Water is too precious to waste

Trade-offs of sewage effluent reuse in agricultural sub-surface irrigation

Narain, D.M.

Publication date
2023

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Water is too precious to waste

Trade-offs of sewage effluent reuse in agricultural sub-surface irrigation

Dominique Mon-Coeur Narain

About the author

Dominique was born and raised in Paramaribo, Suriname where she obtained her BSc degree in Environmental Technology. Her bachelor thesis was awarded the second best price of the faculty of science in the field of water. In 2015, she left her country of birth to further pursue a career in water quality. For this purpose she enrolled and was the first in her cohort to complete her MSc in Environmental Toxicology at Utrecht University. Her love for research and drawing let her to undertake a PhD journey under the supervision of the very ambitious prof. dr. Annemarie P. van Wezel and the always has the door open prof. dr. Stefan C. Dekker. She was particularly excited about the versatility that this PhD project offered. Additionally, she got to work closely with the water research institute KWR through her very passionate about solving drought related issues co-promotor dr. Ir. Ruud P. Bartholomeus. Through the constant support, encouragement and positive criticism of her promotors and co-promotor and many professors at the UvA especially ass. prof. dr. Michiel H.S. Kraak and prof. dr. Gerard Muijzer she was able to dive into a wide range of topics throughout her PhD journey which led to diverse first and co-authored publications. This diverse background of her expertise in the research field water quality was instrumental in landing her dream job at RIVM as researcher drinking water quality.
Water is too precious to waste

Trade-offs of sewage effluent reuse in agricultural sub-surface irrigation

Dominique Mon-Coeur Narain

This dissertation is part of the research program “Re-USe of Treated effluent for agriculture (RUST)” with project number ALWGK.2016.016, which is funded by the Netherlands Organization for Scientific Research (NWO).

Cover and chapter fronts: Dominique M. Narain
Layout: Proefschriftspecialist.nl - Zaandam
Printed by: Proefschriftspecialist.nl - Zaandam
Publisher: Universiteit van Amsterdam, IBED (Amsterdam, The Netherlands)
Water is too precious to waste
Trade-offs of sewage effluent reuse in agricultural sub-surface irrigation

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. ir. P.P.C.C. Verbeek
ten overstaan van een door het College voor Promoties ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel
op woensdag 10 mei 2023, te 10.00 uur

door Dominique Mon-Coeur Narain
geboren te Paramaribo
PROMOTIECOMMISSIE
Promotores:
prof. dr. A.P. van Wezel Universiteit van Amsterdam
prof. dr. S.C. Dekker Universiteit Utrecht

Copromotores:
dr. ir. R.P. Bartholomeus KWR Water Research Institute

Overige leden:
prof. dr. D. Fatta-Kassinos University of Cyprus
dr. N.B. Sutton Wageningen University & Research
prof. dr. ir. A.G. Oomen Universiteit van Amsterdam
prof. dr. ir. F.T. de Vries Universiteit van Amsterdam
prof. dr. W.P. de Voogt Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica
Foremost, I am highly grateful to

My Lord and Savior

Jesus Christ

For His blessing that continue to flow into my life.

To my beloved parents

You have taught me to be unique, determined, to believe in myself, and to always persevere.

And to our son Axel, you have made me stronger, better and more fulfilled than I could have ever imagined. I love you forever, for always, no matter what.
Contents

Chapter 1
General Introduction 11

1.1 Combatting global non-potable freshwater shortages 12
1.2 Sub-surface irrigation systems as method of supply 13
1.3 Policies and guidelines concerning non-potable water reuse 14
1.4 NWO-RUST project 15
1.5 Rationale, research question and outlook 16

Chapter 2
Natural purification through soils: Risks and opportunities of sewage effluent reuse in sub-surface irrigation 21

Reviews of Environmental Contamination and Toxicology 250, 85-117

Abstract 22
Abbreviations 22

2.1 Introduction 24

2.2 Policies and guidelines concerning non-potable water reuse
2.2.1 Worldwide 26
2.2.2 Europe 26

2.3 STP effluent reuse in agriculture
2.3.1 De facto or unintentional reuse 28
2.3.2 Intentional reuse 29
2.3.3 Public perception 30
2.3.4 Irrigation systems 31

2.4 Fate processes of CoECs during SSI
2.4.1 Sorption and (bio)transformation
2.4.1.1 Intrinsic properties of organic CoECs 34
2.4.1.2 Extrinsic properties of organic CoECs 35
2.4.2 Crop uptake and bioaccumulation
2.4.2.1 Intrinsic properties of organic CoECs 39
2.4.2.2 Extrinsic properties of organic CoECs 40
Chapter 3
Soil self-cleaning capacity: Removal of organic compounds during sub-surface irrigation with sewage effluent

Water Research 226, 119303

Abbreviations 53
3.1 Introduction 54
3.2 Material and methods 56
 3.2.1 Study area 56
 3.2.2 Sample collection 57
 3.2.3 CoECs selection criteria 60
 3.2.4 Organic chemical analysis 62
 3.2.4.1 Standards and reagents 62
 3.2.4.2 Sample preparation 62
 3.2.4.3 LC-HRMS analysis 62
 3.2.4.4 Target screening and quantification method 63
 3.2.5 Statistical analysis 63
 3.2.6 Risk characterization 65
3.3 Results and discussion 65
 3.3.1 Occurrence of CoECs 65
 3.3.2 Transport of CoECs in time, space, and depth 67
 3.3.2.1 Seasonal dynamics 68
 3.3.2.2 Location and depth dependence 69
 3.3.3 Removal efficiency 73
 3.3.4 Public health implications 74
3.4 Conclusion 78
 Acknowledgments 78
 Annex A - Supplementary information chapter 3 79
Chapter 4
Aerobic and anaerobic biodegradation during sub-surface irrigation with sewage effluent

Abstract

4.1 Introduction

4.2 Materials and methods
4.2.1 Study area and field sampling
4.2.1.1 Study area
4.2.1.2 Summer sampling
4.2.1.3 Winter sampling
4.2.2 Batch experiment setup
4.2.2.1 Batch soil preparation
4.2.2.2 Batch set-up and operation
4.2.3 Organic chemical analysis
4.2.3.1 Standards and reagents
4.2.3.2 Sample preparation
4.2.3.3 HPLC-MS/MS and GC-MS/MS analysis
4.2.4 Molecular analysis
4.2.4.1 Sample preparation
4.2.4.2 16S Amplicon sequencing
4.2.5 Data analysis

4.3 Results and discussion
4.3.1 Pre-exposure enhances biodegradation
4.3.2 Bacterial community changes due to long-term STP effluent exposure
4.3.3 Perspectives of CoECs biodegradation in field condition

4.4 Conclusion

Acknowledgements

Annex B - Supplementary information chapter 4
Chapter 5
Shifting the imbalance: Intentional reuse of Dutch sewage effluent in sub-surface irrigation

Abstract
5.1 Introduction
5.2 Materials and methods
 5.2.1 Sub-surface irrigation water demand
 5.2.2 STP effluent volumes
 5.2.3 Transport distances
5.3 Results
 5.3.1 SSI water demand
 5.3.2 STP effluent water supply
 5.3.3 Fulfilled water demand
5.4 Discussion
 5.4.1 Uncertainties and limitations of approach
 5.4.2 Practical implications
5.5 Conclusion
 Acknowledgements
 Annex C - Supplementary information chapter 5

Chapter 6
Synthesis: Towards comprehensive intentional reuse of sewage effluent in agricultural irrigation

6.1 The full potential of intentional sewage effluent reuse in agricultural irrigation
6.2 Adequate risk assessment of sewage effluent reuse in SSI
6.3 Way forward

Appendix
 References
 Summary
 Samenvatting
 Author contribution
 List of publications