed star ($I_0$). We assume $f_{\text{GW}} \approx 2f_{\star}$ when computing Eq. (12) for each of our targets. We list the best estimates for the distance to each target in the second column of Table IV. These estimates are typically poorly known, especially if there is no known counterpart observed in wavelengths other than x-ray for the target. We use the central estimate of the distance in Eq. (12).

For AMXPs, $\dot{f}_{\star}$ is estimated by constructing a phase-connected timing solution when the target is in outburst, but estimates for $\dot{f}_{\star}$ in quiescence are also possible for targets that have gone into outburst multiple times. The $\dot{f}_{\star}$ observed during outburst can be either positive (corresponding to spin-up) or negative (corresponding to spin-down), while in quiescence $\dot{f}_{\star}$ is typically (but not always) negative [92,93]. The third column of Table IV records $\dot{f}_{\star}$ for each of our targets. When $\dot{f}_{\star}$ has been measured in multiple outburst events, only the $\dot{f}_{\star}$ from the most recent outburst is listed. For $\dot{f}_{\star} < 0$ we assume $\dot{f}_{\text{GW}} \approx 2\dot{f}_{\star}$ in Eq. (12). For targets with $\dot{f}_{\star} < 0$ (in either quiescent or active phases) we find $10^{-28} \lesssim h_{0,\text{sd}} \lesssim 10^{-27}$ (fourth
TABLE IV. Maximum expected strain from each target, as inferred from EM observations. The second column contains the best estimate for the distance to the target. Targets with "…" listed as the frequency derivative (third column), $f_\ast$, do not have a measured value during outburst, and also do not have a long-term (quiescent) $f_\ast$ measured either. The labels (A) and (Q) indicate that $f_\ast$ is measured in outburst and quiescence respectively. The scaling equations used to estimate the maximum spin-down strain (fourth column), $h_{0,\text{sd}}$, and the maximum strain assuming torque-balance (sixth column), $h_{0,\text{torque}}$, are Eqs. (12) and (13) respectively. The $h_{0,\text{sd}}$ value is calculated using the central distance and $f_\ast$ estimates. The $h_{0,\text{torque}}$ value is calculated using the maximum bolometric x-ray flux measured during outburst (fifth column), $F_{\text{X,max}}$, which is typically measured to a precision of $\sim 10\%$. The x-ray flux of each target in quiescence is not shown, as it is only measured for half of the targets, and is usually $\sim 1-2$ orders of magnitude lower than $F_{\text{X,max}}$. The seventh column contains $h_{0,\text{59\%}}$ in the $2f_\ast$ subband (fourth column of Table III) to facilitate comparisons between $h_{0,\text{59\%}}$ and $h_{0,\text{torque}}$ or $h_{0,\text{sd}}$.

<table>
<thead>
<tr>
<th>Target</th>
<th>Distance (kpc)</th>
<th>$f_\ast$ (Hz s$^{-1}$)</th>
<th>$h_{0,\text{sd}}$ ($\times 10^{-26}$)</th>
<th>$F_{\text{X,max}}$ ($\times 10^{-8}$ erg s$^{-1}$ cm$^{-2}$)</th>
<th>$h_{0,\text{torque}}$ ($\times 10^{-26}$)</th>
<th>$h_{0,\text{59%}}$ ($\times 10^{-26}$)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGR J00291 + 5934</td>
<td>4.2(5)</td>
<td>$-4.0(1.4) \times 10^{-15}$ (Q)</td>
<td>0.05</td>
<td>0.35</td>
<td>0.2</td>
<td>11</td>
<td>[53,119–121]</td>
</tr>
<tr>
<td>MAXI J0911–655</td>
<td>9.45(15)</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>0.1</td>
<td>7.3</td>
<td>[57,58,122]</td>
</tr>
<tr>
<td>XTE J0929–314</td>
<td>7.4$^d$</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>0.2</td>
<td>6.4</td>
<td>[53,59,123]</td>
</tr>
<tr>
<td>IGR J16597–3704</td>
<td>9.1$^b$</td>
<td>…</td>
<td>0.065</td>
<td>0.2</td>
<td>2.2</td>
<td>6</td>
<td>[62]</td>
</tr>
<tr>
<td>IGR J17062–6143</td>
<td>7.3(5)</td>
<td>$+3.77(9) \times 10^{-14}$ (A)</td>
<td>0.04$^d$</td>
<td>0.006</td>
<td>0.05</td>
<td>4.7</td>
<td>[63,124]</td>
</tr>
<tr>
<td>IGR J17379–3747</td>
<td>8$^e$</td>
<td>$-1.2(1.9) \times 10^{-14}$ (A)</td>
<td>0.05</td>
<td>0.04</td>
<td>0.08</td>
<td>10</td>
<td>[64,65,125,126]</td>
</tr>
<tr>
<td>SAX J1748.9–2021</td>
<td>8.5$^b$</td>
<td>…</td>
<td>0.07</td>
<td>0.07</td>
<td>0.1</td>
<td>10</td>
<td>[53,66,127,128]</td>
</tr>
<tr>
<td>NGC 6440 X-2</td>
<td>8.5$^b$</td>
<td>…</td>
<td>0.02</td>
<td>0.09</td>
<td>5.8</td>
<td>8</td>
<td>[68,127]</td>
</tr>
<tr>
<td>IGR J17494–3030</td>
<td>8$^e$</td>
<td>$-2.1(7) \times 10^{-14}$ (Q)</td>
<td>0.07</td>
<td>0.014</td>
<td>0.05</td>
<td>9.0</td>
<td>[69]</td>
</tr>
<tr>
<td>Swift J1749.4–2807</td>
<td>6.7(1.3)</td>
<td>…</td>
<td>0.0352</td>
<td>0.07</td>
<td>24</td>
<td>7</td>
<td>[71,72,129]</td>
</tr>
<tr>
<td>IGR J17498–2921</td>
<td>7.6(1.1)</td>
<td>$-6.3(1.9) \times 10^{-14}$ (A)</td>
<td>0.1</td>
<td>0.2</td>
<td>8.4</td>
<td>9</td>
<td>[73,74,130]</td>
</tr>
<tr>
<td>IGR J17511–3057</td>
<td>3.6(5)</td>
<td>$+4.8(1.4) \times 10^{-14}$ (A)</td>
<td>0.2$^d$</td>
<td>0.2</td>
<td>0.2</td>
<td>6.6</td>
<td>[76]</td>
</tr>
<tr>
<td>XTE J1751–305</td>
<td>6.7$^d$</td>
<td>$-5.5(1.2) \times 10^{-15}$ (Q)</td>
<td>0.04</td>
<td>0.29</td>
<td>0.2</td>
<td>9.7</td>
<td>[53,78,131]</td>
</tr>
<tr>
<td>Swift J1756.9–2508</td>
<td>8$^e$</td>
<td>$-4.8(6) \times 10^{-16}$ (Q)</td>
<td>0.02</td>
<td>0.288</td>
<td>0.3</td>
<td>6.3</td>
<td>[53,79]</td>
</tr>
<tr>
<td>IGR J17591–2342</td>
<td>7.6(7)</td>
<td>$-7.1(4) \times 10^{-14}$ (A)</td>
<td>0.1</td>
<td>0.0535</td>
<td>0.09</td>
<td>14</td>
<td>[81,132,133]</td>
</tr>
<tr>
<td>XTE J1807–294</td>
<td>8$^e$</td>
<td>$+2.7(1.0) \times 10^{-14}$ (A)</td>
<td>0.08$^d$</td>
<td>0.2</td>
<td>0.3</td>
<td>8.8</td>
<td>[53,83,134]</td>
</tr>
<tr>
<td>SAX J1808.4–3658</td>
<td>3.3$^{+0.3}_{-0.2}$</td>
<td>$-1.01(7) \times 10^{-15}$ (Q)</td>
<td>0.04</td>
<td>0.103</td>
<td>0.1</td>
<td>5.6</td>
<td>[53,84,135,136]</td>
</tr>
<tr>
<td>XTE J1814–338</td>
<td>10.25(1)</td>
<td>$-6.7(7) \times 10^{-14}$ (A)</td>
<td>0.1</td>
<td>0.069</td>
<td>0.1</td>
<td>6.9</td>
<td>[53,86,137]</td>
</tr>
<tr>
<td>IGR J18245–2452</td>
<td>5.5$^b$</td>
<td>…</td>
<td>0.0466</td>
<td>0.1</td>
<td>...</td>
<td>…</td>
<td>[88,127,138]</td>
</tr>
<tr>
<td>HETE J1900.1–2455</td>
<td>4.5(2)</td>
<td>$+4.2(1) \times 10^{-13}$ (A)</td>
<td>0.4$^f$</td>
<td>0.09</td>
<td>0.1</td>
<td>8.4</td>
<td>[53,91,139,140]</td>
</tr>
</tbody>
</table>

$^a$Estimate assumes conservative mass transfer during accretion. An alternative estimate gives less than 4 kpc [123].

$^b$Uncertainty not quoted as target located in a globular cluster.

$^c$Unknown, but as the target is in the direction of the galactic centre a fiducial value of 8 kpc is assumed in the literature.

$^d$Lower limit.

$^e$Estimate of $f_\ast$ consistent with zero at a 3σ level.

$^f$Assumes $f_{\text{GW}} \approx -f_\ast$, see text for details.
column of Table IV), an order of magnitude lower than the estimated value of $h_0^{95\%}$.

As argued in Ref. [12], for $\dot{f}_e > 0$ the torque due to gravitational radiation reaction may be masked by the accretion torque, allowing larger values of $\dot{f}_{GW}$, as long as one has $\dot{f}_e = \dot{f}_{acc} + \dot{f}_{GW}$, where $\dot{f}_{acc}$ is the spin-up rate due to accretion. A reasonable choice, without excessive fine-tuning, is to set $\dot{f}_{GW} \approx -\dot{f}_e$, for an order-of-magnitude estimate in Eq. (12), i.e., assuming $|\dot{f}_{acc}| \approx 2|\dot{f}_{GW}|$. The resultant values for $h_{0,\text{sd}}$ for targets with $\dot{f}_e > 0$ are all well below the estimates of $h_0^{95\%}$ set in Sec. IX B, and fall in the range $10^{-28} \lesssim h_{0,\text{sd}} \lesssim 10^{-27}$.

Another avenue through which EM observations can constrain $h_0$ is by assuming that the x-ray flux is proportional to the mass accretion rate, and that the torque due to accretion balances the gravitational radiation reaction. The torque-balance limit is [18,46]

$$h_{0,\text{torque}} = 5 \times 10^{-22} \left( \frac{600 \text{ Hz}}{f_{GW}} \right)^{1/2} \times \left( \frac{F_X}{10^{-8} \text{ erg s}^{-1} \text{ cm}^{-2}} \right)^{1/2},$$  

(13)

where $F_X$ is the observed bolometric x-ray flux. Equation (13) has a few hidden assumptions, namely: (i) that the mass of the neutron star is 1.4 $M_\odot$, (ii) that all of the accretion luminosity is radiated as an x-ray flux, and (iii) that the accretion torque is applied at the radius of the neutron star, which is set to 10 km. The exact dependence of the torque-balance limit on these assumptions is discussed in Ref. [18]. We take $f_{GW} \approx 2f_e$ for each of our targets, as for Eq. (12). We take $F_X = F_{X,\text{max}}$, the maximum recorded x-ray flux from each target when it was in outburst (fifth column of Table IV), providing an upper limit on $h_{0,\text{torque}}$ (sixth column of Table IV). We find $5 \times 10^{-28} \lesssim h_{0,\text{torque}} \lesssim 1 \times 10^{-27}$ across all targets.

**D. Astrophysical implications**

The estimates of $h_0^{95\%}$ given in Sec. IX B can be converted into constraints on the physical parameters that govern the mechanism putatively generating continuous gravitational waves in each subband.

In the $2f_e/3$ subband the simplest emission mechanism is that of a perpendicular biaxial rotator (using the language from Ref. [141], for which we calculate the upper limit of the ellipticity of the neutron star as [49]

$$\epsilon^{95\%} = 2.1 \times 10^{-6} \left( \frac{h_0^{95\%}}{10^{-25}} \right) \left( \frac{D}{8 \text{ kpc}} \right) \left( \frac{600 \text{ Hz}}{f_{GW}} \right)^2,$$  

(14)

assuming $I_{zz} = 10^{38} \text{ kg m}^2$. Using the central estimate for $D$ (second column of Table IV), we find the strictest constraint, from all of our targets, $\epsilon^{95\%} = 3.1 \times 10^{-7}$ for IGR J00291+5934. A kernel density estimate of the probability density function (PDF) of the constraints $\epsilon^{95\%}$, $\tilde{p}(\epsilon^{95\%})$, for all our targets, is shown in the left panel of Fig. 3. It is peaked around $\epsilon^{95\%} \sim 10^{-6}$.

In the $4f_e/3$ subband the emission mechanism is via $r$-modes, the strength of which is parametrized as [142]

$$\alpha^{95\%} = 1.0 \times 10^{-4} \left( \frac{h_0^{95\%}}{10^{-25}} \right) \left( \frac{D}{8 \text{ kpc}} \right) \left( \frac{600 \text{ Hz}}{f_{GW}} \right)^3.$$  

(15)

Equation (15) assumes $f_{GW} \approx 4f_e/3$, which may not be true, as discussed in Sec. IV [103,104]. The strictest constraint, from all of our targets, is $\alpha^{95\%} = 1.8 \times 10^{-5}$, again for IGR J00291+5934. A kernel density estimate of the PDF of the constraints $\alpha^{95\%}$, $\tilde{p}(\alpha^{95\%})$, for all our targets, is shown in the right panel of Fig. 3. It is peaked around $\alpha^{95\%} \sim 10^{-4}$.

The kernel density estimates of the PDFs $\tilde{p}(\epsilon^{95\%})$ and $\tilde{p}(\alpha^{95\%})$ in Fig. 3 are not constraints on $\epsilon$ and $\alpha$ respectively, nor are they expressing the uncertainty in each individual estimate of $\epsilon^{95\%}$ or $\alpha^{95\%}$ (which are dominated by the uncertainty in $h_0^{95\%}$, and the distance, see column two of Table IV). They are instead presented to indicate where the constraints on $\epsilon^{95\%}$ and $\alpha^{95\%}$ lie, given the strain upper limits calculated for the targets in this search. That is, they are estimates of the true probability distribution of the constraints one would obtain for $\epsilon$ and $\alpha$, given a large
population of AMXPs (assuming the targets studied here are representative of this larger population). The kernel density estimates are calculated by summing Gaussian kernels centered on each data point, with bandwidth chosen to minimize the asymptotic mean integrated square error [143].

The physical mechanism for emission in the $f_*$ subband is less well-defined. A biaxial nonperpendicular rotator emits gravitational radiation at both $f_*$ and $2f_*$ [49,97,144]. The emission at $f_*$ dominates the $2f_*$ emission for both $\theta \lesssim 20^\circ$ and $|\cos \theta| \lesssim 0.8$, where $\theta$ is the wobble angle (see Fig. 5 of Ref. [141] for details). The value of $\theta$ is low for certain models involving pinned superfluid interiors [97,145]. Other possibilities exist, including a triaxial rotator [146–148]. We recommend future searches to also consider searching the $f_*$ subband, due to the wealth of information that a continuous gravitational wave detection at this frequency would provide regarding neutron star structure.

X. CONCLUSIONS

We present the results of a search for continuous gravitational waves from 20 accreting low-mass x-ray binaries in the Advanced LIGO O3 dataset. Five of these targets were searched before in O2 [12], and one was searched in S6 [42]. The search pipeline we use allows for spin-wandering and tracks the orbital phase of the binary searched in S6 [42]. The search pipeline we use allows for targets were searched before in O2 [12], and one was binaries in the Advanced LIGO O3 dataset. Five of these gravitational waves from 20 accreting low-mass x-ray binaries.

Assuming all of the candidates are not astrophysical, we set upper limits on the strain at 95% confidence in each subband. Using these estimates, the strictest constraint on neutron star ellipticity is $e_{95\%} = 3.1 \times 10^{-7}$. The strictest constraint we place on the $r$-mode amplitude is $a_{95\%} = 1.8 \times 10^{-5}$. Both of these constraints come from IGR J00291 + 5934.

ACKNOWLEDGMENTS

This material is based upon work supported by NSF’s LIGO Laboratory which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council.
APPENDIX A: THRESHOLD SETTING

In this Appendix we outline two alternative methods to set thresholds for the search. In Appendix A1 we detail the method in Ref. [11] to set thresholds by modeling the tail of the log-likelihood distribution in noise as an exponential. In Appendix A2 we review the nonparametric method in Refs. [12,19,20,38,149], which takes a certain percentile detection statistic from noise-only realizations as the threshold. We compare the methods in Appendix A3. In Appendix A4 we discuss generating noise realizations using off-target searches, and justify the approach taken in this paper. In Appendix A5 we specify how to calculate $p_{\text{noise}}$ the probability that we see a value of $\mathcal{L}$ at least as high as a certain candidate in a given subband.

Whatever the method, the threshold depends on both the target’s projected semimajor axis, $a_0$, and the subband frequency, $f$, as log-likelihoods depend nonlinearly on $a_0 f$ as an increased number orbital sidebands are included in the $\mathcal{J}$-statistic at higher $a_0 f$ [see Eq. (6) in Ref. [11] and Ref. [43] for details]. For this reason we set thresholds independently for each target and subband.

1. Exponential tail method

The PDF of the log-likelihood, $p(\mathcal{L})$, for the most likely path for a given template is observed to have an exponentially distributed tail in noise,

$$p(\mathcal{L}) = A \lambda \exp \left[ -\lambda (\mathcal{L} - \mathcal{L}_{\text{tail}}) \right] \quad \text{for } \mathcal{L} > \mathcal{L}_{\text{tail}}, \quad (A1)$$

where $A$ is a normalization constant, $\lambda$ is a parameter to be found empirically, and $\mathcal{L}_{\text{tail}}$ is a cutoff that must also be determined empirically.

For each target and subband we estimate $\lambda$ and $\mathcal{L}_{\text{tail}}$ using a set of $M$ sample log-likelihoods, a subset of which have $\mathcal{L} > \mathcal{L}_{\text{tail}}$. This subset is denoted $S_{\text{tail}} \equiv \{ L_i \}, \quad i \in \{1, \ldots, N_{\text{tail}}\}$. The entire set of $M$ samples is generated by running the search on $N_G = 100$ realizations of Gaussian noise. To keep $N_G$ small enough to be computationally feasible we include log-likelihoods from all possible Viterbi paths through the subband for each template, instead of just the log-likelihood from the most likely path. Thus, we have $M = N_G N_f N_B$, where $N_f = 2^{20}$ is the number of frequency bins in each subband, and $N_B$ is the number of binary orbital templates needed for each individual subband, as listed in Table II. Separate tests, not shown here, indicate that including the log-likelihoods from nonmaximal paths does not change the shape of $p(\mathcal{L})$, and therefore does not change the thresholds $\mathcal{L}_{\text{th}}$, if the appropriate trials factor is taken into account.

Assuming each $\mathcal{L}_i$ is independent, the maximum likelihood estimator, $\hat{\lambda}$, for $\lambda$ is

$$\hat{\lambda} = \frac{N_{\text{tail}}}{\sum_{i=1}^{N_{\text{tail}}} (\mathcal{L}_i - \mathcal{L}_{\text{tail}})}. \quad (A2)$$

The normalization $A = N_{\text{tail}} / M$ is fixed via the fraction of total samples used to construct $p(\mathcal{L})$. The cut-off $\mathcal{L}_{\text{tail}}$ is estimated in each subband as the smallest value $\mathcal{L}$ where a histogram of the samples $\mathcal{L}_i > \mathcal{L}$ has approximately constant slope when viewed on log-linear axes. Each $\mathcal{L}_i$ is independent for the long coherence times ($T_{\text{drift}} = 10$ d) used in this search, as $N_f \ll N_f$ implies most optimal paths through the subband are not correlated.

The probability, $\alpha$, that $\mathcal{L}$ is above some threshold $\mathcal{L}_{\text{th}} > \mathcal{L}_{\text{tail}}$ if no signal is present (i.e., in pure noise) is

$$\int_{\mathcal{L}_{\text{th}}}^{\infty} d\mathcal{L} p(\mathcal{L}) = \alpha. \quad (A3)$$

Combining Eqs. (8), (A1), and (A3) we solve for $\mathcal{L}_{\text{th}}$ in a given subband, viz.

$$\mathcal{L}_{\text{th}} = -\frac{1}{\hat{\lambda}} \log \left( \frac{N_G \alpha N_{\text{tail}}}{N_{\text{tail}}} \right) + \mathcal{L}_{\text{tail}}. \quad (A4)$$
where Eq. (8) is simplified via the binomial approximation ($N_{\text{tot}} = N_f N_B \gg 1$), and $\alpha_{N_{\text{tot}}}$ is the desired false alarm probability for the search over the subband. Note Eq. (A4) depends implicitly on the subband frequency and $N_B$, through $\hat{\lambda}$ and $N_{\text{tail}}$.

Across all targets and subbands we find $0.195 < \hat{\lambda} < 0.248$, with larger values corresponding to higher frequency subbands, and those with larger $N_B$. A simple rule-of-thumb is that, for a median value of $\hat{\lambda} = 0.218$, an increment of $\approx 3$ in $\mathcal{L}$ is $\approx 50\%$ less likely to occur in pure noise.

2. Percentile method

Given a sorted set of most likely log-likelihoods $\{\mathcal{L}_i\}$, $i \in \{1, \ldots, M\}$ with $M = N_G N_B$, generated via running the search algorithm over $N_G$ realizations of noise for a single target and subband, one can pick as the threshold the $\mathcal{L}_i$ corresponding to the percentile equal to the desired false alarm probability, i.e.,

$$\mathcal{L}_{\text{th}} = \mathcal{L}_j,$$

with $j = \lfloor \alpha_{N_{\text{tot}}} M \rfloor$. As with the method described in Appendix A1 we may opt to use the log-likelihoods from all possible Viterbi paths through the subband for a given orbital template, to reduce the number of realizations of noise we need to generate. With this set of log-likelihoods, we have $M = N_G N_f N_B$.

3. Comparison of methods

The two methods described in Appendixes A1 and A2 give broadly similar results for $\mathcal{L}_{\text{th}}$ for a given probability of false alarm. Reference [11] opts for the method in Appendix A1. When Viterbi scores are used as the detection statistic, as in Ref. [11], the PDF of the score in noise does not vary with frequency, and thus the thresholds in each subband can be extrapolated from a small set of Gaussian noise realizations. If the PDF of the detection statistic varies with target search parameters, then the method in Appendix A2 is used, as in Refs. [12,19,20,149]. The percentile method has inherently fewer assumptions, as it does not fit a parametric model to

<table>
<thead>
<tr>
<th>Target</th>
<th>$f_s$ (Hz)</th>
<th>$\mathcal{L}^G_{\text{th},G}$</th>
<th>$\mathcal{L}^G_{\text{th},OT}$</th>
<th>Target</th>
<th>$f_s$ (Hz)</th>
<th>$\mathcal{L}^G_{\text{th},G}$</th>
<th>$\mathcal{L}^G_{\text{th},OT}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGR J00291+5934</td>
<td>598.6</td>
<td>291.9</td>
<td>1136.7</td>
<td>IGR J17498−2921</td>
<td>400.7</td>
<td>304.6</td>
<td>298.4</td>
</tr>
<tr>
<td></td>
<td>798.2</td>
<td>294.9</td>
<td>288.4</td>
<td></td>
<td>534.4</td>
<td>304.7</td>
<td>297.9</td>
</tr>
<tr>
<td></td>
<td>1197.5</td>
<td>295.2</td>
<td>287.6</td>
<td></td>
<td>801.7</td>
<td>311.2</td>
<td>304.5</td>
</tr>
<tr>
<td>MAXI J0911 − 655</td>
<td>339.7</td>
<td>297.0</td>
<td>290.0</td>
<td>IGR J17511−3057</td>
<td>244.5</td>
<td>302.0</td>
<td>293.7</td>
</tr>
<tr>
<td></td>
<td>453.0</td>
<td>305.4</td>
<td>298.2</td>
<td></td>
<td>326.1</td>
<td>303.4</td>
<td>295.8</td>
</tr>
<tr>
<td></td>
<td>679.6</td>
<td>305.5</td>
<td>300.4</td>
<td></td>
<td>489.4</td>
<td>305.1</td>
<td>297.9</td>
</tr>
<tr>
<td>XTE J0929−314</td>
<td>184.8</td>
<td>311.9</td>
<td>304.9</td>
<td>XTE J1751−305</td>
<td>435.0</td>
<td>312.8</td>
<td>316.0</td>
</tr>
<tr>
<td></td>
<td>246.5</td>
<td>307.4</td>
<td>301.2</td>
<td></td>
<td>580.1</td>
<td>312.9</td>
<td>306.6</td>
</tr>
<tr>
<td></td>
<td>369.9</td>
<td>310.4</td>
<td>304.5</td>
<td></td>
<td>870.3</td>
<td>319.9</td>
<td>315.7</td>
</tr>
<tr>
<td>IGR J16597−3704</td>
<td>104.9</td>
<td>321.6</td>
<td>316.4</td>
<td>Swift J1756.9−2508</td>
<td>181.8</td>
<td>308.7</td>
<td>302.8</td>
</tr>
<tr>
<td></td>
<td>139.9</td>
<td>322.9</td>
<td>625.5</td>
<td></td>
<td>242.5</td>
<td>317.4</td>
<td>312.8</td>
</tr>
<tr>
<td></td>
<td>210.0</td>
<td>323.7</td>
<td>318.5</td>
<td></td>
<td>363.8</td>
<td>315.3</td>
<td>309.0</td>
</tr>
<tr>
<td>IGR J17062−6143</td>
<td>163.4</td>
<td>292.1</td>
<td>285.1</td>
<td>IGR J17591−2342</td>
<td>527.1</td>
<td>299.3</td>
<td>289.4</td>
</tr>
<tr>
<td></td>
<td>217.9</td>
<td>289.1</td>
<td>281.8</td>
<td></td>
<td>702.9</td>
<td>302.0</td>
<td>295.7</td>
</tr>
<tr>
<td></td>
<td>327.0</td>
<td>293.3</td>
<td>283.3</td>
<td></td>
<td>1054.5</td>
<td>304.7</td>
<td>298.2</td>
</tr>
<tr>
<td>IGR J17379−3747</td>
<td>467.8</td>
<td>307.4</td>
<td>298.9</td>
<td>SAX J1808.4−3658</td>
<td>400.7</td>
<td>303.8</td>
<td>294.8</td>
</tr>
<tr>
<td></td>
<td>623.8</td>
<td>307.4</td>
<td>299.9</td>
<td></td>
<td>534.3</td>
<td>305.0</td>
<td>296.1</td>
</tr>
<tr>
<td></td>
<td>935.9</td>
<td>311.1</td>
<td>305.7</td>
<td></td>
<td>801.6</td>
<td>309.3</td>
<td>301.4</td>
</tr>
<tr>
<td>SAX J1748.9−2021</td>
<td>442.1</td>
<td>308.2</td>
<td>300.3</td>
<td>XTE J1807−294</td>
<td>190.3</td>
<td>295.5</td>
<td>287.0</td>
</tr>
<tr>
<td></td>
<td>589.5</td>
<td>310.1</td>
<td>301.6</td>
<td></td>
<td>253.9</td>
<td>296.8</td>
<td>289.0</td>
</tr>
<tr>
<td></td>
<td>884.4</td>
<td>311.5</td>
<td>304.9</td>
<td></td>
<td>380.9</td>
<td>299.7</td>
<td>292.0</td>
</tr>
<tr>
<td>NGC 6440 X-2</td>
<td>205.6</td>
<td>292.8</td>
<td>281.3</td>
<td>XTE J1814−338</td>
<td>314.1</td>
<td>301.8</td>
<td>293.3</td>
</tr>
<tr>
<td></td>
<td>274.2</td>
<td>298.3</td>
<td>288.6</td>
<td></td>
<td>418.8</td>
<td>302.3</td>
<td>294.3</td>
</tr>
<tr>
<td></td>
<td>411.5</td>
<td>295.9</td>
<td>287.2</td>
<td></td>
<td>628.4</td>
<td>305.8</td>
<td>298.4</td>
</tr>
<tr>
<td>IGR J17494−3030</td>
<td>375.7</td>
<td>315.3</td>
<td>309.3</td>
<td>IGR J18245−2452</td>
<td>254.0</td>
<td>311.2</td>
<td>305.4</td>
</tr>
<tr>
<td></td>
<td>501.1</td>
<td>317.5</td>
<td>13763.8</td>
<td></td>
<td>338.8</td>
<td>312.5</td>
<td>305.9</td>
</tr>
<tr>
<td></td>
<td>751.8</td>
<td>322.2</td>
<td>316.5</td>
<td></td>
<td>508.4</td>
<td>317.3</td>
<td>13569.7</td>
</tr>
<tr>
<td>Swift J1749.4−2807</td>
<td>517.6</td>
<td>316.4</td>
<td>308.8</td>
<td>HETE J1900.1−2455</td>
<td>377.0</td>
<td>299.6</td>
<td>288.1</td>
</tr>
<tr>
<td></td>
<td>690.3</td>
<td>318.4</td>
<td>311.9</td>
<td></td>
<td>502.8</td>
<td>303.1</td>
<td>8459.4</td>
</tr>
<tr>
<td></td>
<td>1035.5</td>
<td>321.0</td>
<td>316.3</td>
<td></td>
<td>754.3</td>
<td>303.8</td>
<td>294.7</td>
</tr>
</tbody>
</table>
\( p(\mathcal{L}) \). However it is not possible to extrapolate thresholds calculated in one subband to other subbands.

For our targets and subbands, we find \( \mathcal{L}_{th}^e - \mathcal{L}_{th}^p \approx 2 \), where the superscripts \( e \) and \( p \) correspond to the exponential tail and percentile methods respectively. However the exact difference depends on the realizations of Gaussian noise; Monte Carlo simulations indicate that with \( N_G = 100 \) the calculated threshold is usually within 2\% of the true value, so thresholds should only be considered precise to 2\%.

4. Off-target thresholds

Both methods derive \( \mathcal{L}_{th} \) based on realizations of Gaussian noise. However, the noise in real detector data is non-Gaussian in general [110]. To account for this we search O3 data at \( N_{OT} \) randomly chosen, but well-separated, off-target positions, to generate \( N_{OT} \) realizations of real detector noise, as originally done in Ref. [12]. We set \( N_{OT} \) such that \( N_B N_{OT} > 500 \), with a minimum value of \( N_{OT} = 100 \), to ensure enough samples are generated.

If there are no known noise lines in the subband, we find \( 4 < \mathcal{L}_{th,G}^e - \mathcal{L}_{th,OT}^p < 12 \), where the subscripts \( G \) and \( OT \) correspond to thresholds calculated using Gaussian and off-target noise realizations respectively. That is, the thresholds calculated from Gaussian noise, using the exponential tail method are considerably more conservative than those calculated from off-target noise and the percentile method.

If there are loud noise lines in the subband, \( \mathcal{L}_{th,OT}^p \) is often much higher, as these lines appear in the off-target noise realizations. Because off-target noise realizations are impacted by noise lines, \( p(\mathcal{L}) \) is not necessarily exponential in its tail. We thus opt to use the percentile method when calculating thresholds with off-target noise realizations. Table V contains the calculated \( \mathcal{L}_{th,G}^e \) and \( \mathcal{L}_{th,OT}^p \) for each target and subband.

As in Ref. [12] we consider \( \mathcal{L}_{th}^e \) for each subband to be the minimum of \( \mathcal{L}_{th,G}^e \) and \( \mathcal{L}_{th,OT}^p \), with \( \alpha_{N_{tot}} = 0.3 \). This choice minimizes the probability that we will miss a potential candidate due to inadvertently setting our threshold too high.

5. Probability that a candidate arises due to noise

As discussed in Sec. IV C, when we set \( \alpha_{N_{tot}} = 0.3 \) we expect ~18 candidates above \( \mathcal{L}_{th} \), across all targets and subbands. Let us quantify empirically the probability, \( p_{\text{noise}} \), that, if the data in a given subband are pure noise, we see at least one template with log-likelihood higher than that of the candidate, \( \mathcal{L}_{\text{cand}} \). We have

\[
p_{\text{noise}} = \frac{\sum_{i=1}^{M} 1(\mathcal{L}_i > \mathcal{L}_{\text{cand}})}{M}, \tag{A6}
\]

where \( 1(\ldots) \) is the indicator function which returns 1 when the argument is true, otherwise 0. In this paper we calculate Eq. (A6) for each candidate with \( \mathcal{L} > \mathcal{L}_{th} \) using the set of log-likelihoods, \( \{\mathcal{L}_i\} \), generated via off-target realizations as discussed in Appendix A 4. As in Appendix A 2, we set \( M = N_G N_B \) to account for the extra “trials factor” needed for subbands with multiple templates.

APPENDIX B: FULL SEARCH RESULTS AND SURVIVOR FOLLOW-UP

This Appendix collates the full search results for reference and reproducibility for all targets in Figs. 4(a)–4(s) (except for IGRJ18245−2452 which is shown in Fig. 2). Each of Figs. 4(a)–4(s) is laid out identically to Fig. 2.

The orbital parameters (\( P, a_0, \) and \( T_{\text{asc}} \)), terminating frequency bin \( \{f(N_T)\} \), log-likelihood (\( \mathcal{L} \)), and \( p_{\text{noise}} \), the probability that a search of that candidate’s subband in pure noise would return at least one candidate at least as loud as the one seen are shown in Table VI, for each of the candidates that survive all vetoes and have \( \mathcal{L} > \mathcal{L}_{th} \).

1. Additional follow-up for survivors

The full frequency paths, \( f(t) - f(N_T) \), for all candidates with \( p_{\text{noise}} \leq 0.1 \) are shown in the top panels of Figs. 5(a)–5(e). The bottom panels of Figs. 5(a)–5(e) display the cumulative log-likelihood along the frequency path relative to the average sum log-likelihood needed to reach \( \mathcal{L}_{th} \), namely \( \mathcal{C} \equiv \sum_{i=0}^{i=C} \mathcal{L}(i) - \mathcal{L}_{th}/N_T \), where \( \sum_{i=0}^{i=C} \mathcal{L}(i) = \ln P(Q^*(\mathcal{O})) \) truncated after the \( i \)-th segment. Overplotted (blue dashed line) is the average cumulative log-likelihood needed at each data segment in order to reach \( \mathcal{L}_{th} \). This diagnostic indicates whether a handful of segments dominate in making the candidate’s frequency path the optimal one for that template. If the candidate is a true signal, we would expect the signal strength to be approximately constant, and thus the cumulative log-likelihood should grow linearly as more data are considered. However, Monte Carlo tests with injections show that the cumulative log-likelihood only becomes linear for \( \mathcal{L} \geq \mathcal{L}_{th} + 200 \). This is not the case for any of the 16 survivor candidates, and thus their cumulative log-likelihood cannot help us distinguish whether they are truly astrophysical signals.

The sky resolution of the algorithm described in Sec. II is roughly 2 arcmin in RA and Dec., for an injection with \( \mathcal{L}_{th} \lesssim \mathcal{L} \lesssim \mathcal{L}_{th} + 50 \). The point-spread-function of an injection is an ellipse, which has a varying orientation and eccentricity dependent on the sky position. For each of our candidates we calculate \( \mathcal{L} \) at 440 regularly spaced sky positions in a 100 arcmin\(^2\) grid around the target’s true location, using the template recovered from the search and listed in Table VI. For almost all survivor candidates, the distribution of \( \mathcal{L} \) values in the patch of sky around the candidate does not match the elliptical point-spread-function we see in injections for their respective sky.
(a) Search results for IGR J00291+5934.

(b) Search results for MAXI J0911–655.

(c) Search results for XTE J0929–314.

(d) Search results for IGR J16597–3704.

(e) Search results for IGR J17062–6143.

Fig. 4. (Continued).
Fig. 4. (Continued).

(f) Search results for IGR J17379–3747.

(g) Search results for SAX J1748.9–2021.

(h) Search results for NGC 6440 X–2.

(i) Search results for IGR J17494–3030.

(j) Search results for Swift J1749.4–2807.

Fig. 4. (Continued).
Fig. 4. (Continued).

(k) Search results for IGR J17498–2921.

(l) Search results for IGR J17511–3057.

(m) Search results for XTE J1751–305.

(n) Search results for Swift J1756.9–2508.

(o) Search results for IGR J17591–2342.

Fig. 4. (Continued).
locations. The sole exception is Candidate 2 from IGR J16597 − 3704. Figure 6 shows \( \mathcal{L} \) at 3721 regularly spaced sky positions in a 100 arcmin\(^2\) grid around the target’s true location, again using the template as listed in Table VI. The roughly elliptical shape is consistent with the point-spread-function of injections at this sky location. However, the
TABLE VI. Orbital template, \((P, a_0, T_{\text{asc}})\), terminating frequency bin, \(f(N_T)\), log-likelihood, \(\mathcal{L}\), and the probability that a search of the candidate’s subband in pure noise would return a candidate just as loud, \(p_{\text{noise}}\), for the 16 candidates with \(\mathcal{L} > \mathcal{L}_{\text{th}}\) that cannot be eliminated by any of the vetoes detailed in Sec. VI.

<table>
<thead>
<tr>
<th>Target</th>
<th>Candidate</th>
<th>(P) (s)</th>
<th>(a_0) (lt-s)</th>
<th>(T_{\text{asc}}) (GPS time)</th>
<th>(f(N_T)) (Hz)</th>
<th>(\mathcal{L})</th>
<th>(p_{\text{noise}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAXI J0911–655</td>
<td>1</td>
<td>2659.933</td>
<td>0.0176</td>
<td>1238165869.0437</td>
<td>453.309532</td>
<td>299.2</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2757.90</td>
<td>0.0048</td>
<td>1238163010.7583</td>
<td>210.359055</td>
<td>323.5</td>
<td>0.09</td>
</tr>
<tr>
<td>IGR J16597–3704</td>
<td>1</td>
<td>2758.61</td>
<td>0.0048</td>
<td>1238163275.6122</td>
<td>105.002195</td>
<td>316.5</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2757.90</td>
<td>0.0048</td>
<td>1238163010.7583</td>
<td>210.359055</td>
<td>323.5</td>
<td>0.09</td>
</tr>
<tr>
<td>IGR J17062–6143</td>
<td>1</td>
<td>1807</td>
<td>0.0176</td>
<td>1238165942.2745</td>
<td>163.531805</td>
<td>286.4</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2278.2112</td>
<td>0.0040</td>
<td>1238165942.2745</td>
<td>218.452901</td>
<td>283.9</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2278.2112</td>
<td>0.0040</td>
<td>1238165942.2745</td>
<td>327.058287</td>
<td>290.0</td>
<td>0.05</td>
</tr>
<tr>
<td>IGR J17379–3747</td>
<td>1</td>
<td>1814</td>
<td>0.0070</td>
<td>1238162768.3832</td>
<td>623.819568</td>
<td>303.9</td>
<td>0.08</td>
</tr>
<tr>
<td>SAX J1748.9–2021</td>
<td>1</td>
<td>31555.29</td>
<td>0.3876</td>
<td>1238151700.2214</td>
<td>590.048237</td>
<td>304.9</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>31555.30</td>
<td>0.3876</td>
<td>1238151760.9764</td>
<td>590.040010</td>
<td>302.3</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>31555.31</td>
<td>0.3876</td>
<td>1238151710.6406</td>
<td>884.592276</td>
<td>305.6</td>
<td>0.22</td>
</tr>
<tr>
<td>IGR J17498–2921</td>
<td>1</td>
<td>13835.619</td>
<td>0.36517</td>
<td>1238164013.8774</td>
<td>801.703605</td>
<td>305.8</td>
<td>0.22</td>
</tr>
<tr>
<td>XTE J1807–294</td>
<td>1</td>
<td>2404.416</td>
<td>0.00483</td>
<td>1238165585.2721</td>
<td>381.000852</td>
<td>296.7</td>
<td>0.10</td>
</tr>
<tr>
<td>SAX J1808.4–3658</td>
<td>1</td>
<td>7249.15</td>
<td>0.0628</td>
<td>1238161168.0040</td>
<td>534.633578</td>
<td>298.2</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7249.16</td>
<td>0.0628</td>
<td>1238161183.0831</td>
<td>534.407934</td>
<td>296.2</td>
<td>0.16</td>
</tr>
<tr>
<td>XTE J1814–338</td>
<td>1</td>
<td>15388.723</td>
<td>0.3906</td>
<td>1238151858.3941</td>
<td>314.564137</td>
<td>297.7</td>
<td>0.08</td>
</tr>
<tr>
<td>HETE J1900.1–2455</td>
<td>1</td>
<td>4995.26</td>
<td>0.0184</td>
<td>1238161529.0866</td>
<td>754.378543</td>
<td>295.8</td>
<td>0.25</td>
</tr>
</tbody>
</table>

As in Appendix B 1, we perform additional follow-up for this remaining candidate. With \(T_{\text{obs}} = 24\) d the point-spread-function of a moderately loud injection (\(\mathcal{L} > \mathcal{L}_{\text{th}} + 20\)), at the sky location of the target, is a narrow ellipse \(\sim 2\) arcmin wide in RA, but over \(\sim 30\) arcmin tall in Dec. When we search a 100 arcmin\(^2\) patch of sky around the location of SAX J1808.4 – 3658 we do not see any evidence of this point-spread-function at the source location. There is an ellipse with \(\mathcal{L} > \mathcal{L}_{\text{th}}\) roughly \(\sim 2\) arcmin away in RA from SAX J1808.4 – 3658, but as the location of the target is known to subarcsec precision [84], this ellipse is likely a noise fluctuation, rather than an astrophysical signal.

We also calculate \(\mathcal{L}\) in a small, densely sampled patch of the \(\{P, T_{\text{asc}}\}\) parameter space around the candidate’s template. As discussed in Appendix B 1, moderately loud injections (\(\mathcal{L} > \mathcal{L}_{\text{th}} + 20\)) “spread out” in the \(\{P, T_{\text{asc}}\}\) plane. However, the candidate is not loud enough for this diagnostic to provide evidence for or against the hypothesis that the candidate is a noise fluctuation.

Finally, we perform a complementary follow-up search using a deterministic signal template on the candidate of interest using PyFstat [150,151]. The use of the PyFstat algorithm as a follow-up technique was applied.
FIG. 5. Top panels: frequency paths, $f(t)$, for candidates with $p_{\text{noise}} \leq 0.1$. The terminating frequency bin, $f(N_T)$, is subtracted and displayed in the title of each figure for clarity. Faint horizontal grey lines demarcate frequency bins of size $\Delta f = 5.787037 \times 10^{-7}$ Hz, while faint vertical grey lines demarcate chunks of length $T_{\text{drift}} = 10$ d. Bottom panels: the cumulative log-likelihood along the frequency path relative to the average sum log-likelihood needed to reach $L_{\text{th}}$, $C L \equiv \sum_{i=0}^{t-1} [\mathcal{L}(i) - \mathcal{L}_{\text{th}}/N_T]$, where $\sum_{i=0}^{t-1} \mathcal{L}(i)$ is $\ln P(Q^*|O)$ from Eq. (2) truncated after the $i$th segment. The horizontal blue dashed line corresponds to $\sum_{i=0}^{t-1} \mathcal{L}(i) = t \mathcal{L}_{\text{th}}/N_T$. The grey shaded regions in both top and bottom panels correspond to the segments which have no SFTs and are therefore filled with a uniform log-likelihood, as described in Sec. V.
to the last surviving outlier of Ref. [28] and previously in Refs. [24,152]. The follow-up procedure, thoroughly described in Ref. [153], uses a Markov chain Monte Carlo (MCMC) sampler [154,155] to explore a parameter-space region using the $\mathcal{F}$-statistic as log-likelihood [49]. Two coherence times are used here, namely $T_{\text{coh}} = 12\,\text{d}$ and $T_{\text{coh}} = 24\,\text{d}$. Prior distributions are Gaussian distributions centered at the outlier parameters (Table VII) using a standard deviation of one parameter-space bin with maximum mismatch $\mu_{\text{max}} = 1$ [109]. The results of the follow-up are evaluated using a Bayes factor, $B_{\text{S/N}}$, that compares the evidence for a model that the data contain a coherent signal to the evidence for a model that the data contain only noise. The value of $B_{\text{S/N}}$ is computed by comparing the change in the $\mathcal{F}$-statistic of the loudest candidate between the two follow-up stages with different coherence times: if a signal is present in the data, the $\mathcal{F}$-statistic should provide a consistent estimate of the signal-to-noise ratio; otherwise, the loudest candidate is a result of noise, the distribution of which follows a Gumbel distribution. This noise distribution is estimated using a similar method to the one described in Appendix A4, with 600 off-source calculations performed.

The loudest candidate of the follow-up returns a log-Bayes factor of $\log_{10} B_{\text{S/N}} = 1.45$. We characterize the $\log_{10} B_{\text{S/N}}$ distribution using 400 isotropically distributed sources injected into the real data with an amplitude of $h_0^{95\%}$. We obtain a 1% false dismissal threshold of 8.75, which is significantly larger than the candidate’s log-Bayes factor of 1.45. That is, if this were a true signal, with $h_0 = h_0^{95\%}$, we would expect the log-Bayes factor to be higher than what we see in the real data by about 7. We conclude that there is no significant evidence of continuous gravitational wave emission from this target.

### Table VII. Orbital template, $(P, a_0, T_{\text{asc}})$, frequency, $f$, log-likelihood, $\mathcal{L}$, and the probability of seeing a candidate at least this loud in pure noise, $p_{\text{noise}}$, for the remaining candidate from the target-of-opportunity, 24d coherent search when SAX J1808.4 − 3658 was in outburst. The candidate cannot be eliminated by any of the vetoes detailed in Sec. VI.

<table>
<thead>
<tr>
<th>$P$ (s)</th>
<th>$a_0$ (lt-s)</th>
<th>$T_{\text{asc}}$ (GPS time)</th>
<th>$f$ (Hz)</th>
<th>$\mathcal{L}$</th>
<th>$p_{\text{noise}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7249.155</td>
<td>0.062809</td>
<td>1249163578.03125</td>
<td>400.59656098</td>
<td>42.5</td>
<td>0.02</td>
</tr>
</tbody>
</table>

FIG. 6. $\mathcal{L}$, as represented by the color of each pixel, calculated at 3721 regularly spaced sky locations in a 100 arcmin² patch of sky, centered on IGR J16597 − 3704. See text in Appendix B1 for details.
SEARCH FOR CONTINUOUS GRAVITATIONAL WAVES FROM 20 ...

PHYS. REV. D 105, 022002 (2022)


[72] A. Sanna et al., NICER timing of millisecond x-ray pulsar SWIFT J1749.4 − 2807 during its 2021 outburst (to be published).


[111] J. Zweizig and K. Riles, LIGO-T2000384-v4: Information on self-gating of h(t) used in O3 continuous-wave and stochastic searches.


R. ABBOTT et al.

PHYS. REV. D 105, 022002 (2022)

93 INFN, Sezione di Napoli, Gruppo Collegato di Salerno, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy

94 Università di Roma “La Sapienza”, I-00185 Roma, Italy

95 Univ Rennes, CNRS, Institut FOTON-UMR6082, F-35000 Rennes, France

96 Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

97 INFN, Laboratori Nazionali del Gran Sasso, I-67100 Assergi, Italy

98 Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-Université PSL, Collège de France, F-75005 Paris, France

99 Astronomical Observatory Warsaw University, 00-478 Warsaw, Poland

100 University of Maryland, College Park, Maryland 20742, USA

101 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), D-14476 Potsdam, Germany

102 L2IT, Laboratoire des 2 Infinis-Toulouse, Université de Toulouse, CNRS/IN2P3, UPS, F-31062 Toulouse Cedex 9, France

103 School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

104 IGFAE, Campus Sur, Universidade de Santiago de Compostela, 15782 Spain

105 The Chinese University of Hong Kong, Shatin, NT, Hong Kong

106 Stony Brook University, Stony Brook, New York 11794, USA

107 Center for Computational Astrophysics, Flatiron Institute, New York, New York 10010, USA

108 NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

109 Dipartimento di Fisica, Università degli Studi di Genova, I-16146 Genova, Italy

110 Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University, Princetonplein 1, 3584 CC Utrecht, Netherlands

111 RESCEU, University of Tokyo, Tokyo, 113-0033, Japan

112 Department of Astronomy, Beijing Normal University, Beijing 100875, China

113 OzGrav, University of Melbourne, Parkville, Victoria 3010, Australia

114 University degli Studi di Sassari, I-07100 Sassari, Italy

115 INFN, Laboratori Nazionali del Sud, I-95125 Catania, Italy

116 Università di Roma Tor Vergata, I-00133 Roma, Italy

117 INFN, Sezione di Roma Tor Vergata, I-00133 Roma, Italy

118 University of Sannio at Benevento, I-82100 Benevento, Italy and INFN, Sezione di Napoli, I-80100 Napoli, Italy

119 Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania 19085, USA

120 Departamento de Astronomía y Astrofísica, Universitat de València, E-46100 Burjassot, València, Spain

121 Universität Hamburg, D-22761 Hamburg, Germany

122 Rochester Institute of Technology, Rochester, New York 14623, USA

123 National Tsing Hua University, Hsinchu City, 30013 Taiwan, Republic of China

124 Department of Applied Physics, Fukuoka University, Jonan, Fukuoka City, Fukuoka 814-0180, Japan

125 OzGrav, Charles Sturt University, Wagga Wagga, New South Wales 2678, Australia

126 Department of Physics, Tamkang University, Danshui Dist., New Taipei City 25137, Taiwan

127 Department of Physics and Institute of Astronomy, National Tsing Hua University, Hsinchu 30013, Taiwan

128 Department of Physics, Center for High Energy and High Field Physics, National Central University, Zhongli District, Taoyuan City 32001, Taiwan

129 CaRT, California Institute of Technology, Pasadena, California 91125, USA

130 Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan

131 Dipartimento di Ingegneria Industriale (DIIN), Università di Salerno, I-84084 Fisciano, Salerno, Italy

132 Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan

133 Université Lyon, Université Claude Bernard Lyon 1, CNRS, IP2I Lyon/IN2P3, UMR 5822, F-69622 Villeurbanne, France

134 Seoul National University, Seoul 08826, South Korea

135 Pusan National University, Busan 46241, South Korea

136 INAF, Osservatorio Astronomico di Padova, I-35122 Padova, Italy

137 University of Arizona, Tucson, Arizona 85721, USA

138 Rutherford Appleton Laboratory, Didcot OX11 0OE, United Kingdom

139 OzGrav, Swinburne University of Technology, Hawthorn VIC 3122, Australia

140 Université libre de Bruxelles, Avenue Franklin Roosevelt 50–1050 Bruxelles, Belgium

141 Universitat de les Illes Balears, IAC3—IEEC, E-07122 Palma de Mallorca, Spain

142 Université Libre de Bruxelles, Brussels 1050, Belgium

143 Departamento de Matemáticas, Universitat de València, E-46100 Burjassot, València, Spain

022002-38